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1. INTRODUCTION

“One wants to be able to take a realistic view of the
world, to talk about the world as if it ig really there, even
when it is not being observed +=s++ oOUr business is to try to
find out about it, and the technique for doing that is indeed
to make models and to see how far we can g0 with them in
accounting for the real world" L1 No one has done more than
John Bell to advance and encourage this program of the pursyit
of reality. With gratitude we dedicate this paper to him, and
g0 about "our business”,

The essential wave aspect of natural phenomena has been
made evident by the remarkable success of quantum theory,
However thel?2) "indefiniteness, the waviness of the wave
function" is quite difficult to reconcile with the
"definiteness, the particularity of the world of experience”
at the macroscopic level,

The orthodox solution to this 30 called quantum
measurement problem is very well known: instead of statements
about properties possessed by physical aystems, statements are
made about probabilities of getting results if a measurement
is performed, However, as repeatedly stressed by Bell(3) there
are two fundamental difficulties with this point of view:

i. The need for a classical base which cannot be
consistently derived from quantum principles,

ii.The fundamentally shifty character of the level at
which one chooses to place the transition from the quantum to
the classical, from the small to the large.

The desire to overcome these difficulties motivates the
construction of dynamical reduction models, which are based on
the following idea. By accepting a "small" modification of the
dvnamics of quantum theory, one attempts to buyild up a scheme
in which microscopic systems fully exhibit thejr wave aspects
while the macroscopic ones, on the contrary, behave as
localized objects in accordance with our perceptions, as a
consequence of a single fundamental dynamics governing all

phenomena.
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This idea has been pursued for some time {*-9%) and has
recently obtained a particularly simple and effective
formulation!{1°2-11)  through the introduction of a model
{referred to as QMSL-Quantum Mechanics with Spontaneous
Localization) in which the wave function is supposed to be
subjected Lo spontaneous collapses corresponding to
localizations with an appropriate frequency and scale. It has
been shown(11-13) that such a model does not conflict with any
known fact about microsystems and leads, in the case of
macro-objects, in an extremely short time to states
corresponding to definite positions, thus meeting Einstein's
requirement [in Pauli's words{!*)} that:

"a macro-body must always have & quasi-sharply-defined
position in the ’objective description of reality'"

J. Belll?) ip explicating QMSL, immediately identified two
aspects of it which required further investigations:

a. The model does not respect the symmetry requirements for
systems of identical particles

b. The introduction of the localizations asaigns a special
role to position and requires a smearing on space, which makes
quite problematic to find a relativistic generalization of it.

The first difficulty has been overcome quite recently by
the introduction of a dynamical reduction model {referred to
as CSL- Continuour Spontaneous Localization), in which the
sudden localizations of @QMSL have been replaced by =a
continuous stochastic evolution of the state vector.{15-18)

S5teps toward a solution of the second problem, have been
made recently with the introduction of a relativistic CSL
model!!?), in which localizations for fermions are induced by
a reducing dynamics for a virtual meson field coupled to the
fermions.

In the present paper we consider the problem of describing
relativistic dynamical reduction mechanisms. We mainly focus
our attention on setting up 2 general framework for such a
theory, by discussing in detail how one has to impose
invariance requirements wilhin a stochastic quantum field

theoretic scheme.

To summarize, and to underscore the interest of such
considerationa we can do no better than quote John Belllt®):

“"Now in my opinion the founding fathers were in fact wrong
on this point. The gquantum phenomena do not exclude a uniform
description of micro and macroc worlds .... system and
apparatus. It is nol essential to introduce a vague division
of the world of this kind .... But another problem is brought
inte focus .,.. I think any sharp formulation of guantum
mechanics has a very surprising feature: the consequences of
events at one place propagate to other places faster than
light .... For me this 1is the real problem with quantum
theory: the apparently essential conflict between any sharp
formulation and fundamental relativity. That is to say, we
have an apparent jncompatibility, at the deepest level,
between the two fundamental pillars of contemporary theory

<+« It may be that a real synthesis of quantum and relativity
theories requires not just technical developements but radical
conceptual renewal."”

In Section 2 we review the CSL theory, which achieves its
results through a nonhermitian randomly fluctuating potential.
At the same time we discuss an example of ordinary quantum
theory with a hermitian randomly fluctuating potential.
Comparison shows that the satatistical operator for both
theories obeys identically the same ' evolution equation,
resulting im the decay of off-diagonal elements of the
statistical operator in the position representation. A number
of authors {19-2'} have regarded such behaviour of the
statistical operator as a satisfactory resoclution of the
measurement problem. We do not: we redard such behavicur as a
necessary, but not sufficient, condition. One must also look
at the behaviour at the level of the individual state vector.
Unlike the CSL c¢ase, in the hermitian case each individual
state vector remains forever in a superposition of
macroscopically distinguishable states: the off-diagonal
elements of the astatistical operator disappear jusi because of

the increasing randomization of phase factors mutiplying these

states,



In Section 2 we alasoc discuss the nature of Galilesn
invariance in these theories. A particular sample of the
fluctuating field certainly does not look the same in all
inertial reference frames. However, the statistical behaviour
of the fluctuating field, and the corresponding statistical
distribution of the results of identical experiments is the
same in al}l inertial reference frames. We call this stochastic
Galilean invariance, and this discussion paves the way for
Section 3 in which we consider stochastic Lorentz invariant
models.

These models are quantum field theories, with the field
locally coupled to a scalar function with a relativistically
invariant white noise distribution. We first discuss
stochastic Lorentz invariance in the more familiar context of
2 hermitian coupling term. Upon condidering & nonhermitian
coupling, which is introduced in order to obtain the desired
behavicur at the level of the individual statevector, we are
led to employ the Tomonaga-Schwinger formalism; this permits
discussion of relativistic transformation broperiies and of
stochaatic Lorentz invariance in the context of arbitrary
space-like surfaces. The formalism is then specialized to the
example already considered in ref.{17), In this case, new
divergences emerge hesides the ones which are familiar from
standard gquantum field theory, having their origin in the
white noise nature of the stochastic processes which are
considered. In a recent paper J.Bell{22) callse attention to
Dirac's division of the difficulties of quantum mechanics into
first and second class ones li.e. those connected with wave
packet reduction and the infinities of quantum field theories,
respectively); we note that this present attempt to generalize
models which allow one to overcome first class difficulties
seems to lead to an increase of those of the second class.

Section 4 is devoted to a discussion of the local and
nonlocal features of the theory. We analyze both the ensemble
and the individual levels of description of physical systems.
In particular, consideration of the individual level affords

us the opportunity to discuss the possibility of attributing

objective properties to individual systems in the micro and
the macroscopic case. Such a problem acquires a special
interest in a relativistic context, in which one has, at the
individual level, nonlocal effects.

