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1.INTRODUCTION

"One wants to be able to take a realistic view of the

world, to talk about the world as if it is really there, even

when it is not being observed .... our business is to try to

find out about it, and the technique for doing that is indeed

to make models and to see how far we can go with them in

accounting for the real world" '*', No one haa done more than

John Bell to advance and encourage this program of the pursuit

of reality. With gratitude we dedicate this paper to him, and

i{o about "our business".

The essential wave aspect of natural phenomena has been

made evident by the remarkable success of quantum theory.

However the'2' "indefiniteness, the waviness of the wave

function" is quite difficult to reconcile with the

"definiteness, the particularity of the world of experience"

at the macroscopic level.

The orthodox solution to this so called quantum

measurement problem is very well known: instead of statements

about properties possessed by physical aysterna, statements are

made about probabilities of getting results if a measurement

ia performed. However, as repeatedly stressed by Bell*3' there

are two fundamental difficulties with this point of view:

i. The need for a classical base which cannot be

consistently derived from quantum principles,

ii.The fundamentally shifty character of the level at

which one chooses to place the transition from the quantum to

the classical, from the small to the large.

The desire to overcome these difficulties motivates the

construction of dynamical reduction models, which are based on

the following idea. By accepting a "small" modification of the

dynamics of quantum theory, one attempts to build up a scheme

in which microscopic systems fully exhibit their wave aspects

while the macroscopic ones, on the contrary, behave as

localized objects in accordance with our perceptions, as a

consequence of a single fundamental dynamics governing all

phenomena.



This idea has been pursued for some time (*-9l H n j n a a

recently obtained a particularly simple and effective

formulation!*o-ii) through the introduction of a model

(referred to as QMSL-Quantum Mechanics with Spontaneous

Localization) in which the wave function is supposed to be

subjected to spontaneous collapses corresponding to

localizations with an appropriate frequency and scale. It has

been shown'I*-**) that such a model does not conflict with any

known fact about microsystems and leads, in the case of

macro-objects, in an extremely short time to states

corresponding to definite positions, thus meeting Einstein's

requirement [in Pauli's words'14') that:

"a macro-body must always have a quasi-sharply-defined

position in the 'objective description of reality'"

J. Bell<*> in explicating QMSL, immediately identified two

aspects of it which required further investigations:

a. The model does not respect the symmetry requirements for

systems of identical particles

b. The introduction of the localizations assigns a special

role to position and requires a smearing on space, which makes

quite problematic to find a relativistic generalization of it.

The first difficulty has been overcome quite recently by

the introduction of a dynamical reduction model (referred to

as CSL- Continuous Spontaneous Localization), in which the

sudden localizations of QMSL have been replaced by a.

continuous stochastic evolution of the state vector.•xs~lfl>

Steps toward a solution of the second problem, have been

made recently with the introduction of a relativistic CSL

model'17', in which localizations for fermions are induced by

a reducing dynamics for a virtual meson field coupled to the

fermions.

In the present paper we consider the problem of describing

relativistic dynamical reduction mechanisms. We mainly focus

our attention on setting up a general framework for such a

theory, by discussing in detail how one has to impose

invariance requirements within a stochastic quantum field

theoretic scheme,

To summarize, and to underscore the interest of such

considerations we can do no better than quote John Bell'10':

"Now in my opinion the founding fathers were in fact wrong

on this point. The quantum phenomena do not exclude a uniform

description of micro and macro worlds .... system and

apparatus. It is not essential to introduce a vague division

of the world of this kind .... But another problem is brought

into focus .... -T think any sharp formulation of quantum

mechanics has a very surprising feature: the consequences of

events at one place propagate to other places faster than

light .... For me this is the real problem with quantum

theory; the apparently essential conflict between any sharp

formulation and fundamental relativity. That is to say, we

have an apparent incompatibility, at the deepest level,

between the two fundamental pillars of contemporary theory

.... It may be that a real synthesis of quantum and relativity

theories requires not just technical developements but radical

conceptual renewal."

In Section 2 we review the CSL theory, which achieves its

results through a nonhernitian randomly fluctuating potential.

At the same time we discuss an example of ordinary quantum

theory with a hermitian randomly fluctuating potential.

Comparison shows that the statistical operator for both

theories obeys identically the same ' evolution equation,

resulting in the decay of off-diagonal elements of the

statistical operator in the position representation. A number

of authors ( is-21) have regarded such behaviour of the

statistical operator as a satisfactory resolution of the

measurement problem. We do not: we regard such behaviour as a

necessary, but not sufficient, condition. One must also look

at the behaviour at the level of the individual state vector.

Unlike the CSL case, in the hermitian case each individual

state vector remains forever in a superposition of

macroscopically distinguishable states: the off-diagonal

elements of the statistical operator disappear just because of

the increasing randomization of phase factors mutiplying these

states.



In Section 2 we also discuss the nature of Galilean

invariance in these theories. A particular sample of the

fluctuating field certainly does not look the same in all

inertial reference frames. However, the statistical behaviour

of the fluctuating field, and the corresponding statistical

distribution of the results of identical experiments is the

same in all inertial reference frames. We call this stochastic

Galilean invariance, and this discussion paves the way for

Section 3 in which we consider stochastic Lorentz invariant

models.

These models are quantum field theories, with the field

locally coupled to a scalar function with a relativistically

invariant white noise distribution. We first discuss

stochastic Lorentz invariance in the more familiar context of

a hernitian coupling term. Upon considering a nonhermitian

coupling, which is introduced in ordnr to obtain the desired

behaviour at the level of the individual statevector, we are

led to employ the Tomonaga-Schwinger formalism; this permits

discussion of relativlstic transformation properties and of

stochastic Lorentz invariance in the context of arbitrary

space-like surfaces. The formalism is then specialized to the

example already considered in ref.(17). In this case, new

divergences emerge besides the ones which are familiar from

standard quantum field theory, having their origin in the

white noise nature of the stochastic processes which are

considered. In a recent paper J.Bell'22! calls attention to

Dirac's division of the difficulties of quantum mechanics into

first and second class ones (i.e. those connected with wave

packet reduction and the infinities of quantum field theories,

respectively); we note that this present attempt to generalize

models which allow one to overcome first class difficulties

seems to lead to an increase of those of the second class.

Section 4 is devoted to a discussion of the local and

nonlocal features of the theory. We analyze both the ensemble

and the individual levels of description of physical systems.

In particular, consideration of the individual level affords

us the opportunity to discusa the possibility of attributing

objective properties to individual systems in the micro and

the macroscopic case. Such a problem acquires a special

interest in a relativistic context, in which one has, at the

individual level, nonlocal effects.

The work presented here, although only a step toward a

completely satisfactory relativistic theory of state vector

reduction, we believe provides justification for repeating the

comment of John Bell'*' made after his examination of

relativistic aspectB of QMSL: "It takes away the ground of my

fear that any exact formulation of quantum mechanics must

conflict with fundamental Lorentz invariance".

2. DYNAMICAL REDUCTION MODELS: THE NONRELATIVISTIC CASE.

2.1,General Considerations

We are interacted In considering stochastic modifications

of the standard evolution equation for the state vector

describing a physical system. To this purpose we add

nonhermitian stochastic terms to the Hamiltonian. These have

the property of driving, with the appropriate probabilities,

the state vector into one of a "preferred" set of orthogonal

linear manifolds whose direct sum apans the whole Hilbert

space.

A crucial point, which always has to be kept in mind, is

that we are interested in a description at the level of the

state vector of any individual member of the statistical

ensemble. Nevertheless, with the purpose of making some

important conceptual distinctions, we start with a description

at the level of the ensemble. We consider a (nonhamiltonian)

evolution equation for the statistical operator of the Quantum

Dynamical Semigroup type:

dp(t)/dt=-i[H,p(t)]+ytiAip(t|Ai-(y/2){tiAi
ii,P(t)) (2.1)

In Eq.IZ.ll the operators A^ are assumed to be self-adjoint

and commuting.



Let us introduce the projection operators Pg- on the common

eigenmanifolds of the operators A^, with A^Pcr=aiaP<j' Then it

follows from Eg. (2.1), when one disregards the Hamiltonian

term, that

= -|>'/2)l:i(aia-aiT)
2Pap(t)PT (2.2)

So, the dynamical evolution yields an exponential damping of

the terras PCTpPT for ofT,

This (block) diagonalization of the statistical operator-

could mean that there is taking place, as desired, an actual

decomposition of the ensemble into subensembles described by

state vectors lying in the "preferred eigenmanifolds". We will

say in this case, following Stapp ' s l > , that we have

Heisenberg reductions. However, one must make the important

distinction between this desired behaviour and other different

evolutions which only give the same behaviour at the

statistical operator level: these will be called von Neumann

reductions *.

2.2 Genera 1 Formalist!: Ito Approach

Let us briefly sketch how a stochastic dynamical model for

the evolution of the state vector can give rise to von Neumann

reductions and generate the dynamical equation (2.1) for the

statistical operator.

To this purpose we consider the Ito stochastic equation

d|*B(t)>=[(-iH-(y/2)EiAi
i)dt+iEiAidBi1 I 2.3)

where B(t( = {Bjft)} is a real Wiener process characterized by

expectation values

>>=0, i(t)dBj(t)>>=yii jdt (2.4)

We note that Eq.(2.3) describes a unitary evolution of the

state vector for any given realization of the stochastic

process Bi(t) (i.e. d<*B(t)IVB<t>>=0 for any |«B(t>>, |*B(tl>

as can be immediately seen using Ito calculus).

As one can easily check, if one defines

P<t)=<<|VB(t)x1'BU> (2.5)

one gets Eq. (2.1) for p from Eq.(2.3). It has to be remarked,

however, that if consideration is given to the random

variables

(2.6)

one sees that, when the Hamiltonian

disregarded, they satisfy the equation:

dza(t)B=O

term in (2.3)

(2.7)

For a Heisenberg reduction to take place, Z(j(t)B must evolve

into zero or one. Equation (2.7) proves that the dynamics iB

not able to induce such reductions.

