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1. THE MOTIVATION

Let (M,g) be a normalized compact Riemannian surface, i.e. a Riemannian surface
whose boundary consists of a finite number of closed geodesies of (M, g). Let (N, h) be a compact
Riemannian manifold of dimension n. For any smooth map u : M —* N, we define an energy of
u by E{u) = JM \du\2dM where jcfu| is the Hilbert-Schmidt norm of the operator du.

Let if be a Jt-dimensional closed submanifold of N and we define

C(K) = {ueC2(M,N); u(3M) C K}

Then the critical point of E( ) over C( K) is a harmonic map with free boundary. The motivation
of this paper comes from following basic problem: WHEN DOES A GIVEN COMPONENT OF
C{ K) CONTAIN A HARMONIC MAP WITH FREE-BOUNDARY.

A natural way to attack this problem is to flow u0 in C( K) along the negative L 2 -
gradientline of E. That is, we want to find u : M x (0 , +00) —• N satisfying following equations:

dtu(x,t) = T(tt(x,t))fV(a;,t) € M x (O.oo) (1)

u ( , 0 ) = u 0 (2)

u(x,t)eK, a.a.xedM for t > 0 , (3)

V(x,t)edMx(0toc) (4)

where r( u) is the tension field of u in the sense of Eells-Sampson [ES], nis the inward unit normal
on M, and "±" means orthogonal.

A global way to write (1) in one chart in the range was found in [ES]. We adapt a statement
from [HJ. We imbed N in a Euclidean space Ed by Nash's isometric imbedding theorem, but we
prefer to change the ordinary metric on Ed. Let T be tubular neighbourhood of N in Ed, define
1 : T —* T be a involution having precisely N for its fixed point set, take an extension of the metric
h to T, and average it under the action of t, then 1 is an isometry. Finally, let B be a large ball (in
Ed) containing T, and extend the metric on T smoothly to all of Ed so as to equal the Euclidean
metric outside of B, then we obtain a new metric vector space Rd. In Rd

t B is also convex. If we
consider u as a map from M to i2d, then (1) can be written as:

^ 1 <i<d (5)

where Au : TUN x TUN —• Rd be the second fundamental form of N in Rd.

Since the natural space for E making sense is HX(M,N), we shall enlarge the initial
value class of (1) to

H(K) ={u£H](M,N); u(x) £Ka.a.x



By the argument of [SU], we know that C{ K) is dense in H ( i f ) . Our main result is the following:

Theorem 1 Let uo G H(K), then there exists a (distribution) global solution u of (1-4),
which is regular except a finite point set {{xl, Tl)}I^I<.L C M X (0 , OO) such that at each point
(xl,Tl), there exist sequences sj- -> xl,tj / Tl, and Rl

} \ 0 such that (a) if x' e intM, then
u(xl + # j x x,tlj) —* ui(x) in H^iR?, N) where u* : R2 —> N can be extended to a minimal
2-sphere in N. •

(b)ifxle dM.then

u( %l + R) x x, t)) -+ Ui( a) in H^i Rl, JV)

where uj : R\ —» N can be extended to minimal 2-<iisk in JV with free boundary in K.

The solution u is unique in this class and the singularities are characterized by the con-
dition that lim £(u( t ) ,B^(x ' ) ) > Co, Vi2 > 0 where eo is a uniform constant.

If uo € C(K), then the solution u is regular on M x [o,T) where f = min{T'i}.

As a direct consequence of Theorem 1, we obtain

Theorem 2 Let JV be a compact Riemannian manifold within no minimal 2-sphere. Let K
be a connected and simply connected closed submanifold of JV. There exists at least one minimal
2-disk with free boundary in K.

So our Theorem 2 is a generalization of the reuslt of [Stl]. The main difficulty in proving
Theorem 1 is as follows. We cannot directly use implicity function theorem to obtain the small time
existence of a solution of (l)-(4), but we work through by proving a uniqueness theorem and using
fixed point theorem after a subtle geometrical construction. The large time behaviour of the solution
was studied as in [St]. Our argument is similar to [St2], I should mention the work of Kungching
Chang [C] which is very important in relating harmonic map heat flow with minimax principle and
Morse theory. In the following, without loss of generality, we will assume that the injectivity radius
of (M, g) is one and the sect( N) <l.