The work preaented here, although only a step toward a
completely satisfactory relativistic theory of state vector
reduction, we believe provides justification for repeating the
comment of John Belll2) pade after his examination of
relativistic aspects of QMSL: "It takes away the ground of my
fear that any exact formulation of quantum mechanics must

conflict with fundamental Lorentz invariance".
2. DYNAMICAL REDUCTION MODELS: THE NONRELATIVISTIC CASE.
2.1.General Considerations

We are interested in considering stochastic modifications
of the standard evolution equation for the state vector
describing a physical system. To this purpose we add
nonhermitian stochastic terms to the Hamiltonian. These have
the propert¥ of driving, with the appropriate probabilities,
the state vector into one of a "preferred" =met of orthogonal
linear manifolds whose direct sum spans the whole Hilbert
space.

A crucial point, which always has to be kept in mind, is
that we are intsrested in a description at the level of the
state vector of any individual member of the atatistical
ensemble., Nevertheless, with the purpose of making some
important conceptual distinctions, we start with a description
at the level of the ensemble. We consider a {nonhamiltonian}
evolution equation for the statistical operator of the Quantuam

Dynamical Semigroup type:
deit)/dtz-i[H,e{t)]+>LjAjeit)A;j-{¥/2){E A 2,0(L)) (2.1)

In Eq.(2.1} the operators A; are assumed to be self-adjoint

and commuting.
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Let us introduce the projection operators Pg on the common
eigenmanifolds of the operators A;, with A;Pg=ajgPg. Then it
follows from Eg. (2.1}, when one disregards the Hamiltonian

term, that
d[Po'P(t)p'r]/dt=‘(ylzizitaio‘ﬂ-j_'r)ngp‘t)?f 12.2)

So, the dynamical eveolution yields an exponential damping of
the terms PgfPy for OfT.

This {block) diagonalization of the statistical operator
could mean that there is taking place, as desired, an actual
decomposition of the ensemble into subensembles described by
state vectors lying in the "preferred eigenmanifolds". We will
say in this case, following Stapp {21}, that we have
Heisenberg reductions. However, one must make the important
distinction between this desired behaviour and other different
evolutions which only give the same behaviour at the
statistical operator level: these will be called von Neumann

reductions 1.

2.2 General Formalism: Ito Approach

Let us briefly sketch how a stochastic dynamical model for
the evolution of the state vector can give rise to von Neumann
reductions and generate the dynamical equation (2.1) for the
statistical operator.

To this purpose we consider the Ito stochastic equation
dlvB(tl>=[!-iH-(7/2lEiA13)dt+i£iAidBi]IWB(tl> (2.3

where B{t)} = {B;j{t)} is a real Wiener process characterized by

expectation values
<< dBj(t) >>=0, <<dBj(t}dB;{t)>>=¥%; jdt (2.4)

We note that Eq.{2.3) describes a unitary evolution of the

state vector for any given realization of the stochastic

process Bj(t} {i.e, d<®p{t)|¥g{t)>=0 for any [®pit)>, [¥pit)>
as can be immedimstely seen using Ito calculus).

As one can easily check, if one defines
eltis<<¥g{t)>c¥glt)[>> {2.5)

one gets Eq. {(2.1) for ¢ from Eq.{2.3). It has to be remarked,
however, that if consideration 1is given to the random

variables
zgltlp=<¥plt) |Pg|¥g(t}> (2.6)

one sees that, when the Hamiltonian term in {2.3) is
disregarded, they satisfy the equation:

dzgit)p=0 (2.7)

For & Heisenberg reduction to take place, za(t}B must evolve
into zero or one. Equation {(2,7) proves that the dynamics is
not able to induce such reductions.

We consider now, following refs.(15,16), a different
stochastic equation for the state vector, in which the

coupling of the stochastic process with the operators Aj is

skew-hermitian:
d{¥g(t)>=| (~iH-(¥/2)E;A; 2)de+L;A{dB; | [¥g(t)> (2.8)

This equation does not describe a unitary evolution of the
statevector and, in particular, it does not preserve the norm.
Therefore it regquires a prescription to have a physical
meaning. As discussed in refs.{15,16), one gets a consistent
theory by considering the normalized state vector
I¥giti>/n|¥glti>H and assuming that the consjdered process
Bjit) ecccurs with a "cooked" probability density obtained by
weighting the original Wiener process probability by the
factlor M|WB(L)>H2. This is equivalent to «considering the

stochastic, norm conserving, nonlinear equation for the state



vector {which we will atill denote by [¥gl{t)>)
dl¥glt)>={[-iH-(7/2)T;(A;{-R;12]1dt+E;1A;-R{)dB;} I¥g(t)> (2.9a)
where

Ri=(TB(t)|hi|q"B‘t)) 12.9b)

Equation (2.9) was also obtained by Gisin!2?}, following a
different argument.

As shown in refs.(15,16), Eq.{2.8) or Eq.{(2.9) lead to
Eq.{(2.1) for the statistical operator. Moreover, when the
Hamiltonian term is disregarded, it gives rise to Btochastic
differential equations for the random variables zg5 defined in
Eg.(2.6), which imply that, for t-++e, z4 tends either to zero
or to one, the probability of the resuylt +1 being
<¥(0){Poi¥{0)>. Therefore, the dynamics (2.9) is such that, in
the long run, any given initial state is driven into one of
the eigenmanifolds associated to the operators Pg.
Consequently, the model yields Heisenberg reductions.

The theory introduced in refs.{15,16), i.e. CSL, is
obtained when consideration is given to & system of identical
particles, The set of operators Aj of Eq.(2.1) is identified
with the set N{x), x€R? where

o ]3/2qu e-% tq-x) 2

nix)= {55 a'(a) ata) (2.10)

In Eq. (2.10) the operators a(q},at(q) are the annihilation
and creation operators of a particle at q, so that N{x) has
the meaning of an average (over a volume of the order of
«-3/2) particle number density. In the case of a single
particle, choosing A=x¥(a/4m)3/2 - gand disregarding the

Hamiltonian term, Eq.{(2.1) becomes

x 2 2

dott 372 5 (a-x) -3 (a-x)
delt) x[;] ]ax e plL) e ae(t)  (2.11)

2.3 Stochastic Potential: Stratonovich Approach

We continue to examine the specialization of the operators
Aj to N{x}). Also, for a better understanding of the line we
will follow to get a relativiatic deneralization of dynamical
reduction models, we turn to the Stratonovich version of the
stochastic dynamics we have considered in the previous
subsection?., We will do this with reference only to the case
of a single particle, disregarding the standard Hamiltonian
term, i.e. to the dynamics described by Eq.(2.11})

In the case of von Neumann reductions, the Stratonovich

equation corresponding to Eg.{2.3) is, im the coordinate

representation:
awvlq.t)
i_ar"‘" = V(Qnt)q’V{Q|t) {2.12)
where
2
3/4 - (g-x)
Viq,t)= [—j,—‘] fax e ? Bix,t) (2.13)

Since B is a white noise, the stochastic potential Viq,t)

satisfies

I)z

o
-zla-4
S(t-t") (2.14)

<<¢V(g,t)>>=0, <<V{g,t)}V{q',t'I>>=le

Let us denote by T the time interval [tg,t]. For a given
stochastic potential V(q,T), 7€T, and a given initial state
|1¥{tg)>, the solution of Eq.(2.12) at time t is

10
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t
—iIdT Vig,T)
t

o

¥yla,t)= e ¥ig,tg} {2.15)

The presence of the stochastic potential implies that the
evolution generates a statistical ensemble. This ensemble is
the union of the pure states |¥y(t)> with appropriate weights

P(V}. This ensemble ig associated to the statistical operator

eltl=<< ¥yt ><¥ylt) [>>=TD[VIPIV]|¥ylt)><Pyit]) | (2.18)

with obvious meaning of the symbols.