We consider now, following refs.(15,16), a different

stochastic equation for the state vector, in which the

coupling of the stochastic process with the operators Aj is

skcw-hermitian:

t>> (2.8)

This equation does not describe a unitary evolution of the

statevector and, in particular, it does not preserve the norm.

Therefore it requires a prescription to have a physical

meaning. As discussed in refs.(15,16), one gets a consistent

theory by considering the normalized state vector

I*B< *•' >/"I*B' t^ y" a n d assuming that the considered process

B^lt) occurs with a "cooked" probability density obtained by

weighting the original Wiener process probability by the

factor II |*g( I) >ll2. This is equivalent to considering the

stochastic, norm conserving, nonlinear equation for the state



vector {which we will still denote by |VB(t)>)

|*B(t)> (2.9a)

where

(2.9b)

Equation (2.9) was also obtained by Gisin(23>, following a
different argument.

As shown in refs.(15,16 ) , Eq.(2.8) or Eq.(2.9) lead to

Eq,(2.1) for the statistical operator. Moreover, when the

Hftmiltonian term is disregarded, it Rives rise to stochastic

differential equations for the random variables ZQ defined in

Eq.(2.6), which imply that, for t-»+«, za tends either to zero

or to one, the probability of the result +1 being

<V(0)|Pol*(0)>. Therefore, the dynamics (2.9) is such that, in

the long run, any given initial state is driven into one of

the eigenmanifolds associated to the operators PCT.

Consequently, the model yields Heisenberg reductions.

The theory introduced in refs.<15,16), i.e. CSL, is

obtained when consideration is given to a system of identical

particles. The set of operators Aj of Eq.(2.1| is identified

with the set N(x), x«B3, where

• 2WJ i d q a(q) (2.101

In Eq. (2.10) the operators a(q},a+(q) are the annihilation

and creation operators of a particle at q, so that N{x) has

the meaning of an average (over a volume of the order of

<x~3'2\ particle number density. In the case of a single

particle, choosing X=y(oc/4n)'/* and disregarding the

Hamiltonian term, Eq.(2.1) becomes

3/2
r
dx e

' -f <q-X,2
P(t) e c -Xp(t) (2.11)

2.3 Stochastic Potential: Stratonovich Approach

We continue to examine the specialization of the operators

Aj to N(x). Also, for a better understanding of the line we

will follow to get a relativistic generalization of dynamical

reduction models, we turn to the Stratonovich version of the

stochastic dynamics we have considered in the previous

subsection*. We wilJ do this with reference only to the case

of a single particle, disregarding the standard Hamiltonian

term, i.e. to the dynamics described by Eq.(2.11)

In the case of von Neumann reductions, the Stratonovich

equation corresponding to Eq.(2.3) is, in the coordinate

representation:

(2.12)

where

3/4rJdx 6(x,t) (2.13)

Since B is a white noise, the stochastic potential V(q,tl

satisfies

<<V(q,t)>>=0, <<V(q,t)V{q',tt)>>=Xe fi(t-t') (2.14)

Let us denote by T the time interval |to,t]. For a given

stochastic potential V(q,T), TCT, and a given initial state

|*(to)>, the solution of Eq.(2.12) at time t is

10
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ft
-ijdr V(q,T)

(2.15)

The presence of the stochastic potential implies that the

evolution generates a statistical ensemble. This ensemble is

the union of the pure states |<ttv(t)> with appropriate weights

PIV), This ensemble is associated to the statistical operator

(2, 16)

with obvious meaning of the symbols.

The coordinate representation of Eq.(2.16) reads

P(q,q',t)=<<e

i}dT[V{q',T)-V(q,T)J

>>P(q.q\t0) (2.17)

The expression at the r.h.s. is easily evaluated by using the

characteristic functional associated with the mean value and

covariance defined by (2.14). We then get

P<<J.q' ,t)=e
-Mt-to)[l-e

p(q,q\t 0) (2.18)

which is the solution of Eq. (2. 11 ) in the coordinate

representation.

Eq.fZ.16) defines a map Ep(t,t()) from pure states to

statistical operators which has to be extended linearly to the

set of trace class operators. This extension will be denoted

by E(t,tn)> Note that, since the covariance in (2.14) depends

only on the difference t-t', E(t,tn) is actually a function of

the difference t-tg.

Our description of the physics of the process tells us

that, given a pure state or an inhomageneous ensemble at time

11

to, it evolves into a definite ensemble at the time t'. We can

now consider the statistical operator p(t') as describing an

initial situation, and we can follow its evolution from t' to

t>t'. The final situation will be described by

P(t)= (2.19)

On the other hand, one can consider the preparation of

at time tg and ita evolution up to t getting

(2.20)

(2.21)

p'<t)=E(t,t0)P(t0)

We shall call the condition P*(t)=P(t), i.e.

E(t,t')i:{t',to)=r(t,to)

the "consistency requirement" for the evolution. In our case

since, as already remarked E(t,t0)=C(t-t0), condition (2.21)

amounts to

E(A1)E(A2)=Z(A1+A2)) V (2.22)

which is automatically satisfied '25> since eq.(2.1) is of the

Quantum Dynamical Semigroup type.

It is useful to remark that, if one considers stochastic

evolution equations for the state vector of type (2.12) and

assumes that V(q,t) is a Gaussian noise with zero mean and

covariance A(q-q',t-t'), then it can be easily proved (see

Appendix A) that the necessary and sufficient condition in

order that (2.21) be satisfied is that V(q,t) is white in

time.

The fact that the stochastic equation (2.12) does not

describe Helsenberg reduction processes for the state vector

follows trivially by observing that, from Eq.(2.15), for any

given realization of the potential

|2=|*(q,t0) V t. (2.23)

12



The suppression of the off-diagonal elements of the

statistical operator in the coordinate representation does not

correspond therefore to a localization of the particle but is

simply due to a randomization of the relative phases at

different apace points. This is a typical mechanism for von

Neumann reductions.

To describe Heisenberg reductions we then consider the

Stratonovich analogue of Eq.(2.8 ) , i.e.

= [V(q,t|-X]* (q,t) (2.24)

where V(q,t) is given by (2.13). The counterterm -X in

Eq.(2.24) guarantees that the square norm average is

conserved. For a given stochastic potential V(q,tl, the

solution of Eg.(2.24) is:

ft
-Mt-to>+jdTV(q,T)

(2.25)

from which it is evident that the norm is not conserved in a

specific process. However, if we define, in complete analogy

to the previous case, p(t( by means of Eq.(2.16) , with |*v(tl>

satisfying (2.24), we get the same equation (2.H) for the

statistical operator. The solution (2.18) of this equation, as

already remarked, displays the suppression of the off-diagonal

elements in the coordinate representation.

Note that since the vectors |*v(t)> given by (2.25) are

not of norm one, to give a physical meaning to the definition

(2.161, we are led to read it as

2 IV U >
<VtH

fv(t)>» ll|Vv(t)>ll
(2.26)

13

This amounts to assuming that the physically meaningful

probability distribution for the stochastic potential is not

P(V> but

(2.27)

where V=V(q,t) is a sample function with support in the time

interval rto,tj. Note that the passage from P[V] to PctV]

corresponds to the cooking of the stochastic process referred

to earlier. Through the appearance of II Ify' *•>> I|Z > this makes

the evolution equation for the normalized state vector

nonlinear (see Eq.(2.9)).

2,4 The Cooked Probability Density

It is appropriate to discuss here in more detail, the

cooked probability density (2.27). We stress that, for a real

and positive functional P (V], defined over the sample

functions V(q,t) for an arbitrary time interval, to be

interpreted as a probability density, it has to satisfy two

fundamental requirements, firstly the completeness relation

[Vl=l (2.28)

and, secondly a compatibility property we are now going to

discuss. Let us consider two contiguous time intervals

Tl=[tn,t'] and TgMt'.t] and the sample functions VjIq.T) with
T £ T 1 ' V2<q>r) with TCT2 and V(q,T) with T C T J U ^ , together with

their associated probability density functionals F~[Vj],

P*[V2l and P~[V], An arbitrary sample function V(q,T) with

TET1UT2, can be identified with the two sample functions

VJ(<J,T) and Vgtq.T) obtained by restricting the time support

of V(q,T) to Tj and T2. respectively. The probability density

P~[V) can then be written as P~lVi,V2). We can now express the

compatibility property through the equation

P [V1|=/D(V2]P [VJ.V2] (2.29)

14
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Of course, the probability density functional P(V] induced by

white noise obeys Ec|s.(2.28), (2.29). We have now to check

that the cooked probability density PC[V] defined by (2.27)

actually satisfies (2.28) and (2.291 too. Concerning (2.28) we

remark that the fact that it is satisfied

•Tot V] P C [ V | = JB[ V] P[ VI I! | ¥ v (t) > H
 2 = 1 (2.30)

follows from the property of Eq.(2.24) of conserving the

average of the square norm. Concerning (2.29) we consider a

given initial state lV(to)>. Then, by definition

(2.31a)

and

Pc[V)=P[V]H|*v(t)>»
i (2.31b)

Now, P{V]=P[Vi) « PtV2J due to the noise being white in time.

Moreover, from the linearity of the evolution equation we see

that

I l* v l| t' (2.32)

where I*v2(t)> is the state that evolves, according to V%

from the normalized state |*V1(t')>/«|*V1<t*)>«. We then have

SD\V2)

P\ Vi J l« I*v i (t' ) > M
 2SD[ V 2 ] P[ V 2 1 « I *V2 (t) > »

 z (2.33)

Since, according to Eq.(2.3O), the integral in the last term

of (2.33) is equal to one, we have that the last term in

Eq.(2.33) is, according to (2.31a), equal to PcIVj), so that

property (2.29) for Pc is proved.

This result follows from a combined use of the white noise

property of V(q,t) in time and the specific cooking

15

prescription. In Appendix B we show that the choice of a

particular noise which is not white in time would, together

with our standard cooking prescription, lead to a Pc which

does not satisfy (2.29).