NOTATIONS

For a domain i i C M, — oo < s < t < +oo let

and the space

V(Q*) = {ue C°([3,t];Hl(n,N)); |V2u|, dtu\ €

where the derivatives are taken in the distribution sense.



V denotes the covariant derivative on (M, g). In particular, for a local frame
we write V* = Ve, for i = 1,2.

At a local frame of xo, we denote xo + x = expIo xforx € R2. C(i) € C o t - B ^
denotes a non-increasing function of the distance distM(x, xo) such that c = 1 on B$(XQ) and
= 0 outside B ^ d o ) and |V?| < 1

c denotes a generic constant depending only on M, N and if sometimes numbered for
clarity.

2. A-PRIORI BOUNDS

The following Sobolev-type equality is crucial in our estimates.

Lemma 1 There exist two constants c and Ro for any R e (O,Ro),T < oo, and any
u G V( MT), there holds the estimate

f \Vu\*dMdt<c essup f \Vu\2dM( f \V2u\2dMdt +R~2 [ \Vu\2dMdt) .
JMT (xtfeMTJBRix) JM* JM7

Moreover, for any xo € M, <; as before, we have the estimate:

f \Vu\\dMdt <cessup f \Vu\2dM( [ \V2u\2<;dMdt+ R~2 f \Vu\2<;dMdt) .

Proof The same argument as that of Lemma 3.2 in [ST].
Q.E.D

Now let us introduce a key quantity

c(R) = sup R(u(-,t);BR(x)) ,

which describes the energy distribution of the map u over all balls of radius R in M and plays an
important role in following estimates.

Lemma 2 If u € V( MT) be a solution of (l)-(4), then E(u(t)) is absolutely continuous in
t € [0, T] and there holds the estimate

E(u(t))+ f \dtu\2<E(u0) (6)
JM*

Proof By Lemma 1 we may multiply (5) by u( and integrate. On account of (3>-(4) this gives
foranys. tefO.T]:

/ — E(u(t))dt+ I
Js dt JMi

A



and the claim follows.

Q.E.D

Lemma 3 There exist constants ci, ei > 0 depending only on M, K and N such that for any

solution u e V(MT) of (1H4) and any R € (0,0.5] there holds the estimate

f |VuCT)|2+ f |V2u|2<ci£7(u0)+Ci:nr2 sup E(u(t))

provided c(2 R) < ej.

Proof Testing (5) with - A w u c 2 we obtain

f \Au\2szdMdt+ f \Vu(T)\2<:2dM- [ |Vuo|2<2Af
Jw JM JM

<cei f \V2u\2<;2dMdt + cTR-2 sup B(u(t)) . (7)
JuT o<t<r

loss of generality, we assume xo G dM, Let {ei, e j} be a local frame on BR(XO) such
that ei is the outward normal on dM. Testing (5) with — V2. uc2 we find

-2-CTR-2 sup

<c(f |V 2 iz |V+/* |VU|2|Vlu|) + | f {V,u,Vlu)g2|+ / |Vu|2c2. (8)
JM7 J\P J(3M)T

For u £ K now let {G\ ( u ) , . . . , G^jt (u)} C TA'' be the outward normal frame to K.