The coordinate representation of Eq.(2.16) reads

t
i[dT[v(q'.T)-qu.f)l

14
ela,q’,th=<ce 0 >>e(q.9' ty) (2.17)
The expression at the r.h.s. is easily evaluated by using the
characteristic functional associuted with the mean value and

covariance defined by {2.14). We then get

-3 1L 2
~gla-q7)
‘X(t-toill-e
elg,q’,t)=e P(Q.Q'.tol {2.18}
which is the solution of Eq.{2.11) in the coordinate
representation.

Eq.{2.16) defines a map [P(t,tol from pure states to
statistical operators which has toc be extended linearly to the
set of trace class operators. This extension will be denoted
by L(t,ty). Note that, since the covariance in (2.14} depends
only on the difference t-t’', I{t,tg) is actually a function of
the difference t-tg.

Our description of the physics of the process tells us

that, given a pure state or an inhomogeneous ensemble at time

11

tg, it evolves into a definite ensemble at the time t'. We can
now consider the atatistical operator e{t'}) as describing an
initial situation, and we can follow its evolution from t' to
t>t'. The final situation will be described by

efty= E(t,t")[E(t",tplleftg)]} (2.19)

On the other hand, one can consider the preparation of
pltg) at time tg and its evelution up to t getting

e {t)=E(t, tglelty) (2.20)
We shall call the condition ¢ (tl=p(t), i.e.
D, " )D{t',tg)=Lit,ty) (2.21)

the "consistency requirement" for the evolution. In our case
since, as already remarked L{t,tp)=L{t-tg), condition (2.21)

amounts to
EtA))T{Ag)=E{81+Ag), ¥ Ap,470 t2.22)

which is automatically satisfied {2%) since eq.(2.1) is of the
Quantum Dynamical Semigroup type.

It is wseful to remark that, if one considers stochastic
evolution equations for the state vector of type (2.12) and
assumes that V(g,t) is A Gaussian noise with zero mean and
covariance Algq-q',t-t’'), then it can be easily proved (see
Appendix A) that the necessary and sufficient condition in
order that ({(2.21) be satisfied is that V(q,t} is white in
time.

The fact that the stochastic equation (2.12) does not
describe Heisenberg reduction procésses for the state vector
follows trivially by observing that, from Eq.{2.15), for any

given realization of the potential
I¥yiq,t)|2=|¥tq,Lgll? ¥ ot (2.23)

12



The suppression of the off-diagonal elements of the
statistical operator in the coordinate representation does not
correspond therefore to a localization of the particle but is
gsimply due to a randomization of the relative phases =at
different space points. This is a typical mechanism for von
Neumann reductions.

To describe Heisenberg reductions we then consider the

Stratonovich analogue of Eq.(2.8), i.e.
Bwvlq.tl
— - [V(q'tl-klvv(q,t) (2.24)

where Vig,t} is given by {2.13)., The counterterm -X in
Eq.(2.24) guarantees that the square norm average is
conserved. For a given stochaslic potential Vv(g,t}, the
solution of Eq.{2.24) is:

t
—A(t—c0)+]drv(q,r}

tg
¥olg.t)= e W(q.to) {2.25)

from which it is evident that the norm is not conserved in a
specific process., However, if we define, in complete analogy
to the previous case, ¢{t) by means of Eq.{2.16), with [¥y({t)>
satisfying (2.24), we get the same equation (2.11} for the
statislical operator. The solution {2.18} of this equation, as
already remarked, displays the suppression of the off-diagonal
elements in the coordinate representation.

Note that since the vectors [¥y(t)> given by (2.25) are

not of norm one, to give a physical meaning to the definition
(2.16), we are led to read it as

2 Ivv(t)> <vv(t}l
p(t)=Ip[v1p[vJuer¢ta>u T, (650 WIP, (T {2.26)
13

This amounts to assuming that the physically meaningful
probability distribution for the stcchastic potepntial is not
PV} but

FolVI=PIVIn|¥y(t)>n? {2.27)

where V=V{(q,t) is a sample function with support in the time
interval [tg,t]. Note that the passage from P[V] to PF (V]
correspends to the cooking of the stochastic preocess referred
to earlier. Through the appearance of W|¥,it}>n?, this makes
the evolution equation for the normalized state vector

nonlinear (see Eq.([2.9)).
2.4 The Cooked Probability Density

It is appropriate to discuss here in more detail, the
cooked probability density (2.27). We stress that, for a real
and positive functional Fr{V], defined over the sample
functions Vi(g,t} for an arbitrary time interval, to be
interpreted as & probability density, it has to satisfy two

fundamental requirements, firstly the completeness relation

FPIVIE [V]=1 {2.28)

and, secondly a compatibility property we are now going to
discuss. Let wus consider two contiguous time intervals
Ty=[tg.t'] and Tp=[t',t] and the sample functions Vj(q,T}) with
TETy, Vp{q,T} with Te€Ty and V(q,T) with TE€T{UT3, together with
their associated probability density functionals F[V{],
F [vyl and F(V]. An arbitrary sample function Viq,T) with
TET1UTz, can be identified with the two sample functions
vi{gq:T} and Vp{q,T) obtained by restricting the time support
of V(g,T) to Ty and Tg, respectively. The probability density
P [V] can then be written as P [V;,Vp). We can now express the

compatibility property through the equation
PV 1=IDIVa] P [V],V2] (2.29)

14
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Of course, the probability density functional P{V] induced by
white noise obeys Egs.(2.28), {2,29). We have now to check
that the coocked probability density Pg[V] defined by (2.27)
actually satisfies (2.28) and (2.29) too. Concerning (2.28) we
remark that the fact that it is satisfied

IPIVIPCIVI=IDIVIPIVIN|®y{t)>n2=1 (2.30)
follows from the property of Eq.(2.24) of conserving the

average of the square norm. Concerning (2.29) we consider a

given initial state {¥(tg)>. Then, by definition

FelVyl=PlVyTn|¥yp(t*)>n2 {2.31a)
and
Pc(V)=P{V]n|¥y(t)>n2 {2.31b)

Now, P{V]=P[V;]+ PIV3] due to the noise being white in time.
Moreover, from the linearity of the evolution equation we see
that

IWylt)>= [Wypit)> i [¥yqit’i>n {2.32)

where 1{%yp(t)> is the state that evolves, according to Vg,
from the normalized state |¥yji(t')>/#|¥y(t*)>n. We then have

ID(V3y]) Ptlvl,v2]=ID[v2]P{V1]P[v2]u|wv2(t))uznwvllt')>u2=
PIVyIu ¥y (L") n2fD[Va ] P[Va ]t {¥yolt)>n2 (2.33)

Since, according to Eq.{2.30), the integral in the last term
of (2.33) is equal to one, we have that the last term in
Eq.(2.33) is, according te {2.31a), equal to Po.[V1], so that
property (2.29) for P, is proved.