Since, as already stated, Eq.(2.24) together with the

cooking prescription is the Stratonovich analogue of Eg.(2.8),

it leads to Heisenberg reductions.

2.5. Stochastic Galileian Invari&nce

To bring out some concepts which will be useful in Section

3, it is appropriate to consider the transformation and the

invarinnce properties of the dynamical reduction models

considered above.

Let us start by limiting our considerations to the

evolution equation for the statistical operator and let us

consider two observers 0 and 0' related by a transformation of

the Galilei group. We take the so called passive point of view

according to which the two observers look at the same physical

situation. For simplicity, let us suppose that the

transformation connecting 0 and 0' is a translation in space

of an amount a and a translation in time of an amount T, so

that

r'=r-a, t'=t-T (2.34)

Let the observer 0 describe the physical situation at his

subjective time t by the statistical operator p(t). Observer

0', at the same objective time, i.e. at his subjective time

t'=t-T, will describe the physical situation by the

statistical operator

p'< t1 is (2.35)

whore {/(a)=exp[ iP- a] is the usual unitary operator inducing

the space translation. The dynamical equation for the

statistical operator for observer 0' is then

16



(2.361

Substituting Eq , ( 2 . 1 ) , describing the evolution of the

statistical operator for the observer 0, into the r.h.s. of

Eq.(2,36 > one gets:

dp
d[t'* = -i (/(a)[H(t),P(t)ly

+<a)

. Wa)A.p(tlA. (
x 1 X

(2.37)

, A, 2, p( t M

If H is invariant under space and time translations

H' (t ' (•l/(a)H(t)yt(*l»H(tt)
and if, moreover

12.38)

(2.39)

for any bounded operator X, then Eg.(2.37) implies

C.AjP'lt'lA. -|

(2.40)

i.e. the theory is invariant for space and time translations.

If the same holds for all transformations of the restricted

Galilei group we have invariance for the transformations of

this group. QMSL and CSL actually possess this invariance

property.

Nonetheless, it is important to stress that there is a

difference between equations of the type we are considering

and the usual case in which one has a purely Hamiltonian

evolution, with respect to the connection between invariance

and representations of the symmetry group. This key difference

arises from the fact that while in the standard case one can

always relate the statistical operators used by O and 01 to

17

describe the physical situation at the same subjective time t,

in the present case this cannot be done in general, when one

considers negative values of t in Eq.(2.34). In fact, let U3

suppose that 0, at his own time t=0 is dealing with a physical

syatfnt described by a pure state p( 0 ) = IVX* I . Since the

dynamical evolution transforms pure states into statistical

mixtures, there is no way for 0 to prepare a physical

situation at his own time T<0 described by a statistical

operator such that it evolves into the pure state p{0) at t=0.

Correspondingly, there is no way for 0' to prepare at his own

time t'=0 a statistical operator such that its evolved state

at his time -T>0 is !#><«|.

However, if the active point of view is taken and 0', at

his time t'=0, prepares the same state p( 0) , and the above

stated invariance requirements are satisfied, then O and O*

will observe the same dynamical evolution for the same

(subjective) initial situation.

Coining now to the group theoretic point of view, since for

the above reasons the map E^ from a pure state is not defined

for negative t, one has to consider the proper Galilei

semigroup 0+, with only forward time translations'26'. Any

transformation geG+ can be expressed as a transformation of

the subgroup G$ of 0+ which does not contain time

translations, tines a forward tine translation

+ g = gT g0 (2.41)

The map on the Banach space of the trace class operators

g:p-Pg (2.42)

where [/(gg) is the usual unitary representation of Cg «nd E T

is such that, for T>0, ETp(t)=p(t+T) is the solution of

Eq.(2.1), is then easily checked to yield a representation of

Up to now we have discussed the invariance properties of

dynamical reduction models from the point of view of the

18



statistical operator. However, since we are interested here in

the evolution equation for the state vector, it is appropriate

to discuss the problem of the invariance also at this level.

For simplicity, we will limit ourselves here to the discussion

of space translations.

Let us then slurt by considering the Stratonovich equation

(2.12). If we denote by 0' an observer whose reference frame

is translated by an amount a with respect to the frame of 0,

he will experience the potential

V(q',t)=V|q'+ft.t) (2.43)

so that, for a particular realization of V, there is no

invariance.

However, since we are dealing with a fundamentally

stochastic theory, the invariance requirement has to be

formulated in an appropriate way. We will say that the theory

is stochastically invariant under space translations if, for

all observers 0', translated by any a with respect to 0, the

stochastic ensemble of potentials is the same, This is

equivalent to requiring that, if V(q,t> is a possible sample

function for 0, then V(q-a,t), for any a, is also a possible

sample function for him, having the same probability of

occurrence of V(q,t), i.e.

P[V(q,t) !=P[V(q-a,t)] (2.44)

Note that this is automatically guaranteed by the form (2.14)

for the mean value and covariance function of the gaussian

noise.

In the case of the model based on Eq.(2.24) describing

Heisenberg reduction processes, a separate discussion is

needed, since the stochastic invariance requirement has to be

referred to the cooked probabilities which depend on the

initial state vector. Let us consider two observers 0 and 0'

and suppose they prepare the same (subjective) state |V10)> at

time t = 0. The probability density of occurrence of the same
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(subjective) potential V(q,t) is, for the two observers,

PC°'tV(q,t))=P °'[V(q,t)l «I*v°'It)>"
2

Pc°[V(q,t)]=P O[V(q,t)lM|*V°(t)>tl
2

2.45}

Since I * V
O > and i*v0> a r e t h e solutions of Eq.(2.21) with the

same (subjective) potential and satisfy the some initial

conditions, they coincide. Moreover, due to Eq.(2.44)

P °'[V(q,t)]=P °[V{q,t}J, implying

PcO'tV(q,t)J=PcO[V(q,t}J (2.46)

This guarantees the invariance from the active point of view,

i.e. the observers cannot, by making physical experiments in

their own frames, discover that they are displaced. They agree

on the statistical distributions of the future outcomes.

3. RELATIVISTIC, STOCHASTICALLY INVARIANT REDUCTION MODELS.

In trying to set up the framework for a relativistic

generalization of reduction models we adopt the quantum field

theoretic point of view. We remark that the analogue of the

idea of considering, within a nonrelativistic framework, a

stochastic potential V(q,t) consists in assuming that the

Lagrangian density for fields contains a stochastic

interaction term. In the two following subsections we will

consider model theories which are analogues of the

nonrelativistic ones based on Eqs.(2.12) and (2.24),

respectively.

3.1 Quantum Field Theory with a Hermitian Stochastic Coupling

Let us consider, in the context of quantum field theory,

the Lagrangian density

(3.1)
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where LQ and £j are Lorentz scalar functions of the fields

(for the moment we do not need to specify the fields we deal

with). We assume that Lj does not depend on the derivatives of

the fields, and that V(x) is a c-number stochastic process

which is a scalar with respect to transformations of the

restricted Poincsre' group, i.e. that under the change of

variables x'=Ax+b, it transforms according to

V(x1)=V[A-»(x'-b|] (3.2)

We will also assune that Vfx) is a Gaussian noise with mean

zero and, to get a relativistic stochastically invariant

theory, that its covariance ia an invariant function

<<V(x)V(x')>>= A(x-x" (3.3)

with A(A-lx)=A(x).

As discussed in the previous section stochastic invsriance

requires different observers to agree on the unfolding of

physical processes. This, in turn, is guaranteed by the

condition that the family of all sample functions V(x) and the

probability density of occurrence of the same (subjective)

sample function be the same for all observers. This is

achieved by requiring that, for a single observer

PfV(x)]=P[V(A(x+b))] (3.4)

We stress that property (3.4) holds automatically if the

covariance is a relativiatically invariant function. In fact,

from

P[V(x)I • "IIIdx dx' V(x)A(x-x')V(x'l (3.5)

(where we have denoted by A(x-x') the function satisfying

Jdx"A(x-x" )A(x"-x' > = S(x-x' )) one gets immediately, using
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the scalar nature of A and consequently of X, that

(3.6)

The most natural generalization of the case discussed in

the p r e v i o u s s e c t i o n is obtained by a s s u m i n g that V(x> is a

white noise in all variables, i.e.

<<V(x)V(x")>>=A(x-x')=X6(x-x' (3.7)

It is appropriate to make a brief digression on this

specific choice. Obviously one could consider a more general

Gaussian process satisfying (3.6). For example any function

V (x)=Jdzu(z-x>V(z> (3.8)

where V(z) satisfies (3.7) and «(A-1x(=u(x), would be equally

acceptable from the point of view of stochastic invariancc.

However, if such a choice is made, one can prove by arguments

similar to thoBe of section 2, that one cannot define in a

consistent way the statistical operator for the considered

process. Moreover, when one tries to pass to a, formalism

yielding Heisenberg reductions one would meet difficulties

with the compatibility requirement for the cooked probability

density (see the discussion in Appendices A and B). Let us

come back now to our general problem.

We study, first of all, the physical consequences of the

stochastic coupling Lj(x)V(x). In Schrodinger's picture we

have, for a given V(x), the evolution equation

LI(x,O)V(x,t)Jl*v(t)> (3.9)

where Ho is the Kami Itonian corresponding to LQ . Eq.(3.9)

implies
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l*v(t)>=T e
-iHot+ij i.j<x,O)V(x,T)

(3.10)

This equation shows how, for a given initial state |V(0)> one

gets an ensemble of states |fy(t)> at time t, according to the

particular realization of the stochastic process. The

statistical ensemble can then be described by the statistical

operator obtained by averaging over the sample functions (see

Eq.(2.5)l. In the case under consideration one gets a closed

evolution equation for the•statistical operator. In fact, we

observe that, due to the Fact that i^tx) does not depend on

the derivatives of the fields

[LI(x,0),£,I(x',0)]s0 Vx.jc' (3.11)

and due to the presence of the time ordering in (3.10), we

have

p<t+«)=<<[l-iHoe+i|dT Jdx Ll{x,O)Vix,T)-

, ,t+«,tt« f f

-=• d r d T 1 d x d x ' t T ( x , O ) L . ( x ' ,2 J t J t J J I I

r • f t + < f
t

^ | d r J d T ' | d x | d x ' L I ( x , O ) L I ( x ' , O ) V U , r ) V ( x > , T ' ) J > >

We recall now the properties associated with a zero mean

gaus3ian probability distribution

<<V{x1,t1) V(xn,tn)>>=0 for n odd

(3.13)

x) Vlxn.tn)>>=rall pair8<<V(xi,ti)V(Xj,tj)>>

<<V(x|[,t|l)V(x1,ti)>> for n even
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From (3.12) we then have

-i[H0,P(t)]+x|dx L1[x,

L^x.O), P(t)] (3.14)

Note that the obtained equation is of the Lindblad type and

this fact by itself guarantees that the map E t defined by

p(t)=Etp(0> satisfies Eq. (2.22).