By (4),
ii— k n-k

( V G r ( ) ) G ( ) on

By (3)

{V2UtG,(u)) = 0 o.e. on 8M

Differentiating this equality wxt t% on dM yields that

(Gi(u)Mu) = ~{VGi(u) • V2u,

hence on

n-Jt

?,(u)-V2u)



Smoothly extended C, XoB C Rd and by Stokes' theorem,

/ V i u - V j . u c 2 = / Au[G\(u)(V 2u-VGi(u) • V2u)k2

f Vu • G,(u

< c / (|V2u||Vu|2 + |Vu|4k2 + |Vc|2|Vu|2
JM

Hence for any 5 € (0,1) we know from (8):

, , 1
|V2u(D|zr - -z

IM 2 JM JMT
/*

J

<(CEI+6) f IV2uj212 + c(6)TR-2 sup £?(„
JMT 0&<,T
f
MT

Since

|V2u|2 = |V2u|2 + |V^u|2 +2|ViV2u|2

= (An - Vju)2 + |Viu|2 + 2jViV2u|2

<2(|Au|2 + 2 |VV 2u| 2) , (9)

we obtain from (9) and (7):

f |V 2 |V < (cei +46) f |V2u|2 + cE(uo) + c(8)TR~2 sup E(u(t)) ,

and the claim follows for ci, 6 > 0 small enough.
Q.E.D

Using

f \dtu\2<;2dMdt <c f \V2 u\2 <? dM dt + c f \Vu\\2dMdt,
JMT JMT JM7

in the above argument we obtain the following:

Lemma 4

There exist constants c2, e2 > 0 depending only on M, K and N such that for any
solution u £ V { M r ) of (1H4), any R 6 (0 ,0 .5) , any x € M there holds:

E(u(T),BR(xo)) < 2E(UO;B2R(XO)) + c2TR'2

and
f \V2u\2dMdt<4C2(l

JBR(xo)

provided e( 2 R) < c2.



3. UNIQUENESS

Let M be the double of M, it is well-known that JUT is a closed Riemannian surface. We
will denote Ma the a-tubular neighbourhood of M in M. Then for o small enough and for any
x € M D Ma, there exists a unique projection point x' € 9M and a unique point x € Ma/M that
has also i ' as the unique projection onto dM along the geodesic c( t) = exp^{— exp",1 x}. So we
may define an involution O (that is O 2 = Id) by

&(x)=x if x € M - Ma and <J>(i) = x for x e Ma/M .

Similarly, we can define an involution J in a fr-neighbourhood Kb of K in N. In what
follows, we will write M_o = {x € M; dist(x,8M) > a). For a solution u € V(MT) to
(l)-(4)now we consider the set

n = {(X,t) € (Ma/M))T
t u

and define an extension of u to Q = MT U O

, if (i,

By the interior regularity results of (1) (see [C]), Cl is open in Ma x ( 0 , r ) and it is
meaningful to consider

for(x,t) e MT with (O (x), t) € 6 . It can be verified that:

Lemma 5 Suppose u e V( M r ) solves (l)-(4), then u satisfies

and u is a weak solution to the system

=0

on fi, where Ft( •, •) be a bounded bilinear form.

Proof To obtain (10) note the pointwise estimates for all (x, t) €

<c\dtu(Q>(x),t)l etc. (•)

7



Moreover, it is easy to see that u(t) is of class H2 for a.e. t e [0 , T] on its domain
. Indeed u(t) € H2 separately on M andCl(t)/M =: Q(t) for a.e.t. By properties (3H4)

we have that for any

f uV2<pdM= f iiV2iiV2<pdM+

V2u<pdM+ f V2

JM

while the boundary terms cancel. Hence the L2-funca'on V2u(i) (defined on M U Q( t ) ) is the
second distributional derivative of u( t ) , and u(t) 6 H2 (Cl (t), Rd) for a.e.t.

Since I2 = Id on Kb and for v e TKb, we obtain that

DIi(y)DIvv = v

for y € Kb- Let D = DI( v), then by differentiate the above equation we have that

D2 II{y)(DIv(v) ,DIy(v)) + DImD2 Iv(v,v) =0

here we assume Dvv = 0 at the point y. Then

D2II(v)(v,v) = -DIvD
2Iv(v,.v)

where y = J (y) . Let a be a moving frame on Mat by the relation

we obtain further that

Vt-u(a;,t) = Dh • Vu(Slt)(V<a>(a;),t) ,

where gj = VO(e,) . By (1) we have (10).
Q.E.D

Later we will use another implication of (3)-(4). Define 4> €CQ(R) satisfying 0 < <f> <