This result follows from a combined use of Lhe white noise

property of V(y,t} in time and the specific cooking

15
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prescription. In Appendix B we show that the choice of a
particular noise which is not white in time would, together
with our standard cooking prescription, lead te a P. which
does not satisfy (2.29).

Since, as already stated, Eq.{2.24) together with the
cooking prescription is the Stratonovich analogue of Eq.{2.8),

it leads to Heisenberg reductions.
2.5, Stochastic Galileian Invariance

To bring out some concepts which will be useful in Seclion
3, it is appropriate to consider the transformation and the
invariance properties of the dynamical reduction models
considered above.

Let wus start by 1limiting our considerations to the
evolution eguation for the statistical operator and let us
consider two observers 0O and O' related by a transformation of
the Galilei group, We take the s0 called passive point of view
according to which the two observers look at the same physical
situation. For simplicity, let us suppose that the
transformation connecting 0 and O' is a translation in space
of an amount a and a translation in Lime of an amount T, so
that

r’sr-a, t'=t-T {(2.34)

Let the observer O describe the physical situation at his
subjective time t by the statistical operator ¢(t). Observer
0', at the same objective time, i.e. at his subjective time
t'st-T, will describe the physical gituation by the

statistical operator
'L 1=vtarelt) vt (a) (2.35)
where Ual=expliP+*a]l is the usual unitary operator inducing

the space translation. The dynamical eguatien for the

statistical operator for observer 0' is then

16



“—L:i!t-f'—’- = via)-98LL) y(a) (2.36]

Substituting Eq.(2.1), describing the evolution of the
statistical operator for the observer 0, into the r.h.s. of
Eq.{2.36) one gRets:

1] L]
de ft ) . i vartmte), et 10" (a)
7 (2.37)
t Y 2 +
+7£iU{alAiP(tlAiU tu)-f g(al{!iAi PIL)IU ta),
If H is invariant under space and time translations
Htt ra(a ket vt a)=H{E) (2.38)
and if, moreover
E Utata; Utia)Xuia)a; U ta)sD a XAy {2.39)
for any bounded operator X, then Eg.(2.37) implies
de'!t'! = a4 * ’ ' 3 X 2 ' 3
o = cilhe ity DA et (ta -5 {T.a %0t t’))
{2.40)

i.e. the theory is invariant for space and time translations.
If the same holds for all tranaformations of the restricted
Galilei group we have invariance for the transformations of
this group. QMSL and CSL actually possess this invariance
property.

Nonetheleas, it is important te stress that there is =a
difference between equations of the type we are considering
and the usual c¢ase in which one has a purely Hamiltonian
evolution, with respect to the connection between invariance
and representations of the symmetry group. This key difference
arises from the fact that while in the standard case one can

always relate the statistical operators used by O and 0' to

17

describe the physical situation at the same subjective time t,
in the present case this cannot be done ip general, when one
considers negative values of T in Eq.(2.34). In fact, let us
suppose that O, at his own time t=0 is dealing with a physical
system described by a pure state e{0)=|¥><¥|. Since the
dynamical evolution transforms pure states into statistical
mixtures, there is no way for O to prepare a physical
situation at his own time T<0 described by a statistical
operator such that it evolves into the pure astate e{0) at t=0,
Corregspondingly, there is no way for O' to prepare at his own
time t'=0 a statistical operator such that its evolved state
at his time -T>0 is (¥><¥]|.

However, if the active point of view is taken and O', at
his time t'=0, prepares the same state @{0), and the above
stated invariance requirements are satisfied, then ¢ and 0O°
will observe the same dynamical evolution for the same
{subjective) initial gituation.

Coming now to the group theoretic point of view, since for
the above reasons the map :t from a pure state is not defined
for negative t, one has to c¢onsider the proper Galilei
semigroup G,, with only forward time translations{?®}, any
transformation g€G, can be expressed as a tranaformation of
the subgroup Gy eof G, which does not contain time
translations, times a forward time translation

286G, g=dr Rg (2.41)

The map on the Banach space of the trace class operators

g:0+0g, 0g=Ly[Ulgglettigg)] (2.42)

where Ulgg) is the usual unitary representation of &Gy and Iy
is such that, for T>0, Iye(t)=pl{t+T) is the solution of
Eq.{2.1}, is then easily checked to yield a representsation of
Gy .

Up to now we have discussed the invariance properties of

dynamical reduction models from the point of view of the
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statistical operator. However, since we are interested here in
the evolution equation for the state vector, it is appropriate
to discuss the problem of the invariance also at this level.
For simplicity, we will limit ourselves here to the discussion
of space translations.

Let us then sLart by considering the Stratonovich equation
{2.12). If we denote by O' an observer whose reference frame
is translated by an amount a with respect to the frame of O,

he will experience the potential
V'ig',t)=V(q'+a,t) (2.43)

sc that, for a particular realization of V, there is no

invariance.
However, s8ince we are dealing with a fundamentally
stochastic theory, the invariance requirement has to be

formulated in an appropriate way. We will say that the theory
is stochastically invariant under space translations if, for
all observers 0', translated by any a with respect to 0, the
stochastic ensemble of potentials is the same, This is
equivalent to requiring that, if V(g,t} is a poasible sample
function for 0, then Vig-a,t), for any a, is also a possible
sample function for him, having the =same probability of

occurrence of Vig,t), i.e.
PiVvigq,t)]=P(Vv(g-a,t)] (2.44)

Notelthat this is automatically guaranteed by the form {(2.14)
for the mean value and covariance function of the gaussian
noise.