The nonhamiltonian terms in Eq,(3.14) imply a suppression

of the off-diagonal elements of the statistical operator in

the basis of the common eigenstates of the commuting operators

ti(x,0). Putting

ir(x,0)I ...>=vix)I...v...> (3,15)

one gets, when the Hamiltonian term in (3.14) is disregarded

..v..
(3.16)

As in the nonrelativistic case, however, for a single

realization of the stochastic potential V(x,t), the state

vector Is not driven into one of the eigenmanifolds

characterized by a given v(x), since I <... I'...|Vy(t)> I 2 does

not change with time. These considerations point out that, in

order to have Heisenberg reductions, one has to resort to a

skew-hermitian coupling with the noise.

Equation (3.14) for the statistical operator is not

manifestly covariemt, even though, from the procedure which

has been followed to derive it, we know that the theory is

stochastically invariant. To obtain a manifestly covariant

description of the statistical operator evolution, we note

that the model presented above is obviously equivalent to the

following scheme:
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i.- Aissume that the fields are solutions of the Heisenberg

equations obtained in the standard way from the Lagrangian

density LQ(X) (note that we do not require £Q(X) to describe

free fields)

ii.~ Assume that the evolution of the state vector is governed

by the Tomonaga-Schwinger equation

(3.17)
Salx)

i-j(x) being a function of the fields considered in i) which

does not involve their derivatives. As a consequence of the

assumptions about £j(x), for any two points x,x'«, cr being a

space-like surface, (Lj(x),tj(x*)J=0, and consequently Eq,

(3.17) is integrable.

Let us consider the formal solution of Eq. (3.17):

ijdx Iz(x)V(x)

l*v<(r)>= T e

Defining

(3.18)

<<|Wv(ff)X*v(o) (3.19)

using (3.18)i and following the procedure outlined in

Eqs.13.12) to (3.14) we get the Tomonaga-Schwinger equation

for the statistical operator

(3.20)

which is manifestly covariant.
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3.2 Quantum Field Theory with Heisenberg Reductions.

In this subsection we present a stochastically invariant

theory yielding Heisenberg reductions. To this purpose we keep

assumption i) of the previous subsection and we replace ii) by

the requirement that |W(o)> instead of being governed by

Eq.(3.17), obeys the following equation of the

Tomonaga-Schwinger type

(3.21)

The main difference between the two equations (3.17) and

(3.21) derives from the skew-hermitian character of the

coupling to the stochastic c-number field. At the r.h.s. of

(3.21) a tern guaranteeing the conservation of the average

value of the square norm of the state appears. It is important

to remark that Eq.(3.21), for a given sample potential, does

not conserve the norm of the state vector.

Let l*v(o-(> be the solution of Eq.(3.21) for a given

realization of the stochastic potential

1?
|*v(o-)> =Te

and let us define the stochastic average

|*v(a)x*v(a)

(3.22)

(3.23)

Following the same procedure of the previous subsection one

sees that P(a) still satisfies Eq.(3.20) derived in the

Hermitian case.

As in the nonrelativistic case we have then two

conceptually different dynamical evolutions for the state

vector, i.e. (3.17) and (3.21), which give rise to the same

dynamics for the statistical operator and therefore to the

same physical predictions at the ensemble level. The very
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definition (3.23) of the statistical operator, when confronted

with the fact that the equation for the state vector does not

preserve the norm, implies the adoption of the point of view

that a cooking procedure, analogous to the one discussed in

section 2.4, is necessary. This means that one has to consider

normalized vectors |*v(o)>/n|#v(c)>» and has to attribute to

the considered realization V(x) of the stochastic potential,

having Bitpport in the space-time region lying between the two

space-like hypersurfaces c 0 and O", not the probability

density P[V(x)J given by (3.5), but a cooked probability

density Pc[V(x>l given by

(3.24)

In the above equation |¥y(a)> is the solution of Eq.(3.21)

satisfying

D)>=I*O>- (3.25)

Before discussing the cooking procedure, the role of the

counterterm and the relativiatic invariance of the theory, an

important remark IB necessary. As we have discussed in section

2.5, at the level of the statistical operator the map Et does

not exist when t<0. For this reason, even at the state vector

level, we will only consider Eq.(3.21) as yielding the

evolution from the state vector associated to a given

space-like surface OQ to space-like surfaces lying entirely in

the future of On.

For what concerns the properties of the cooking procedure

one can immediately see that Eq.(3,20) preserves the trace of

P which amounts to the statement that Eq.(3.21) preserves the

average of the square norm of the state vector. In particular

this implies

l (3.26)

which shows that the requirement (2.28) on the cooked
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probability density is satisfied. One can also easily prove,

by the same procedure we have followed in the nonrelativistic

case, that the cooked probability density satisfies the

compatibility condition.

3.2.1 Transformation Properties and Invariance of the Theory

We discuss now the transformation properties of the theory

for a given realization of the stochastic potential, in going

from a given reference frame 0 to another one O' related to it

by a transformation of the restricted Poincare' group

x-»x'=Ax+b (3.27)

We remind the reader that in the Tomonaga—Schwinger

formalism of conventional quantun field theory each reference

frame O ia able to assign a statevector to each space—like

hypersurface. Our first concern is to demonstrate that the

consistency of the composition law for Lorentz transformations

remains intact in the present use of the Tomonaga—Schwinger

formalism.

Suppose that the transformation (3,27) Involves a boost

and consider a given space-like surface o for 0. The surface

which is subjectively the same for 01 'involves points which

lie in the past of the surface o~ for 0. Our previous

discussion has pointed out that we will only use the

Tomonaga-Schwinger equation to go from a given space-like

surface cr to surfaces lying entirely in the future of ex.

Therefore, contrary to the standard case we are not allowed to

raise here the following question: which state vector |W'(«x)>

would 0' associate to his subjective surface O" to describe the

same physical situation described by 0 who assigns the state

vector |*(a)> to his subjective surface o ?

We can, however, legitimately consider subjective surfaces

o"' for O", such that they lie in the future of the surface a

for 0. Suppose the observer 0 associates the state vector

\1/Q((J)> to his subjective surface o to describe the physical
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situation. Let UB denote by o* the surface of 0 which is

objectively the g«ne as the above-mentioned surface a*' for

o'. Then O associates to a* the state l*o(a*)> obtained by

solving Eq.(3.21) with the initial condition that it reduces

to ]#0(ff)> on a. We have

(3.28>

with

£
SV(C*,CT)= T e (3.29)

Then the observer O' will associate to his surface a"' the

state vector

(3.30)

In Eq.(3.30), L'(A,b) is the unitary operator whose

infinitesimal generators P w and 3UV are obtained in the

standard way from the Lagrangian density L Q ( X ) , Let now a, o-~,

a*" be three space-like surfaces for O each lying entirely in

the future of the previous ones. Let us consider two other

observers 0' and 0'' related by two successive Lorentz

transformations (the generalization to Poincare1

transformations is atrsighforward): O'=AiO, O>'=A2O1, and let

us denote by o', o"~', and a' the above

surfaces as seen by 0' and 0" , respectively.

The map (3.29), for a given realization of the stochastic

potential, has the following property. Suppose 0 assignes the

state t*o'CT'> t o t n e surface a. Then 0' assigns the state

(3.30) to the surface cr*'. For 0' this state evolves according

to the Tononaga-Schwinger equation (3.21) with

'x'l from a" to a " '
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The observer O** will describe

assigning the state vector

the final

(3.31)

situation by

| 1 > o . . ( f f - ~ • • ) > "-' )> (3.32)

to the surface a**11. On the other hand, one can consider the

evolution from a to a'" as seen from 0

I¥ O<
C TI > H (3.33)

and then look at it from O*'=A2A1o, getting the state

(3.34)

For consistency |*oi>*(o**' ' | > auBt coincide with

|*0.,(o~~" )>. This can be easily proved to hold.

Although we have Just seen that the theory implies an

assignment of a statevector to a hypersurface by any observer

that fulfills the Lorentz (also Poincare') group requireaents,

this does not mean that the description is Lorentz invariant.

In fact, because a particular realization of the stochastic

potential V looks different from two different reference

frames, the map Sy(ov*,0') obvioualy depends upon the reference

frame 0. This shows that, at the individual level the theory

doea not posess the property of standard (i.e. nonstochastic)

Lorentz invariance. However, for stochastic Lorentz invariance

one must consider the ensemble of possible sample potentials.

When one takes into account the Lorence invariance of the

requirement (3.3) for the correlation function <<V(x)V(jt')>> ,

and the invariance of the cooking procedure that must be

performed to get the physics of the problem, one can easily

prove, along the sane lines as in the nonrelativistic case,

that there is stochastic invariance in the state vector

language, i.e. the stochastic ensemble of evolution operators

,a) is the same in each reference frame.
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In the language of the statistical operator, invariance is

evident from the manifestly covariant Tomonaga-Schwinger form

(3.20) of the evolution equation.