1, 4>(s) = 1 if | s | < §, while tj>(s) = 0, if \s\ > a. Then for any solution u € V(MT) with
extension u the function

1
,t) = \ 4>(distN(u(x,t),<!>(u(x,t))), if(x,t)eCl (11)

0 if(x,t)<£&

8
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belongs to H^iCl (t)) for a^.L and satisfies a.e.

|V01<c|Vu|, |V 2 £ |<c |V 2 u | , (11)'

Moreover, the distributional derivative dt<j> € Lj^. and

\dtj>\<c\dtu\ o.e. (12)

Lemma 6 Suppose u\, 1*2 € V( M r ) are two weak solutions to (l)-{4) with ui (0) =

- «2(0) = uo.thenui = «2-

Proof Let u ; be the extension of u,- defined in the above of Lemma 5 and <j>j the associated
truncation function; = 1,2. Define 4> = min {<j>\, fa } and |Vu| = |Vuj | + |Vu21, etc. Subtracting
equations (5) for u i , U2 and testing with (u\ — U2)^2 we obtain the following estimates for v =
u i — U2:

\dtv - kuv\ < c( |Vu||Vu| + |Vu|2|i-

f ddt(\v\2<p2) + \Vu\2<p2)<cf {\v\2\dt<p\<p+

t»|£>2 + \Vu\2\v\2ip2}dMdt

By (1I)-(12) we may bound the above by

c f [\v\2(\dtu\+ \Vu\2) + \Vv\\v\(l + \Vu\)]dMdt

here we have used the mean value theorem:

v(x,t) = (ui -U2)(*,*) =(/oui - Jou2

<tti -

and the bounds

\v(x,t)\ < c|v(<DCx),t)|, \Vv(x,t)\ < c\Vv(<t>(x),t))\

for all x ̂  Af, and integral estimates for v and Vv can be obtained from estimates for v and Vv

on MT respectively.

From Holder's inequality we now obtain

f |v(D|2dM+ f \Vv\2dMdt
JM JM7

<c( f \dtu\2 + \Vu\4

+ I- \Vv\zdMdt + c f \v\2dMdt.



Without loss of generality, we may assume that T is chosen such that

f \v(T)\2dM= sup f \v(t)\2dM .

Using Lemma 1 for the estimate of L4-norm of v, we conclude that

sup / \v(t)\2dM+ [ \Vv\2dMdt<cT sup f \v(t)\2dMdt+

+c(f | 9 t U | 2 + | V u | V / 2 ( sup f v(t)2+f | V v | 2 )

and by absolute continuity of the Lebesgue integral the above can be bounded by

forT > 0 sufficiently small. Hence v - 0 on Afr for this 7\ By iteration t; = 0 onM rforanyr >
0 for ui, uz both making sense.

4. LOCAL EXISTENCE

Theorem A For uo 6 C( K), there exists a number T > 0 depending only on M, K and JV
such that (l)-(4) admits a solution in V( MT).

Proof We want to prove this theorem by Schauder's fixed point principle. Let

-, (^ _ f u o d . t ) i f i € Mi
uo{x) \ 7 ( t t o ( * ( a ) ) ) , i f x e M

and for any T > 0 and a > 0 sufficiently small let

M = {u 6 V(Ma
r; i?d) |u(0) = iio, esssup f |Vu(t) - Vu01« < a)

o<.t<x Jkfi

where q be a number > 4 to be determined later. M be a closed convex set in V( MT). To u G
we now associate the unique solution v = f(u) EV( Mf) of the Cauchy-Dirichlet problem

dtv - Lfyv + Ta( Vu, Vu) = 0 in Ma
r (13)

v(O)=tio (14)

v = u on dMax[0,T] (15)

It is a standard fact that we have the following uniform estimate

f
10



(see [LSU], Theorem 4.9.1). By Lemma 4.2 of [C] we may bound any derivative of t> on Af_a x