In the case of the model based on Eq.(2.24) describing
Heisenberg reduction processes, a separate discussion is
needed, since the stochastic invariance requirement has to be
referred to the cooked probabilities which depend on the
initial state vector. Let us consider two observers Q0 and 0O’
and suppose they prepare the same {subjective) state [¥(0)> at

time t=0. The probability density of occurrence of the same
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(subjective}) potential V(q,t) is, for the two observers,

PO IVig,t))=P O'(v(g,t}} nlw,0' (¢)>n2
[2.45)
POVig, t)]=P O[vig,t)1u|¥yO(¢)>u2

Since (¥y®'> and (¥y0> are the solutions of Eq.(2.21) with the
same {(subjective} potential and satisfy the same initial
conditions, they coincide. Moreover, due to Eq.12.44)
P OI[V(q,t)]=P Olviq,t}], implying

PO’ (Vig, t11=Pc0(vig,t)} (2.46)

This guarantees the invariance from the active point of view,
i.e. the observers cannot, by making physical experiments in
their own frames, discover that they are displaced. They agree

on the statistical distributions of the future outcomes.
3. RELATIVISTIC, STOCHASTICALLY INVARIANT REDUCTION MODELS.

In trying to set up the framework for a relativistic
generalization of reduction modela we adopt the quantum field
theoretic point of view. We remark that the analogue of the
idea of considering, within a nonrelativistic framework, a
stochastic potential V(g,t) consists in assuming that the
Lagrangian density for fields contains a stochastic
interaction term. In the two following subsections we will
consider model theories which are analogues of the
nonrelativistic ones based on Eqs.(2.12) and {2.24),

respectively.
3.1 Quantum Field Theory with a Hermitian Stochastic Coupling

Let us consider, in the context of quantum field theory,

the Lagrangian density
Lix)=Lg{x)+Li{x}Vv{x) (3.1)
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where Ly and Ly are Lorentz scalar functiona of the fields
{for the moment we do not need to specify the fields we deal
with). We assume that Ly does not depend on the derivatives of
the fields, and that V{x) is a c-number stochastic process
which is a =scalar with respect to transformations of the
restricted Poincare' group, i.e. that wunder the change of

variables x'=Ax+b, it transforms according to
VI (x'")1=V[A"Y{x"'-}b)] (3.2)

We will also assume that V(x) ia a Gausmsian noise with mean
zero and, to det a relativistic stochaatically invariant

theory, that its covariance is an invariant function
CCVi{xIV(x')>= Alx-x"'} {3.3)

with AlA=1x)=A(x).

As diacussed in the previous section stochastic invariance
requires different observers to agree on the unfolding of
physical processes. This, in turn, is guaranteed by the
condition that the family of all sample functiona V(x) and the
probability density of occurrence of the same {(aubjective)
sanple function be the same for all observers. This is

achieved by requiring that, for a single observer
PiV(x)1=P[V{Aix+b}))] {3.4)

We stress that property (3.4) holds automatically if the
covariance is a relativistically invariant function. In fact,

from

1 -%Ildx dx' V{xJ;(x—x')V(x'l
P[V(x]]=ﬁ e {3.5})

(where we have denoted by A{x-x'} the function satisfying
Fdx"'Alx-x""JA(x'"'-x")=%(x-x')) one gets immediately, using
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the scalar nature of A and consequently of X, that
PIV(Alx+b))1=PLV{X)] (3.6)

The moat natural generalization of the case diacussed in
the previous section is obtained by amsuming that Vix) is a
white noise in all variables, i.e.

CCV{xIVIix')»>=A(x-x")=r6{x-x") {3.7)

It ie appropriate to make a brief digression on this
specific choice. Obviously one could consider a more genersal

Gaussgian proceas gatisfying (3.6). For example any function
v (x)=fdzu(z-x)V(g) (3.8)

where V{z)} satisfies (3.7} and w{A x)=w({x), would be equally
acceptable from the point of view of stochastic invariance.
However, if such a choice ias made, one can prove by arguments
aimilar te those of aection 2, that one cannot define in a
consistent way the statistical operator for the considered
process., Moreover, when one tries to pass to a formalism
vielding Heisenberg reductiona one would meet difficulties
with the compatibility requirement for the cooked probability
density (see the discussion in Appendices A and B). Let us
come back now to our general probleam.

We study, first of all, the physical consBequencea of the
stochaatic coupling Lp{x}V(x). In Schrodinger’s picture we

have, for a given V{(x), the evolution equation

dlwv(t)>
i = [y fax Lp(x,00Vx, 1) | 19,(5)> (3.9)

where Hg is the Hamiltonian corresponding to Lg. Eq.(3.9)
implies
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t

-iH0t+1IgTIdx Litx,0)V(x,T)

IWV(tJ>=T e 1¥{0)> {3.10)

This equation shows how, for a given initial state |¥(0)> one
gets an ensemble of states |¥ylt)> at time t, according to the
particular realization of the stochastic process. The
gtatistical ensemble can then be deacribed by the statistical
operator obtained by averaging over the sample functions (see
Eq.{2.5)). In the case under consideration one gets a closed
evolution equation for the.statisticel operator. In fact, we
observe that, due to the fact that Lj(x) does not depend on
the derivatives of the fields

[Lp(x,0}),L1{x",0)]=0 v¥x,x’ {3.11}

and due to the presence of the time ordering in (3.10), we
have

t+e
Plt+¢l=<<[1-iH0€+i dar Idx Lp{x,0)¥(x,T)~-
t

L4€ t+€E
-z Jar gr’ jdx]dx'LI(x.O}Lllx'.O)V(x.T)VIx’,T‘)].

(3.12})
tte
|wvct)><wv(t)|.[1+1H0c-ifdr de LI(x.O)le.T)-
t
t+€  t+€
%Idf JdT’Idedx' LI(x.Olbltx'.O)V(x.T)V(x'.T')]>>
t t .

We recall now the propertieas associated with a zero mean
gaussian probability distribution

CCV{xp,ty)ee Vixg, ty)>2=0 for n odd
(3.13)
CVIX It d e VIxpaty)2>=0,]]) pajprg<<Vix;  tiIVIx;,t)>>
............<<V(xk.tle(x1,t1})) for n even
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From (3.12) we then have

dete) _
ELE) -~y ett) )4 [ax L (x,0)p(t) L (x,0)

—% ”dxzf(x.o). e(t)) (3.14)

Note that the obtained equation is of the Lindblad type and
this fact by itself guaranteea that the map L[; defined by
e(t)=Cipl0) satiafiems Eq. (2.22}.

The nonhamiltonian terms in Eq.(3.14) imply a suppression
of the off-diagonal elements of the statistical operator in
the basis of the common eigenstates of the commuting operators
L1(x,0). Putting

Lp(x,0) | .ovoooo=vix) b Vo a2 {3.15)

one geta, when the Hamiltonian term in (3.14) is disregarded

el%jdx(vtx)-v' (x)1?

<LV delt)]ouv s < Vel letod .ol

{3.16)

As in the nonrelativistic case, however, for a single
realization of the atochastic potential V(x,t), the atate
vector is net driven into one of the eigenmanifolds
characterized by a given V(x), aince [<...V...I¥y(t)>]2? does
not change with time., These considerations point out that, in
order to have Heisenberg reductions, one has to resort to a
skew-hermitian coupling with the noise.