3.2.2. Reduction Properties

Once we have guaranteed the invariance of the formalism by

using its Tomonaga-Schwinger formulation, in order to discuss

specific features of the process, we can consider t= const

hyperplanes in the Schrodinger picture. In so doing, the

equation corresponding to (3.21) is

d|*v(tl>

dt (3.35)

This is a Stratonovich equation for the state vector. By

standard procedures one can consider the corresponding Ito

stochastic dynamical equation

d | Yv< t) > = ([ -iH 0- (X/2 ) J"dxi,:
 J (x , 0 ) Jdt+JdxLj (x, 0) dV( x)} I *v< t) >

(3.36)

where dV(x) is a real Wiener process satisfying

<<dV(x)>>=0, <<dV(x)dV(y)>>=XS(x-y)dt (3.37)

Note that both Eq.(3,35) and (3.36) do not conserve the norm

of the state vector but they conserve the average of its

squared norm.

A3 discussed in Subsection 2,2 one can take two equivalent

attitudes to describe the physics of the process. One can

solve Eq.<3.35) or (3.36) for a given initial condition, and

then one can consider the normalized vectors )*v(t)>/«|*v(t)> II

at time t and assume that the probability of their occurrence

is obtained by cooking the probability density of occurrence

of V(x), i.e. by mutiplying it times (I |*v( t )> n*.

Alternatively, one can consider the nonlinear stochastic
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dynamical equation

d | * v ( t ) > = { [ - i H 0 - ( i / 2 ) / d x (L I (x ,0 ) -<L I (x ,0 )>) 2 ]d t t

/dx(t I (x ,0)-<L I (x ,0)>)dV(x)H'l Iv' t»> ( 3 . 3 8 )

(where <LX(x,0)>=<*v(t)Itt(x,0)|*v(t)>).without cooking, i.e.

using just the probability weighting of V(x).

As shown in refa.(15-16) , when one disregards the

HamilIonian term in (3.38), the evolution leads the state

vector to enter one of the common eigenmanifolds of the

commuting operators L J ( X I O ) . The theory induces therefore

Heisenberg reductions, as required.

3.3, The Model

In this Subsection we will consider some specific choices

for the Lagrangian densities LQ and Ij which, when used in

connection with the formalism presented in Subsection 3.2,

yield stochastically invariant relativistic reduction models.

The goal is to build up a framework leading to localization in

position of the basic constituents of all matter.

The simplest and most immediate idea would be to introduce

a fermion field for particles of mass H and to choose for the

lagrangian density the expressions

to(x)=*(x)<i>''
1a(i-M>*<x), (3.39)

However, in the nonrelativistic limit, the dynamics induced by

the above choice, would lead to infinitely sharp position

localizations for the fermions, and this, as well known'13',

is unacceptable.

We have then to enrich the formalism. This can be done by

following the proposal put forward in ref.<17>. One considers

a fermion field coupled to a real scalar meson field and

chooses
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(3.40)

The introduction of the meson field coupled to the fermion

field allows one to overcome the difficulty of the infinitely-

sharp localization for femions net by the previous model. In

Schrodinger representation the evolution equation for the

state vector corresponding to the choice (3.40) ia

dj*v(t)>

dt [-lH0+Jds[*<B.0)V(B,t)-X«
2(i,0)]]I*v(t)> (3.4U

Let us consider now the nonrelativistic infinite mass

limit for fermions, and let us confine our discussion to the

sector containing one fermion ( note that in the limit the

fermion number is a conserved quantity). The state of a

fermion at position q is the "dressed" state

13.42)

where a + (q) is the creation operator for a fermion at q and

Mq)|0>=lmq> ia a coherent state which can be characterized as

either the common eigenstate of the annihilation operators of

physical mesons with eigenvalue zero or as the common

eigenstate of the annihilation operators b(k) of bare mesons

with momentum k, with eigenvalues <f\/V2)exp[-ikq]/(2ffk(>)*/z.

To be rigorous, in the three dimensional case, one should

introduce an ultraviolet cut-off on the momentum of mesons in

the interaction term to avoid ultraviolet singularities. In

the limit in which the cut-off is removed, the meson states

|m~>, lniq>> tend to become orthogonal for q i q'. In this way,

due to the coupling of the fermion field to the meson field,

the "position" of one fermion turns out to be strictly

correlated to states of the meson field which are

approximately orthogonal.

We note that the mean value of $(z,0) in the state |niq>
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turns out to be

<«ql*(z,0)|»q>*f(z-q)=
-nlz-qI

(3.43)

In what followsi in order to illustrate the localization

properties of the model for physical fermions, we make a gross

simplification, i.e. we treat the states |mq> as eigenstates

of *(z,0) pertaining to the eigenvalue f(z-q). Let us then

consider the physical state for one fermion

l*(t)>=/dq+(q,t) 13.44)

By substituting (3.44) into Eq.(3.41) and disregarding the

standard Hamiltonian HQ, we get the equation for t(q,t):

aV q i t )

~
=jdaf(z-q)VU,t)*v(q,t)--j2- (3.45)

= v ( 3- 4 6 )

with V~(q,t) a Gaussian noise with zero mean and covariance

(q,t)V (q'.t1|
-mlq-q1

S(t-t') (3.47)

Equation (3.46) is essentially the same as Eq.12.24) of CSL

for the case of a singl« particle. If one considers the sector

with N fermions, in the above approximations, one gets an

equation of the CSL type (see Eqs.(2.8) and (2.10)1 with the

operator

= ^ \dz
Iz-xl

a (z)a(z) (3.48)

34



taking the place of N(x) and (Xn2)/m4 taking the place of y.

Thus it appears reasonable that the model (3.40) posesses

the desired localizing features. However it also presents a

serious difficulty. The evolution equation (3.14) for the

statistical operator, specialized to the Lagrangian (3.40), is

- s -i[H0,p(t)]4xJdz*<z(0)P(t>*U,0)-!{Jdz*
2U,0),p(u]

Let us consider the Hamiltonian H for the free meson field; by

using (3.491 one can evaluate the increase per unit time of

the mean value of H, getting

d<H>
dt

i .e.

<[*<e,0),[*U,0),H]]> (3.50)

[3.51)

Therefore, the increase per unit time and per unit volume of

the mean value of the energy of the meson field, turns out to

be infinite. So, in addition to the desidered reduction

behaviour, the model displays an undesidered additional

behaviour: because the white noiBe source is locally coupled

to the meson field, it copiously produces mesons out of the

vacuum. We note that the now outlined difficulty does not show

up in the nonrelativistic approximation of the model discussed

above (Eqs. (3,45) to (3.48)) due to the gross simplification

of treating the states |mq> as eigenstates of •<z,0).

As stated in the introduction the attempt we have made

here to get rid, at the relativistic level, of first class

difficulties of quantum mechanics, has increased the second

class difficulties (i.e. the divergences) which affect quantum

field theories. We note, if one considers the lattice version

of the model we have presented here, that the increase per

unit time of the mean value of the energy per unit volume then
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turns out to be finite and obviously depends on the lattice

spacing and on the parameters of the model.

4. LOCAL AND NONLOCAL FEATURES.

As is well known, the quantum theory of measurement, in

addition to the difficulties discussed in the introduction

which constitute the main motivation for the consideration of

dynamical reduction models, presents some further difficulties

arising specifically from the assumed instantaneous nature of

the collapse of the wave function.

In particular,at the individual level of description,

nonlocal features as well as odd aspects (from the

relativistic point of view) emerge. Such problems have already

been extensively discussed in the literature' 2 7~ 3 0', in the

case of standard quantum mechanics. It is interesting to look

at them from the perspective of relativistic dynamical

reduction models.

4.1. Quantum Theory with the Reduction Postulate.

4.1.1 Objective Properties of Individual Systems.

Suppose one accepts it as meaningful, within standard

quantum theory, to consider an individual level of description

with the possibility of attributing objective properties to a

quantum system. Then a natural attitude corresponding to the

one first introduced in the celebrated EPR paper* 3 S) is to

assume the following. If an individual physical system S is

associated to a definite state vector |*> which is an

eigenstate of an observable A pertaining to the eigenvalue a,

then one can state that "S has the property a" or that "there

exists an element of physical reality" . We remark that if we

denote by P a the projection operator on the closed linear

manifold of the eigenstates of A belonging to the eigenvalue

a, then
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(4.1)

We want to stress, however, that even within non

relativiatic standard quantum mechanics, one is compelled to

take the attitude of attributing objective properties to a

system even when condition (4.1) is valid only to an extremely

high degree of accuracy. To clarify this statement, we can

think e.g. of the spin measurement of a spin 1/2 particle by a

Stern-Gerlach apparatus. In such a case, the two spin values

are strictly correlated to two states *j and *2 describing the

spatial degrees of freedom. Even though these wave functions

are appreciably different from zero in two distant regions,

their supports cannot have a void intersection. As a

consequence even an absolutely precise measurement of the

position cannot reduce the state vector exactly to an

eigenstate of the spin component. The final state unavoidably

exhibits an (extremely slight) entanglement of position with

spin variables and as such cannot be an eigenstate of a spin

operator.

Incidentally we remark that the above considerations are

even more appropriate in the case of dynamical reduction

models. In fact, on the one hand, such models, with the

requirement that they induce Heisenberg reductions, are

introduced Ju3t with the purpose of implying, at the

individual level, the emergence of objective properties for

macroscopic objects ( in particular the property of being in

one place rather than in another). Correspondingly, they imply

the emergence of objective properties also for microscopic

systems, at least when they interact with macroscopic

measuring like devices. On the other hand, as is well known

and has been repeatedly stressed in refs.(16,17), within

dynamical reduction models, the unavoidable persistence of the

tails, the tiny but non zero terms corresponding to the terms

of a linear superposition which have been suppressed by the

spontaneous localization process, prevents us from asserting

with absolute certainity that the "macroscopic pointers" are

in a definite Bpace region.
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The conclusion is that if one whishes to attribute

objective properties to individual systems one has to accept

that such an attribution is legitimate even when the mean

value of the projection operator on the eigenmanifold

associated to the eigenvalue corresponding to the attributed

property is not exactly equal to 1, but is extremely close to

it.