[ 0 , r ] if uo is sufficiently smooth on U. This is a parabolic-type Bernstein's estimate. Hence
fora > 0,T > 0,<r > 0 small enough, the point set {£?(<J>(x),t); x e dMa} will lie in a
^-neighbourhood of K in W and their reflection in K will be defined. We may therefore define a
map F : M —• M by letting u> = F(ii) be the unique solution to the problem

O in Mo
r , (16)

(17)

u;(x,t) =/(v(O(a:) I t)) on dMax[0,T] (18)

Note that if q > 4 is chosen sufficiently large from Lemma 4.2 of [C] and the regularity
of v on 0M_O we obtain uniform Holder estimates for Vu> in (z , t ) . Therefore, for this small T
we have w € M and F : M ^ M and F(M) is bounded in V( MT).

In fact, F is a compact operator. Let B be a bounded subset of M , then this B is compact
inL 2 ( [0 , r ] ; Li(Afa)) by the weak compactness of V(M^) and uniform boundedness of Vu(t)
in L'( Ma) for any t € [ 0, T] and any u € M . Moreover, the associated set of traces

is compact in WJ'*. From (16)—(18) and Lemma 4.2 of [C] it follows that F is compact in V( MT).
By Schauder's fixed point theorem F has a fixed point u = w. Necessarily :

• v(x,t) =ii(xtt) =w(x,t) =/(ti(O(z),t)) on 9M0 x [0,T]

i.e. v is also a solution to (16)—(18). Hence u = v - <b and u is a solution to (10). But by
our construction also 7(u(O(x),t)) is a solution to (10) in (M a /M_0) r with the same initial
and boundary values as u. By an argument like the proof of uniqueness for (l)-(4) we get that
u(x,t) = 7(u(4>(T),t)). So (3) is satisfied. (4) should hold-otherwise V2u would not be in
L2(MT).

5. THE LARGE TIME BEHAVIOUR

The following Lemma was obtained by M. Struwe [St] for harmonic map heat flow in
closed Riemannian surface.

Lemma 7 There exists a constant £3 > 0 depending only on M, K and N such that the
following is true:

11



Any weak solution u G V(MT) to (1H4) with initial data uo € H* is Holder continuous
on M x ( 0 , T), and any subinterval [ s, T], s > 0, the Holder norm of u is uniformly bounded in
terms of T, S and the number

R=sup{RE(0,-]; e(2R) <e3}

If uo € C( K), the solution it is Holder continuous o n M x [ 0 ( T ] and its Holder norm is bounded
in terms of T, R, and the H2 -norm of uo •

Proof First we derive uniform bounds for smooth solutions for the L2-norm of dtu(t) for
a.e.t> 0.

Differentiate (10) with respect to t to obtain the equality

\dfu - A^5tu| < 2

on Cl. Testing this inequality with the function Btu4>2<;2 and integrating over Ma and [t\ ,ti) C

[0,T] we obtain that

2 JMa JiM

f

Note that we have used the bounds of <$>.

Next recall that integrals and derivatives of u over Ci can be estimated by corresponding
integrals of u over M; see Lemma 5. Hence we may replace the domain Ma by M and omit $ in
all integrals at the expense of enlarge our constants c. Applying Holder's inequality we obtain

f \dMt2)\2<:2 + f u \vdtu\2c2 < c [ iAu(*i)i2<a + i f

/* iftu|4c2)
JM*

+c / |d tu| 2« 2 + |V<|2) . (19)

From (5) there holds
|5*ul < R 2 u l + c\Vu\2 , (20)

12



we now have the estimate

| f t u | 2 < 2 + | V u | 2 C 2 < c f | V 2 u | 2 C 2 + | V u | < < 2

sup

- 2

For the last inequality we have also used Lemma 1, Lemma 4, and our assumption that

< C3 • Moreover, note that we may also apply Lemma 1 to the term fMt2 \dtu\4s2 appearing

on the right of (19). Going back to (19) we now simply write

f |&u(t2)|2<2+ f t |V9tu|2C2 < c f

U)R-2)e3}"2[ sup f \dMt)\2C2(f |Va,u|2C2 + iZ-2|atu|2C2

+ c[(t2-U)R-2 + E3] sup f \dMt)\2

<c f la^ucto^c2 + c[i + ct2- t l) i?-2£3]1 / 2 f ivatu|2<2

JM JM\\

f \dMt)\2 . r
JBIR(XO)

(t2-U)R-2) sup

i.e. for sufficiently small €3 > 0, t2 — h <€3 R2 there holds

/ \dtu(t2)\
2 < c f \dMU)\2 + c£i sup f \dtu(t)\2 .