Equation {3.14) for the statistical operator 1is not
manifestly covariant, even though, from the procedure which
has been followed to derive it, we know that the theory is
stochastically invariant. To obtain a manifestly covariant
description of the statiatical operator evolution, we note
that the model presented above is obviously equivalent to the

following acheme:
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i.- ABsume that the fields are sclutions of the Heisenberg
equations obtained in the standard way from the Lagrangian
density Lg(x) (note that we do not regquire Lp(x) to describe
free fields)

ii.~ Assume that the evolution of the state vector is governed
by the Tomonaga-Schwinger equation

.GIVV(0)>

i—gotxr = " LI(x]V|xI ITV{U}> {3.17)

Liix) being a function of the fields considered in i) which
does not involve their derivativea. Aas a consequence of the
assumptions about Lp(x), for any two points x,x'€0, ¢ being a
space~-like surface, ([Ly{x),Ly{x')}]}=0, and consequently Eq.
{3.17) is integrable.

Let us conaider the formal solution of Eq. {3.17):

o
iIdx L (x}V(x)
%0

¥, {a)>=T e |v(ob)> {3.18)
Pefining
elo)=<<|Py{a)><¥y(c) |>> (3.19)

using ta.1a), and following the procedure outlined in
Egs.(3.12) to (3.14) we get the Tomonaga-Schwinger eguation
for the statistical operator

Bplo

- 2 z
sotx) = Lixie(@ L (x)-3 { Li"(x),e(9)} {3.20)

which is wanifestly covariant.
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3.2 Quantum Field Theory with Heisenberg Reductions.

In this subsection we present a stochastically invariaot
theory yielding Heisenberg reductiona. To this purpose we keep
assumption i) of the previous subsection and we replace ii) by
the requirement that |¥{c)> instead of being governed by
Eq.{3.17), obeys the following equation of the
Tomonaga-Schwinger type

el¥ (o)
st * LoV -an 211wy (e (3.21)

The main difference between the two equations (3.17) and
{3.21) derives from the skew-hermitian character of the
coupling to the stochastic c-number field. At the r.h.s. of
(3.21) a term guaranteeing the conservation of the average
value of the square norm of the state appears. It is important
to remark that Eq.(3.21), for a given sample potential, does
not conserve the norm of the state vector,

Let [¥y(c)> be the solution of Eq.(3.21) for a given
realization of the stochastic potential

“ 2
Idx [LI{x)v(x)-lLI {(x)]
%

IWV(0)> =Te |¥(UO)> (3.22)

and let us define the stochastic average

elT)= << |¥y(a)><Py(a)|>> (3.23)

Following the same procedure of the previous subsection one
sees that ¢{o) »till satisfies Eq.{3.20) derived in the
Hermitian case,

As in the nonrelativistic case we have then two
conceptually different dynamical evolutions for the satate
vector, i1.e, 13.17) and (3.21), which give rise to the same
dynamics for the statistical operater and therefore to the

same physical predictiona at the ensemble level. The very
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definition (3.23) of the statistical operator, when confronted
with the fact that the equation for the state vector does not
preserve the norm, implies the adoption of the point of view
that a cooking procedure, analogous to the one discussed in
section 2.4, is necessary. This means that one has to consider
normalized vectors |¥y(o)>/u|¥y{0)>} and has te attribute to
the considered realization V{x) of the stochastic potential,
having support in the space-time region lying between the two
space-like hypersurfaces ©Og and o, not the probability
density P[Vix)] given by (3.5), but a cooked probability
density Po[V{x}] given by

Polvix)})=PIVix)]n|¥y(o)>n? (3,24)

In the above equation |¥y(9)> is the solution of Eq.(3.21)
satiafying

I¥yleg)>={¥g>. (3.25)

Before discussing the cooking procedure, the role of the
counterterm and the relativistic invariance of the theory, an
important remark is necessary. As we have discussed in section
2.5, at the level of the atatistical operator the map L{ does
not exist when t<0. For this reason, even at the state vector
level, we will only consider Eq.(3.21) as yielding the
evolution from the state vector associated to a given
space-like surface Oy to space-like surfaces lying entirely in
the future of oy,

For what concerns the properties of the cooking procedure
one can immediately see that Eq.(3.20} preserves the trace of
P which amounts to the statement that Eq.{3.21) preserves the
average of the square norm of the state vector. In particular

this implies
TDIV] PclVI=SDIVIPIV]InI¥y(o)>niz] {3.26)
which shows that the requirement {2.28} on the cooked
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probability density is satiafied. One can also easily prove,
by the same procedure we have followed in the nonrelativistic
case, that the cooked probability density satisfies the
compatibility condition.

3.2.1 Transformation Properties and Invariance of the Theory

We discuss now the transformation properties of the theory
for a given realization of the stochastic potential, in going
from a given reference frame O to another one 0' related to it

by a transformation of the restricted Poincare' group
(A,b): x+x'=zAx+b {3.27)

We remind the reader that in the Tomonaga—Schwinger
formalism of conventional quantum field theory each reference
frame O ia able to asaign a statevector to each space-like
hypersurface. Our first concern is to demonstrate that the
consistency of the composition law for Lorentz transformations
remains intact in the present use of the Tomonaga—-Schwinger
formalism.

Suppose that the transformation (3.27) involves a boost
and consider a given space~like surface o for 0. The surface
which is subjectively the same for O' ‘involves points which
lie in the paat of the surface o for ¢, Our previous
discussion has pointed out that we will only use the
Tomonaga-Schwinger equation to go from a given space-like
surface @ to surfaces lying entirely in the future of o,
Therefore, contrary to the standard case we are not allowed to
raise here the following question: which state vector [¥'{c)>
would O' agsociate to his subjective surface @ to degcribe the
same physical slituation described by O who assigns the state
vector |¥(o)> to his subjective surface ¢ 7

We can, however, legitimately consider subjective surfaces
o~' for 0', such that they lie in the future of the surface @
for 0. Suppose the observer O associates the state vector

I¥3(%)> to his subjective surface O to describe the physical
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situation, Let us denote by @  the surface of O which is
objectively the eame as the above—mentioned surface 0"’ for
0'. Then O associatea to ¢ the state [¥3(9%})> obtained by
solving Eg.(3.21) with the initial condition that it reduces

to |¥ylo)> on 0. We have

{¥olo™ ) >=8y (0~ ,0) [¥g(o)>/usy(c™,0) |¥g(o)>n (3.28)

with

o oy 2
fax (e t0vin-re2oxn
s (0 ,0)=T e’ (3.29)

Then the observer O' will associate to his surface o' the

stalte vector

[P (o™ " )>=U(A,b) [P (0™ )>={A,b)Sy (07 ,0) [¥g(0)> /NSy (07,0} [¥p(a)>0

{(3.30)