4.1.2. Nonlocality.

Nonlocal features3 of quantum mechanics arise from the

fact that, due to the instantaneous nature of the collapse of

the wave function, possible actions performed in a certain

space region can, under specific circumstances, induce

immediate changes in distant regions. In this connection two

important questions arise: first, do these changes correspond

to some modifications of the physical situation in the distant

region ? Secondly, are these modifications detectable, so that

one can take advantage of them to send faster-than-light

signals ?

In order for the above questions to have an unambiguous

meaning, it is necessary to specify at which level of

description of physical processes one is raising them. In

particular it is important to make ' a clear disctinction

between the ensemble and the individual levels of

description.

To understand the above situation one can make reference

either to the well known EPR-Bohm type set-up for an

"entangled" state of a composite system S=SJ+S2I the

components being far apart and non-interacting, or to the

position measurement of a particle whose state is the linear

superposition of two distant packets. In the first case, as is

well known, at the level of the individual members of the

ensemble, the far away system (let us say S2) is '
3 2 ) "steered

or piloted into one or the other type of state" according to

the measurement which is performed on Sj and the specific

result which is obtained. In the second case, let U8 write
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*(x,t)=»l1<x,t)+
1l'2U.t> , *i(x,t> and *2<

3t>t' being appreciably

different from zero only in two far apart regions 04 and <x2,

respectively. Then, a measurement aimed to test whether the

particle is in «[ and yielding, e.g., the answer "no" ("yea"),

instantaneously collapses *(x,t) to V2(x,t) (Vjtx.t)).

Correspondingly the quantity /a2dx|¥{x,t}I
2 (i.e. " the mean

value"4 of the projection operator on region «2), changes from

1/2 to either 1 or 0 according to the outcome of the position

measurement at «j. This puts into evidence how, if interpreted

as a theory describing individual systems, quantum mechanics

exhibits nonlocal features.

The situation is quite different when looked at from the

ensemble point of view. In fact, as is well known <33> no

measurement procedure in a given region can change the

statistical distribution of prospective measurement results in

a distant region.

These remarks, although made in the context of ordinary

quantum theory with a reduction postulate, are not essentially

modified (i.e. the word "instantaneously" must be changed to

"rapidly") in the case of the CSL theory with its reduction

dynamics.

4.1.3. Relativistic Oddities with Observations,

In the above analysis we have discussed a measurement

process in a given reference frame 0. The consideration of the

instantaneous change of the state vector induced by a

measurement raises interesting questions when looked at by

different observers. Since the distance between the two space

regions oij and 0:2 mentioned above can be arbitrarily large,

even the passage to a reference frame which is moving with

respect to O with an arbitrarily small velocity can change the

time order of simultaneous (for 0) events occurring in the two

regions.

To illustrate briefly the main points of the problem we

consider the observer O looking at a system of one particle in

the state *(x,t)=V1(x,t)+*2(x,t) which is a superposition of
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two well localized wave packets propagating in opposite

directions with respect to the origin x=0. Disregarding the

extension and the spreading of the wave packets we can

represent the situation by the space-time diagram of Fig.l, in

which the two world lines 1 and 2 are associated to fj and V2,

respectively. Suppose that, at the space time point C^lxi.tj)

there is a device designed to test whether the particle is

there or not, and let us suppose that, In the specific

individual case we are considering, the result of the test is

"yes". This is a covariant statement on which all observers

Fig.l : World lines of two well-localized wave packets 1 and

2, belonging to a single particle which is detected at

event C.

must agree. If one adopts the wave packet reduction postulate

of standard quantum theory and one assumes that the collapse

occurs for each reference frame along the hyperplane t'=const,

where t1 is the subjective time of the event C for such a

frame, one meets a puzzling situation. Let us in fact consider

an objective point B on world line 2, which is space-like

separated from C and which is labelled by (X2>t2) (see Fig.l I.

According to 0, t2<t^ and, by the above assumption, no

reduction has occurred at time tji and the state vector is

1M:f,t2>> If one considers the projection operator P2 on the

space region around X2, one has <"•' I Pg (***> = 1/2. Accordingly we

could say that the situation is such that, at time t2 • 0

cannot attribute to the particle the "property" of being or

not being in the region around xg.

However, there exists an observer 0' such that t2'>ti'1
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where t2* and t\' are the time labels attributed by 0' to the

events B and C, respectively. For O1 the particle has

triggered the detector in C at tj'. Therefore at t2' the state

of the system is *j . Then, for 0', the mean value of the

projection operator Pj at i-2' is zero •• Observer 0' can then

state that the particle has the property of "not being around

B". Thus, 0 and 0' do not agree on a statement referring to a

local property at an objective space-tine point.

It is useful to note that this ambiguity occurs only for

the points of the world line 2 which are spacelike with

respect to C; for a point & in the past of C all observers

agree in stating that the particle has no definite local

property while for a point B in the future of C all observers

agree in saying that the particle "is not around B".

The above discussion follows essentially the one given in

ref.(28). The consideration of these kinds of difficulties

have led various authors to take different attitudes.

Bloch'i9> and Aharonov and Albert'30> derive from this the

conclusion that one cannot attach an objective meaning to wave

functions for individual systems. Hellwig and Kraus'**} have

tried to solve the ambiguity about the wave function at a

given objective space time point by requiring that the

collapse of the state vector due to the measurement at C takes

place on the surface which delimits the past light cone

originating from C. Thus, at points outside the past light

cone the statevector is reduced, while at points inside the

past light cone the statevector is unreduced. Thia is a

covariant statement and leads the authors to the

identification of A unique state vector to be associated to

any given space-time point. However, such a prescription

implies that there are space—like surfaces (those crossing the

past cone of C) to which it is not possible to associate a

definite state vector. This, as nicely illustrated by Aharonov

and Albert<3O>, forbids the consideration of nonlocal

observables on these hypersurfaces; for example it does not

allow one to speak consistently of the total charge of the

system. Moreover, the assumption that the reduction occurs on
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the hypersurface deliaitlng the past light cone raisea

conceptual difficulties with the cause-effect relation: in

certain reference frames the cause would seem to occur later

than the effect

4.2 Relativistic Reduction Models

We discuss here the local and nonlocal features of

reduction models in the relativistic case. In order to

investigate whether the dynamics presented in Section 3,2

induces nonlocal effects we make reference to the procedure

outlined in ref.(34), i.e. we consider whether a modification

of the Lagrangian density in a space-time region C, can have

effects in a region B which is space-like separated from it

(this will be discussed in Subsections 4.2.1. and 4.2.2). In

particular, since we want to study the possibility of nonlocal

effects due to the reducing character of the dynamics, we will

take into account modifications of the Lagrangian density Ly

coupled to the noise.

The problems which we want to discuss require the

consideration of "local observablea". By this expression we

mean the integral of a function of the interaction picture

fields and their derivatives:

(4.2)

with f«<x) a function of class C™ with a compact support « on

the space-like surface o-. The physically interesting

quantities, for our analysis, are the mean values* of such

local observables. As usual it is necessary to make precise

the level at which the nonlocality problem is discussed. We

will consider it, as before, both at the ensemble and at the

individual level.

At this last level, we will discuss also questions

analogous to those considered in Sect. 4.1.3 which arose when

one looked from a relativistic point of view at the wave

packet reduction postulate. In the present context, they
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emerge naturally from the relatlviatic dynamics described by

the Tomonaga-Schwinger equation. In particular, it turns out

that, for all Tomonaga-Schwinger surfaces coinciding on a,

the mean value of the local observable depends upon the

specific Tomonaga-Schwinger surface on which it is evaluated

(see Subsection 4.2.3). This is not the case with the

Tomonaga-Schwinger description of an ordinary relativistic

quantum field theory, and it gives rise to interesting

questions about the possibility of attributing objective

properties to the systems which we will discuss in Subsection

4.2.4.

4.2.1. Ensemble Level

As already emphasized, at the ensemble level, the

statistical operator and therefore the physics of the two

models considered in Sect.3 coincide. Thus, to investigate

properties referring to the statistical ensemble, one can make

reference to the stochastic dynamics with hermitian coupling,

which can be easily handled by familiar methods.

With reference to the model of Sect. 3.1, we consider the

mean value of a local observable AJ(CT)

<A1(a)>=Tr(AI(er)PI(a) }

Let us denote by tfy(<T,o-()) the evolution operator

(4.3)

tfv«F,a0)= T e

i f dx I (x)V(x)

°0
(4.4)

and by AHV(<*) = V*y\.a,<jQ )Aj <a( lfy(c,cr0) the observable in the

Heisenberg picture which corresponds to Aj(c) for the

realization V of the stochastic potential. Let AH(tf) be the

stochastic average over V of Af|y(o"):

(4.5)
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We then have

>= Tr (AM(a)P(o-nU (4.6)

The support of AT(c) defines a partition of space-time into

three regions: the future, the past, and the set of points

which are space-like separated from all points belonging to

this support, (see Fig.2).

Fig.2 : The support of the local observable Ajfo), and the set

of points 3 bearing a space-like relation to this support.

We choose now a space-time region C entirely contained in

region 3 and we consider a modification of the Lagrangian

density Ijlx) coupled to the noise. We replace Lj(x) with a

new density ti"(x)=LI(x)+AtI(x), with A£r(x) different from

zero only for x«C. . If AHv~(«O denotes the local observable in

the Heisenberg picture, when we replace Lr(x) with t j ' U ) , we

have

It

AHV <cr)= Te
(4.7)

The fields *HV(x> which appear in Atjfxl are the fields in

Heisenberg picture for the original Lftgrangian density

LQ{x)*lilx)Vlx). The appearance of ALjU) actually restricts

the integration in the exponential to the space-like region C,

which is space-like separated with respect to the support of
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A H V | o ) . it follows that the exponential commutes with

and therefore

AHV (4.8)

for any given realization of the stochastic potential. One

then has

AH |<J|=AH<<7> <4.9)

i.e., due to Eq.(4.6), at the level of the statistical

ensemble any modification of Lj(x) in a space-time region C

cannot cause physical changes in regions which are space-like

separated froa it. We stress that this conclusion is true for

the case of nonhermitian coupling as well as for the case of

hernitian coupling! even though the argument was carried out

in terms of the hernitian coupling alone, as it depends solely

upon the statistical operator which is identical for both

couplings.