JB^xo) JBIR(SO) tiKt^tj JB2R(XO)

This inequality will hold for any z0 € M and any t i , t2 € [ 0 , T] such that t2 -t\ < €3 R2. Fix

1 .- - .
0 <h <h <U j

and for ti G [h,h] let 2:0 EM, t2 E[ti,h] be defined such that

2 [ \dtu(t2)\
2 > essup f \dtu(i)\2 .

JBR(xQ) (*D€«J %'F'!(i)[

Covering M with balls of radius R, for sufficiently small C3 > 0 and suitably chosen t,e[i\ ,i2]

we obtain that

c^R2 f \dtu(h)\2 < f \dtu(t2)\
2 < c [ \dMU)\2

JM JBji(xo) JB2MX0)B2M

13



<c inf. f {fait)? < r ^ T [ \dtu\2 (21)
h

By (20) and Lemma 3 we finally get

/ \dMtz)\2<—C— (22)

forallt2 lti € [0,T] such that 0 < t2 - U < c3i?2, with constant c = c(T,R). i.e. for all
te(OtT] there holds

f (dtu(t)\2 <c(l + t-]) . (23)
JM

If uo € C( K) from (23)-(24) we obtain

f \dMt)\2<
JU

(24)

uniformly, with c depending in addition on H2( M)-norm of uo. Now we derive pointwise esti-
mates for

f |V2t;(
JM

by using (10). Note that (10) implies that

Testing it with A u (t) <j>2 we find that

/" |V 2 i i | 2^ 2 < c / (|a (u|2 + |Vu|2)^»2 + c f |V2u|Vu|2^.2

i.e. by (*) again

f |V2ix(t)|2 < c [ (\dMt)\2 + |Vu(t)|)4),

Lemma 1 and our assumption c(2B) < €3 now imply that

f |V2u(t)t2<c/" |^u(t)|2 + CjR-2
t

and (24) yields the estimate

f |V2u(t)|2 <c(T,s,R)

for all t € [ st T], s > 0 and the global bound

f \V2u(t)\2<c(T,R,\\uo\\HHm)
JM

for all uo € C(K). By Sobolev's imbedding theorem H2(M) ~» C° (M) and u(t) is locally
uniformaly continuous on (0 , T] resp. on [ 0, T] for regular uo. In particular, Cl contains a uniform

14
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neighbourhood of M x (0 , T], resp. of M x [ 0 , T], and we can use Lemma 4.2 of [C] to derive

all required estimates for u.

For weak solution u € V(MT) the time derivative has to be replaced by difference
quotients. One can proceed as above.

Q.E.D.

Remark Now we can prove the small time existence of V( MT)-weak solution to (1H4) for
tto 6 F 1 . To see this we approximate uo by smooth data uj1 € C( K) and let um E V( MTm) be
the corresponding solution of (l)-(4). By Lemma 3,4 and 7, each um persists as a regular solution
to (1H4) for at least f = f̂ - > 0 . In fact, Lemma 3 guarantees the estimate e(2R) <c for all
txm on [0 , f], and Lemmas 4 and 7 apply. Moreover, we have a uniform bound

/„ (\dtu
m\2 + |V2umj2 + |Vum |4)dMdt+ sup E(um{t)) < c(R) ,

f

and we may extract a subsequence that convergences weakly in V(MT) to a solution of

Now we are ready to following

Lemma 8 Suppose u € sup V( MT) is a solution to (l)-(4) and for some R > 0 there holds
T<OO

sup £(u(t)

Then u is globally regular and there exists a sequence tn —• oo such that u(tm) € C2 and

u ( t m ) - > u in H2(M)

where u is a harmonic map from M into N with free boundary in K.