In Eq.{3.30), UfA,b) is the unijtary operator Whose
infinitesimal generatore PH and JHY are obtained in the
standard way from the Lagrangian density Lg{x)}. Let now o, oV,

-~

o be three space-like surfaces for O each lying entirely in
the future of the previous ones. Let us congider two other
observers ©O' and 0O'' related by two successive Lorentz
transformations (the generalization to Poincare’
transformations is straighforward): 0'=A;0, 0'’'=A50', and let

us denote by o', o', o*™? and o', o~'', o

-~y

the above
surfaces as seen by O' and 0'', respectively,

The map (3.29), for a given realization of the stochastic
potential, has the following property. Suppose 0 assignes the
state {¥g{o)> to the surface &, Then 0’ assigns the state
{3.30) to the surface ¢~', For Q' this state evolves according
to the Tomonaga-Schwinger equation (3.21) with

V' (x')=v{A;"!x')} from 07" to O
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{vou(o“')>=s'vn(a"',u")|vou(a“')>/us'vjla*",o")|w0‘|a“')>u

. {3.31)
The observer ©0'' will describe the final wsituation by
assigning the state vector

g (o™ o=U(Ag) |¥gi (0™ " )> (3.32}

toc the surface o%'', On the other hand, one can consider the
evolution from o to o°° as seen from O

{¥oa™ 128, (07", 0) [¥o () > /1Sy (™" ,0) [¥gio) >N {3.33)
and then look at it from 0O''=zAgA10, getting the atate
I¥g1 1 ¥ (8™ )>=UlAgA ) |¥g{0™ " ) (3.34)

For conaiatency [¥gri¥(o™=1")s must coincide with
|¥g+ (™~ )>. This can be eagily proved to hold.

Although we have just seen that the theory implies an
assignment of a statevector to a hypersurface by any observer
that fulfills the Lorentz (alsoc Poincare') group requirements,
this does not mean that the description ia Lorentz invariant,
In fact, because a particular realization of the stochastic
potential V looks different from two different reference
frames, the map Sy(o",0) obviocusly depends upon the reference
frame O. This shows that, at the individual level the theory
doea not poseas the property of standard (i.e. nonstochastic}
Lorentz invariance. However, for stochastic Lorentz lnvariance
one must consider the enasemble of pogaible sample potentials,
When one tekea into account the Lorence invariance of the
requirement (3.3) for the correlation function <<V{x)Vix')>>,
and the invariance of the cooking procedure that must be
performed to get the physice of the problem, one can easily
prove, along the same lines as in the nonrelativistic case,
that there is stochastic invarjance in the state vector

langunge, i.e, the stochastic ensemble of evolution operators

Sy{o™,0) is the same in each reference frame.
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In the language of the statistical operator, invariance is
evident from the manifestly covariant Tomonaga-Schwinger form

{3.20) of the evolution equation.
3.2.2, Reduction Properties

Once we have guaranteed the invariance of the formalism by
using its Tomonaga-~Schwinger formulation, in order to discuss
specific features of the process, we can consider t= const
hyperplanes in the Schrodinger picture. In 8o doing, the

equation corresponding to (3.21) is

div (t)> 2
—ar =[*1H0+IdXILI{x.O)V(x.tl-)LI (x.O]]]le(t)> (3.35)

This is a Stratonovich egquation for the state vector. By
standard procedures one can conaider the corresponding Ito

stochastic dynamical equation

di¥ytt)>={[~iHg-(2/2) faxL12(x,0) )dt+SdxLy{x,0)av(x)] [¥y(t)>
{3.36}

where dV(x) is a real Wiener process satiafying
<<dVix)>»>=0, <<aAVi{x}dV{y)>>=r8{x-y}dt {3,37)

Note that both Eq.{3.35) and (3.36) do not conserve the norm
of the state vector but they conserve the average of its
squared norm.

Ag discussed in Subsection 2.2 one can take twe equivalent
attitudes to describe the physics of the process. One can
solve Eq.{3.35) or (3.36) for a given initial condition, and
then one can consider the normalized vectors ¥yt /ul¥, (L)>u
at time t and assume that the probability of their occurrence
is obtained by cooking the probability density of occurrence
of Vix), i.e. by mutiplying it times 0|Pyiti>n?,

Alternatively, one can consider the nonlinear stochastic

K3 |

. T

dynamical equation

dl¥ylt)>={[-iHg=(2/2) fdx {(Lp{x,0)-<Lp(x,0}>)%]dt+
JAx{L1({x,0)-<Lp{x,0}>)dVix)}|¥y{t)> (3.38)

{where <Ly(x,0)>=<¥y(t)|Ly(x,0)|¥y{t)>),without cooking, i.e.
using just the probability weighting of V(x).

As shown in refs.{15-18), when one disregards the
Hamiltonian term in (3.38), the evolution leads the state
vector to enter one of the common eigenmanifolds of the
commuting operators Ly{x,0}. The theory induces therefore

Heisenberg reductions, as required.
3.3, The Model

In this Subsection we will consider some specific choices
for the Lagrangian densities Ly and Ly which, when used in
connection with the formalism presented in Subsection 3.2,
yield stochastically invariant relativistic reduction models.
The goal is to build up a framework leading to localization in
position of the basic constituents of all matter.

The simpleat and most immediate idea would be to intraduce
a fermion field for particles of mass M and to choose for the

lagrangian density the expressions

Lo(x)=¥x) (ivHa,-m% ), L (x)=T(x)¥(x) (3.39)

However, in the nonrelativistic limit, the dynamics induced by
the above choice, would lead to infinitely gharp position
localizations for the fermions, and this, as well known{13},
is unacceptable.

We have then to enrich the formalism. This can be done by
following the proposal put forward in ref.{17). One considers
s fermion field coupled to & real scalar meson field and

chooses
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Lyix)=5 [auo:x)a”wxn-nzoztx)]ﬁm[ir“au-u]v(mni?txmxmxl

{3.40}
LI(x)=0{x}

The introduction of the meson field coupled to the fermion
field allows one to overcome the difficulty of the infinitely
sharp localization for fermions met by the previous model. In
Schrodinger representation the evolution equation for the
state vector corresponding to the cholce {3.40) is

dl¥ (t)> ,
—g— = [-tHg+[dziorz,00vie, )20 (s, 000] 19y (t)> (3041

Let us consider now the nonrelativistic infinite mass
limit for fermions, and let us confine our discussion to the
sector containing one fermion { note that in the limit the
fermion number is a conserved quantity). The satate of a

fermion at position q is the "dressed” state
1e>=at(q)4(q) 10> (3.42)

where a*(q) is the creation operator for a fermion at q and
Atq)l0>=|nq> is & coherent atate which can be characterized as
either the common eigenstate of the annihilation operators of
physical mesons with eigenvalue gero or as the common
eigenstate of the annihilation operators b(k) of bare mesons
with momentum k, with eigenvalues (n/JZ)exp[—ikq]/(2ﬂkg]3/2.