4.2.2. Individual Level

From the result (4.8) of the previous Section it is also

evident that, in the case of an hermitian coupling,( i.e. for

(3.17)) a variation of the Lagrangian density Lj(xi in a

region C has no effect on the mean value of any local

observable with support spacelike separated from C, even at

the level of an individual system) i.e., for any realization

of the stochastic potential). This property is related to the

fact that, in this case, no Heisenberg reduction takes place.

The situation is quite different in the case of a

non-hermitian coupling. In fact, let us consider Eq.(3.21) and

the operator Sy(a,ao( given by (3.29). The mean value of a

local observable Aj(<J) Is then
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(4.10)

We now replace In (3.21) ijtx) by ^(xl+ALjIxl, ALjIx) being

different from zero only for xeC, and we denote by S V ^ I ^ O Q )

the corresponding evolution operator. The mean value <Aj;i(o-(>

of the sane local observable, for the same initial condition,

is now

4
<Aj<CT)>=

V 0 I V ^ 0 _

Note that in general

(4.12)

in spite of the fact that AJ(CT)]=O, Vx.

4.2.3 Mean Values of Local Observables and Oddities in

Relativistic Reduction Models.

Let us consider a physical system satisfying the initial

condition |V(aQ)>=|VQ> on the space-like surface <JQ, the local

observable A and two arbitrary space-like surfaces Oy and 0"2

coinciding on the support <x of A (see Fig.3).

Pig.3 : The space-like surfaces o~j and o~2 coinciding on the

support oc of local observable A,
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When the dynamics (3.17) due to a hermitian interaction is

considered, for any given realization of the stochastic

potential, aa is well known, the mean value of A in the state

|*v(CTj)> coincides with the one in the state l»V*cr2>:>- There

follows, at the individual level for the case of the hermitian

coupling and, as a consequence, at the ensemble level for both

cases of herroitian and skew-hermitian coupling,that the mean

value of a local observable does not depend on the particular

space-like surface which one chooses among all those

coinciding on its support. This shows that alBO in the case of

dynamical reduction models, at least at the ensemble level,

one can consistently define, as in standard quantum field

theory, local observables.

Again, the situation at the individual level is quite

different in the skew-hermitian case. In fact, for a given

realization of the stochastic potential one has

1.13)

which, in general, is different from

<¥V<
CT1>IA|*V<°1>>/«l*v<al>>"2 e v e n though the space-time

region spanned in tilting o"i into o-2 is space-like separated

from the support « of A, and, consequently

[A,Sv(°2'°l'1=" (4.14)

This dependence, at the individual level, of the mean value of

a local observable upon the space-like surface (among those

coinciding on the support) over which it is evaluated, is not

per se a difficulty of the theory. It becomes however a

difficulty if one wishes to claim that such a mean value

corresponds to an objective property of an individual system.
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Before facing this problem (see next Subsection), a deeper

analysis of the implications of relativistic reduction models

for microscopic (case a) below) and macroscopic (case bl(

systems is necessary.

case a) .

Let us start by reconsidering the case in Subsect. 4.1.3,

of a microscopic system coupled to a macroscopic one which

acts as a "measuring apparatus" in the sense of dynamical

reduction models. Let Aj and A2 be two local observables of

the microsystem whose supports otj and 0£2 are space—like

separated , and suppose the macroscopic system is devised to

measure Aj. For our purposes we can ignore the hamiltonian

evolution for the operators and we consider the

Tomonaga-Schwinger evolution equation of the state vector, for

a specific realization of the stochastic potential

(4.15)

Here £i_s(x) (describing the local system-apparatus
interaction) and ij(x) may be taken as different from zero

only in a space-time region C which is space-like with respect

to oc2
 ( s e e FiS>4 I .

Fig.4 : A macroscopic apparatus measures local observable Aj

in space-time region C. Aj's support <x± is space-like

separated with respect to otg1 the support of another local

observable A2•
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Let us assume that the local observablea Aj and Ag have a

purely point spectrum with eigenvalues 0 and 1 , and let us

consider the initial state

(4.16)

with

IX1> being the untriggered apparatus state. Let us furthermore

assume that the particular realization of the stochastic

potential V(x> is one of those "yielding the result 1 for the

measurement of Aj". The situation is then the following:

i. The state associated to OQ and O"j is |V{an}>

ii. The state associated to 0*2

factor)

S
being a normalization

(4.18)

which, under the assumptions which have been made, is

approximately an eigenatate of A2 pertaining to the eigenvalue

iii. The state associated to a\" is also l*(crg)>1

Indeed, the relativistic CSL dynamics considered in Sect. 3.3

is such that, when a space-like hypersurface crosses the

region C towards the future, no matter what is the behaviour

in regions far apart from C, the state vector associated to

this hypersurface collapses to the eigenstate of Aj

corresponding to the eigenvalue which has been found.
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Looking at the problem from the point of view of the

evolution from Oj to 0*2 one could be tempted to say that,

since the mean value of A2 has become practically zero as a

consequence of the "measurement" in the space time region C,

an element of physical reality associated with A2 has emerged.

This is a nonlocal effect of the type of those occurring in an

EPR set up.

However, one must realize that the same change of the mean

value of A2 occurs when one considers the Tomonaga-Schwinger

evolution from Oj to a\~ > in accordance with iii. This gives

rise to an ambiguity in the mean value of A21 i.e. in a

quantity that, when the support «2 shrinks to zero, refers to

a unique objective space-time point. This is not surprising;

it corresponds simply to the emergence, within the

relativistic reducing dynamics, of the aspects discussed in

Subsect.4.1.3 for the standard quantum theory with a reduction

postulate. In fact, one can remark that O"j ~ can be

approximately identified with a t'=const hyperplane for a

boosted observer for which the interaction with the

macro-object has already taken place*.

case b ) .

Let us discuss now the same problem for macroscopic

systems. We consider a situation analogous to the previous one

but in which there are two macroscopic systems performing

measurements of the observables Aj and A2• The initial

condition is given by assigning to the surface OQ the state

(4.19)

where |Xj> and 1*2* refer to the untriggered apparatuses. The

evolution equation, with the usual approximation, is now

(4.20)
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with obvious meaning of the symbols. To clearly define the

situation from the physical point of view we assume that the

time which is necessary in order that the microsystem triggers

the apparatus is sensibly shorter than the typical reduction

time for the apparatus. This means that in the above equation

we can consider £i_g(x) and £,2-s'x' 'o ^e different from

zero only in the regions Cj and Bj , respectively, and iulx)

and Z,i2*x> in the regions C2 and Bg. respectively, as shown in

Fig. 5 : Measurements take place in Cj and Bj, followed by

reduction dynamics in C2 and B%, of local observables Aj

and Ag, respectively.

Let us also assume that the specific realization of the

stochastic potential is one leading to the value 1 for Aj. We

are interested in discussing the states of the macrosystem

used to measure Ag and the mean values of its observables on

various hypersurfaces. In particular, let Ag" be the

observable of the apparatus corresponding to the yes-no

experiment asking whether the result 0 has been found in a

measurement of Ag. We consider a t=const hypersurface O"(t) and

also the bent hypersurfaces O"~(t) containing the spatial

support of A2" at time t (see Fig.5). The situation can now be

summarized as follows:

1. For t<tn the state associated to any surface o[t) or o"{t)

has always the form of a factorized state; one of the factors
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refers to the apparatus 2 and is |Xj>. Note that what changes

in going from O(t) to c*(t| is the state of the

system+apparatus 1.

ii. For t=ti the state associated to o(t-[) is

l*l> [Xj1> |x2
 >+l*2> |Xi°>|x2

l>] (4.21)

with the obvious meaning that the superscripts identify the

3tates of the macroscopic apparatuses which have been

triggered by the interaction with the microsystem, these

states being labelled by the eigenvalues which have been

found.

From (4.21) one sees that the state l*(a(ti>|> i3 not a

factorized state and as a consequence it cannot be an

eigen3tate of any observable of apparatus 2. In particular the

mean value of A2" in the state (4.21) is 1/2,

However, it is important to remark that the state to be

associated to the surface o-"[ti) drawn in Fig.5 is, for the

particular realization of the stochastic potential

|*(a-(t1))>=|*1>|Xi
1>|x2

0> (4.22)

This state is factorized and it is an eig'enstate of A2*.

iii. The Btate to be associated with any surface oft) and

CT~(t) when t>tg, is once more a factorized state with the

factor |X2°> for the apparatus 2.

The conclusion is that, even though the dependence of the

mean value of a local observable upon the space-like surface

in which it is evaluated is present also in the case of

macro-objects, this dependence occurs only for a time interval

of the order of the one which is necessary for the reduction

to take place.
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•1.2.4. Objective Properties of Micro and Macroscopic Systems.

We started this section by relating the possibility of

attributing objective properties to individual systems to

requirement (4.1) being satisfied to an extremely high decree

of accuracy. In the relativistic case, however, as shown with

great detail in the previous Subsection, the mean value of a

projection operator associated to a local observable is

affected by an ambiguity depending on the space-like surface

used to evaluate it, and, under specific circumstances, by

changing the surface its value can vary from e.t?. 1/2 to

almost exactly 1. This shows that the above definition of

objective properties for individual systems is inadequate, and

must be made more precise.

We think that the appropriate attitude is the following:

when considering a local observable A on its associated

support we say that an individual system has the objective

property a,( a being an eigenvalue of A), only when the mean

value of Pa is extremely close to one, when evaluated on all

space-like hypersurfaces containing the support of A.

Thus, according to this prescription, one cannot attribute

an objective property to an individual system when there is

an appreciable dependence of the mean value of the local

observable upon the surface used to evaluate it.