Proof Our assumption and Lemma 3 imply that for m = 1,2.

f (m->oo)

/ \V2u\2dMdt < c uniformly in m .
JMT1

By Fubini's theorem we may choose a sequence tm —* co such that um = u(t r a) € C2 satisfies

dtu(tm) = Awn™ + ^ ( u m ) ( V u m , V u m ) -» 0 in L 2 (M) ,

a.e.on dM,

sup B(um,BR(x)) <£, for all m .
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Now the claim follows from Theorem B below.

Q.E.D

As in [St] we study singularities created by concentration of energy near some points.

Lemma 9 Suppose that for some f < oo, u € nV( MT) is a solution of (1H4). If for all

lim sup E(u(t)}BR(x))>B,
TIT (Xi |)€Mr

then there exist sequence tn / f, xm & M, R^ \ 0 and a map u G H^ such that u(tm) € C2

and the rescaled functions

um{t) = u{,xm + Rmx,tm)-*u in H^,

after a possible rotation of coordinates. Moreover, E{ u) < oo, and u is conformal to either some
minimal 2-disk with free boundary in K or some minimal 2-sphere in N.

Proof For any sequence Rm \ 0 let tm < T be maximal with the property that for some
xmeM

E(u(tm)t BRm(xm)) = sup E(u(t),BRm(x)) = I.
< ) A / '

Clearly tm / * f as m -* oo. After possibly take a subsequence we assume that xm —*• x in M.
Let O be a local chart of x. By Lemma 4 there exists a constant C3 •= €(2c2) - 1 such that for all

E(u(t),B2Rm(xm)) >~>0 .

Moreover, by Lemma 3 and Lemma 1

f |V2u|2<c
Jm*m .

uniformly for all m, while again by Lemma 3 and absolute continuity of the Legesgue integral

f \V2u\dMdt^0 (m-n-oo).
Jmtm j

Finally, by Lemma 3 also

essup E(u(t)) < c < 00

uniformly for all m. Hence if we let

tim(z,t)

and

16



then um e V(Mm)_c will satisfy (1) on (Mm)_cj and following estimates

/ ]dtu™|2dM<ff - • 0 (m -* oo)

./(AO-e,

essup £?(um(t))(a2(0) n A/m) > 0 ,
-ci<,t£O

essup £(um(t)) < c < o o ,
(*,t)€A/")-«,

uniformly in m. As in [C], we can choose sm G [ — cj , 0] such that um = tim (sm) satisfies

, Vum) ,

affuro(x)±rUm(r)ir .a.e.on aMffl fl dR\ = dM?

0<c<E(um,B2(0)nMm)<E(um) <cf <oo,

sup E(um, Bi(x) r\Mm) < e ,

uniformly in m. After shifting time we assume sm = 0 and invoke theorem B below to conclude
our lemma.

Q.E.D

Theorem B Suppose Mm c R2, is a sequence of bounded domains that converges to a
limiting domain M°° C R2,um e H2(Mm) satisfies that

u m OMT)C iT (26)

driUm{x)LTUnix)K a.e.ondM? (27)

^ ( u m ) < c < o o uniformly in m, (28)

sup £?(um, B\ (0) D Mm) < £ uniformly in m . (29)

/* | A ^ u m + 4UBl(Vum,Vttm)|2->0 ( m - » o o ) . (30)

Then there exists a map ti G ffĵ .( M°°, i?^) and a subsequence (we still denote) m -»oo
such that

•«»-•» in

where uG/T^M 0 0 ) solves

u + J46(Vti IVti)=0 in M00 , (31)

17



K | 2 - | u s J 2 = 0 = t i I 1 - u X i in M°°, (32)

u(dM?)CK, (33)

d«u(x)±Tu(x)Kt on dM? (34)

and

E(u) < oo . (35)

If M°° = R\, then u is conformal to a minimal 2-disk.

If M°° - R2, then u is conformal to minimal 2-sphere.

Proof By (30) we obtain

f
By Lemma 1 this gives

[ [ |Vuro|
4+0(l)

<ce[ |V2um|4

As in the proof of Lemma 3, we have

|V2um | < c uniformly inm , (36)

By Sobolev's imbedding theorem, um are equicontinuous and hence may be extended to a r-
neighbourhood Mm of Mm by reflection in K as before, here r > 0 independent of m (26)-(27)
guarantee that these extensions um G H2(Mm; Rd) and satisfy (20) on Mm, as we verified in
Lemma 5. Moreover, as in the proof of Lemma 5, for the extension um of um we derive that

f 2

for all m.

By (31) we may select a subsequence um such that for any bounded domain Q C R2

u m ->u weakly in H2(M°°Dd;Rd)

By Rellich's theorem we have

uffl -> « strongly in LI>9( A/°° fl O; i^)

and
um -» u strongly in Lu(M°°nCl; Rd)

18



for any q < oo. Hence we may pass to the limit m —* oo in (30), (26), (27), and find that u be a

harmonic map as claimed.

Moreover, letting $ m be the cutoff function associated with um by (11). Given ;', k let
4> = min{$;•,$*}, £ € C$(Cl) upon testing the difference of Eq.(5) for uj, uk with the function
A (u;- — ujt) 4>£ we obtain

f |V2(u,--u*)|20£ = f \A(u,-uk)\
2te +

< c [ [^(Vu;, Vty) - Atk(Vuk,Vuk)]
JR2

as m —* oo,

and um -+ u strongly in H2 (M°° n Q, Rd) for any bounded Cl C R2.

The remaining part of our claim are now easily verified. By (31) the complex valued
function of z - x + iy G M°° C R2 = C is holomorphic and

by (35) is integrable over M°°. In case M°° = R2 from the mean value theorem for harmonic

functions

H(z')dz'

upon letting R —> oo we obtain that H(z) = 0, i.e. that u is weak conformal. By [S],u is smooth

and hence a minimal 2-sphere.

Similarly, if M°° = fi2, by (33M34) H is real on dM°°. By reflection and (35) the
imaginary part of H may be extended to a harmonic function in Ll(R2), hence it must vanish
identically by the above argument. The Cauchy-Riemann equations now imply that F=constant.
But H € L' ( R \ ) , thus H = 0, and u is weak conformal. By the conformal equivalence D2 = Rl,

the map ii will be conformal to a weak harmonic map. By the regularity result of [S] again u is
smooth and hence a minimal 2-sphere.

Q.E.D.

6. THE END

Now, the proof of Theorem 1 is a direct consequence of Theorem A, the remark, and

Theorem B.
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Proof of Theorem B First, suppose K is diffeomorphic to S2. Let (r, $) be a polar coordinate
on S2 and denote C = 3D2, then S2 = C x [O,ir] with C x { 0 } , C x i r collapsed to points.
Let D : If -+ S 2 be the diffeomorphism in our assumption. Then any continuous mapping
p : [0,7r] —+ H{K) such that p( 0), p( IT) are constant maps induces a mapping 6p: S2 -+ S2 by
letting

r ) ) • (37)

Endowing the space of mappings S2 -» S 2 iwth C°-topology set

p = { p e C°([0 , i r ] ; H(iT))|p(0) = const,

6pec°(S2,S2) is homotopic to the identity on S2} .

Since (36) for 6p = \d\gi defines a path p^C1. Clearly p ^ <f>.

Suppose the conclusion of Theorem 2 is false, then for any uo € H(K), there is a global
regular solution of (l)-(4) which convergences to constant at infinity. Hence id\si is homotopic to
constant mapping in C° (S 2 , S2), a contradiction.

The general case can be proved in the same spirit. More precisely, it goes as the same as
the proof of Theorem 8.50 in the book of J.T. Schwartz: Nonlinear Functional Analysis, Gordon
and Breach, New York, 1969.

Q.E.D.
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