Let us analyze the implications of this attitude in the

cases of microscopic and macroscopic systems. For a

microsystem, with reference to case a) of the previous

subsection, we observe that no objective property

corresponding to a local observable can emerge as a

consequence of a "measurement process" performed in a region

which is space-like separated from the support of the

considered observable. This does not mean that microsystems

cannot acquire objective local properties as a consequence of

a measurement performed in another space-time region; in fact,

with reference to the discussion in a) and to an EPR-Bohm-like

set-up one can remark that if one considers the spin component

of particle 2, when the particle is in the future of the
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region in which the spin of particle L has been measured, then

one can attribute to particle 2 the objective local property

of having its spin "up" or "down".

We wish to emphasize again that the discussion under bl

has shown that the impossibility of associating local

properties to macrosystems lasts only for a time interval of

the order of that which is necessary for the "spontaneous

dynamical reduction" to take place. In fact, before the

macroapparatus 2 interacts with the microsystem the state of

the apparatus is obviously well defined and corresponds to the

untriggered state, independently of the considered surface.

After the reduction ensuing from the interaction of the

microsystem with it, apparatus 2 is again in a well defined

state, corresponding to the result which it has registered.

Moreover this result is "correctly" correlated to the result

registered by apparatus 1 7.

In conclusion, the dynamical reduction model presented in

this work, together with the prescription for the attribution

of objective properties to physical systems proposed in this

Subsection, allows one to overcome the difficulties discussed

in Subsection 4.1.3. The theory assigns a state vector to any

space-like hypersurface and the dependence, at the individual

level, of the mean value of a local observable upon the

specific space-like surface used to evaluate it, does not

constitute « difficulty. It simply requires a precise and

appropriate criterion for relating the objective properties of

a physical system to the mean values of local observables: in

particular, this criterion permits the attribution of

objective local properties to macro-objects, at the individual

level. In a sense, the above analysis should have proven once

more that dynamical reduction models meet the requirement put

forward by J.S.Bell'3' for an exact and serious formulation of

quantum mechanics, i.e. that it should "allow electrons to

enjoy the cloudiness of waves, while allowing tables and

chairs, and ourselves, and black marks on photographs, to be

rather definetely in one place rather than another, and to be

described in classical terms."
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APPENDIX A.

In this Appendix we show that the consistency condition

(2.21) for the statistical operator evolution will be

satisfied if, nnd only if, the random fluctuations have a

white noise time behaviour.

Let U3 denote by A(q,t;q',t')=A(q-q',t-t') the covariance

function which is a positive definite and symmetric

(A(q,t;q',t')=A(q',t';q,t)) function. Eq. (2.171 defines, when

the covariance function A(q,t;q',t') is used to evaluate the

stochastic average appearing in it, the coordinate

representation of the operator E(t,tQ)p(tn). One then sees

that, for the consistency requirement (2.21) to be satisfied,

the following equality roust hold:

,t ft
J d Tj dT'[2A(0,T-T')-A< q-q',T-T')-A(q'-q,T-T•)! =f
t t

t' tJ ' [2A(0,T-T')-A(q-q',T-T')-A(q'-q, T-T» )] + (A.l)

[2A(0,T-T' )-A(«-q' ,T-T' >- . -q.T-T1)]
t'Jf

for any L0<t'<t and arbitrary fixed q and q'.

If the noise is white in time, i.e.

Alq-q'.t-t1)=B(q-ql)E(t-t'J (A.2)

one immediately checks that (A.I) is satisfied.

We prove now the necessity. To this purpose we assume that

A(q,t;q',t') instead of heinu of form (A.2) is H continuous

function of its arguments. We consider t=t'+t with £
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arbitrarily small. Condition (A.It implies:

ft'-t'+ef t - t + e r t + < r t

dT dr1 f(T-T')+ dr dT'f|T-r')=OJ t o
J t ' V Jt0

for any t', where

f(T-T1)=ZA(0,T-T')-A(q-q',T-T*)-A(q'-q,T-T').

(A.3)

(A.4)

Due to the fact that f(T( is a continuous and even function,

(A.3) implies, to the first order in <:

f(T-t')=0, Vt' (A.5)

With the change of variables z=T-t', (A.5) becomes

,0
fdz f{z)=0 , Vt'>t
t_-t'

(A.6)

Since f(z) is a continuous function, (A.6) implies f(z)=0.

Suppose one evalutes the integral Jdxdx'A(x,x'}F(x)F( x'),

where x is a shorthand for (q,t), choosing for Fix) a

factorized function F(x)=h(q )g(t) with Jdqh<ql=0. Then the

vanishing of f(z) implies, by (A.4)

/dxdx'Alx.x' )F(x)F(x' 'h(q ' , T-cr) g( T) g(CT)=0

(A.7)

We see that the l.h.s. of (A.7) can vanish for functions F{x)

which do not vanish almost everywhere. This is absurd since it

contradicts the hypothesis that A(x,x') be positive definite.

APPENDIX B.

In this Appendix WP show that the compatibility property

(2.291 for the cooked probability density can only be
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satisfied if the random fluctuations have a white noise time

behaviour.

Let us consider the stochastic equation for the state

vector analogous to (2,24 1

at = V(q,t)*v(q,t) (B.I)

In Eq.(fl.l), Vfq.t) is a Gaussian noise with zero mean and

covariance function A(q-q',t-t'l which, instead of being of

form (A.2), is supposed to be a continuous function of its

arguments.

For a given initial condition Vy (q,tgl-Vlq,to), let us

consider the state vectors

*v(q,t)=*v(q,t)e (B.2)

In (B.2) g(t-to) ia a "counterterm" which has to be chosen in

such a way that the average of the square norm of the state

vectors Vv'^'f be conserved:

(B.3)g(t-tn)= dT dT'A{0,T-T')
Jt Jt

Note that when A(q-q',t-t') has the form (A.2), then g{t-tol

reduces to (t-to)B<0), as it must.

As usual. we consider the normalized state vectors

|*v<t>>/"l*v* *-
J>" a n d t h e cooked probability density

Pc\y}=PlV)*\Vy{t)>n*, where P[V] is the probability density

associated to the Gaussian noise with zero mean and covariance

A(q-q',t-t'). As a consequence, the equation for the

statistical operator turns out to coincide with the one which

one would obtain in the hertnitian case with the same

expectation values for the gaussian noise.

According to (B.I) and (B.2), the square modulus of *y(q,t)

is
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ft
2jdTV(q(T)-2g{t-t0)

o
|*v<q,tH = e (B.4)

With reference to the discussion following Eq.(2.28) we have,

for the cooked probability density

t rt
drldc
t« t.

2JdTV(q,T)-2g(t~tol

(B.5)

-||dr|daJJdqdCW(q,T,q,t)A(q-e,T-ff)w(5,a,q,t)

In Eq, (B.5), we have denoted by A" the inverse of the

covariance function A and by W(q,T,q~,t) the function:

ft
W(q,T,q,t)=V(q,T)-2jdr\ A(q-q,T--n) (B.6)

Using (8 .5) one can e a s i l y eva lua t e Pc" [ V"i J = SD{ V2 ] PQ t Vj , V2 ] ,

g e t t i n g :

pc [ vi1 = s'
( B . 7 )

*,t'
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For the compatibility requirement (2.29) to be satisfied,

Pc'fVj ]=PC[V! J muat hold for any *(q,0>, where P c ^ ] is *iv(>n

by (B.7) with the variable t1 replacing t in the arguments of

the functions W appearing there. This implies

f t

Jdo-A(q-q,T-o-)sJd0A(q-q,T-a) V q,q; V t o<T<t'<t
(13.8)

Equation IB.8), together with the assumption that

Atq-q1,t-t') is a continuous function, implies A( q-q', t-t')•(),

which is absurd.
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FOOTNOTES

1 We note that H.P. Stapp adds to the terms "ifeisenberg

reductions" and "von Neumann reductions", when he is using

them in our sense, the specification "objective". Since in

this paper we limit our considerations to models which

61

represent an actual modification of quantum mechanics, we

have suppressed, for brevity this specification.
2 See also the treatment of ref.(24).
3 For an exhaustive discussion the reader is referred to the

excellent book by M. Redhead (311.

* We are using the common phrase "mean value" to represent

diagonal matrix elements like (4.1), even though the

statistical connotation of this phrase has no meaning in

our discussion.
s Obviously, to be rigorous, both the statement that the

state is *j or *2> a s well the consideration of the

projection operators Pjand P2 are not correct because one

should consider a relativistic description of the system

and of the observables. However, since 0' is moving with n

very small velocity v<<c with respect to 0, the above

approximations are appropriate.
6 The bending of the surface at the left of «2 s h o wn in

Fig.4 is allowed since, under the assumptions we have

made, ij(x)=0 in that region

7 Perhaps it is worth noticing that it would be possible to

give another covariant prescription for the attribution of

objective local properties to physical systems. More

precisely one could, for any local observable A, consider

the mean value of the projection operator Pa on one of A's

eigenmanifolds evaluated for the state vector associated

to the surface which delimits the future light cone of the

support of A. Then, if this mean value is extremely close

to 1, one asserts that the system has the objective

property a. This is quite different from the previously

considered criterion (i.e. that the mean value be

extremely close to one on all hypersurfaces containing the

support of A) and would, in case a) of the previous

subsection, lead to the assignment of the objective

property corresponding to the value zero for the

observable Ag to the microsystem, contrary to what would

occur by the adoption of the previous criterion.

This attitude would correspond to the following
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particular interpretation, at the relativistic lovul, of

the EPR criterion for elements of physical reality: "if

there exists at least one observer who can predict, almost

I in the above specified sense I with certainty and without

disturbing a system in any way, the value of a physical

quantity, then there exists an element of physical reality

corresponding to that quantity".

We do not want to enter here into a detailed

discussion of the conceptual implications involved in

adopt irii? the above prescription. We will analyze them in

ft forthcoming paper. We believe that they lead to some

conceptual difficulties in connection with the

cause-effect relation. This is not surprising since the

considered prescription is analogous, in the present

context, to the Hellwig-Kraus'i9) postulate about wave

packet reduction. For these reasons we drop the criterion

considered in this footnote.
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