To be rigorous, in the three dimensional case, one should
introduce an ultraviolet cut-off on the momentum of mesons in
the interaction term to aveid ultraviolet aingularities. In
the limit in which the cut-off ia removed, the meson atates
lmq>. lmq-> tend to become orthogonal for q # q'. In this way,
due to the coupling of the fermion field to the meson field,
the "position" of one fermion turns out to be strictly
correlated to atates of the meson field which are
approximately orthogonal.

We note that the mean value of ¢(gz,0}) in the satate Imq>
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turns out to be

-nlz-ql

<nq|°(z.0)lmq>=f(z-Q)=-%ﬁsT;:;T-““ (3.43)

In what follews, in order to illustrate the locslization
properties of the model for physical fermions, we make a gross
simplification, i.e. we treat the states Imq> as eigenstates
of &(z,0) pertaining to the eigenvalue f({z-g). Let us then
consider the physical state for one fermion

I¥(t)y>=Sdg¥{q,t) |1q> {3.44)

By substituting (3.44) into Eq.{3.41) and disregarding the
standard Hamiltonian Hg, we get the eguation for ¥i(q,t):

awv(q.t)
at

2
fast(z-a)vie, 1w (e )0 wyta,t) (3.45)

i.e.

2

g (q:,t) - by
e = V (a, )% la,t) - —gra ¥yla,t) (3.46)

at

with V'{(q,t} a Gaussian noise with zero mean and covariance

~ - 2
<<V {q,t)V (q’,t'l>>=s:: e ™18 lgpey ) {3.47)

Equation (3.46) is essentially the same as Eq.(2.24) of CSL
for the case of a single particle. If one considers the sector
with N fermiona, in the above approximationa, one gets an
equation of the CSL type (see Egsa.(2.8) and (2.10)) with the
operator

D)o emlzxl 3.48)
x)=-2= [de T @ (2lale) (3.
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taking the place of N{x) and (>n2)/m* taking the place of ¥.
Thus it appears reasonable that the model {(3.40) posesses
the desired localizing features. However it also presents a
serious difficulty. The evolution equation (3.14) for the
statistical operator, specialized to the Lagrangian (3.40Q), is

delt) . -i[HO.P(t)]*lIdz°(Z;OJP(t10(2.01-%”dz02(z.0).(Pgt;l)

Let us consider the Hamiltonian H for the free meson field; by
using (3.49) one can evaluate the increase per unit time of
the mean value of H, getting

-2 [dz <[®(g,0),(®(x,0),H]]> {3.50)

d<H>»
dt

7 [az s (3.51)

Therefore, the increase per unit time and per unit volume of
the mean value of the enerdy of the meson field, turns out to
be infinite. So, im addition to the desjdered reduction
behaviour, the model displays an undesidered additional
behaviour: because the white noise source is locally coupled
to the meson field, it copiously produces mesons out of the
vacuum. We note that the now outlined difficulty does not show
up in the nonrelativistic approximation of the model discussed
above (Eqs. {3,45} to (3.48)) due to the gross simplification
of treating the states Img> as elgensatates of ®iz,0).

Aa stated in the introduction the attempt we have made
here to get rid, at the relativistic level, of first clasas
difficulties of quantum mechanics, has increased the second
class difficulties {i.e. the divergences) which affect quantum
field theories, We note, if one considers the lattice version
of the model we have presented here, that the increase per

unit time of the mean value of the energy per unit volume then
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turng out to be finite and obviously depends on the lattice

spacing and on the parameters of the model.
4, LOCAL AND NONLOCAL FEATURES.

As is well known, the quantum theory of measurement, in
addition to the difficulties discussed in the introduction
which constitute the main motivation for the consideration of
dynamical reduction models, presents some further difficulties
arising specifically from the assumed instantaneous nature of
Lhe collapse of the wave function.

In particular,at the Iindividual level of description,
nonlocal features as well as odd aspects {from the
relativistic point of view) emerge. Such problems have already
been extenaively discussed in the literature{27-20) i, the
case of standard quantum mechanics. It is interesting to look
at them from the perspective of relativistic dynamical

reduction models.
4.1. Quantum Theory with the Reduction Postulate.
4.1.1 Objective Properties of Individual Systems.

Suppose one accepta it as meaningful, within standard
guantum theory, to consider an individual level of description
with the possibility of attributing objective properties to a
quantum system. Then a natural attitude corresponding to the
one first introduced in the celebrated EPR paper!(?%) is to
agsume the following. If an individual physical system S5 is
associated to a definite state vector j¥> which ia an
eigenstate of an observable A pertaining to the eigenvalue a,
then one can state that "S§ has the property a" or that "there
exists an element of physical reality" . We remark that if we
denote by P, the projection operator on the closed linear
manifold of the eigenstates of A belonging to the eigenvalue

a, then
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W[y l¥>=1 (4.1

We want to stress, however, that even within non
relativiatic atandard gquantum mechanics, one is compelled to
take the attitude of attribuling objective properties to a
system even when condition {({4.1) is valid only to an extremely
high degree of accuracy. To clarify this statement, we can
think e.g. of the spin measurement of a spin 1/2 particle by a
Stern-Gerlach apparatus. In such a case, the two spin values
are gtrictly correlated to two states Wl and 92 describing the
spatial degrees of freedom, Even though these wave functions
are appreciably different from zero in two diastant regions,
their supports cannot have a void intersection. As a
consequence even an absolutely precise measurement of the
position cannot reduce the state vector exactly to an
eigenstate of the spin component. The final state unavoidably
exhibits an (extremely slight) entanglement of position with
spin variableg sand as such cannot be an eigenstate of a spin
aperator.

Incidentally we remark that the above considerations are
even more appropriate in the case of dynamical reduction
modela. In fact, on the one hand, such models, with the
reguirement that they tnduce Heisenberg reductions, are
introduced Jjust with the purpose of implying, at the
individual level, the emergence of objective properties for
macroscopic objects (in particular the property of being in
one place rather than in another). Correspondingly, they imply
the emergence of objective properties alsc for microscopic
systems, at least when they interact with macraoscopic
measuring like devices. On the other hand, as is well known
and has been rcpestedly stressed in refs.{(16,17), within
dynamical reduction models, the unavoidable persistence of the
tails, the tiny but non zero terms corresponding to the terms
of a linear superposition which have been suppressed by the
spontaneous Jlocalization process, prevents us from assertinhg
with absolute certainity that the "macroscopic pointers" are

in a definite space region.
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The conclusion 1is that if one whishes to attribute
objective properties to individual systems one has to accept
that such an attribution ie legitimate even when the mean
value of the projection operator on the eigenmanifold
associated to the eigenvalue corresponding te the attributed
property is not exactly equal to 1, but is extremely close to
it.

4,1.2. Nonlocality.

Nonlocal features® of quantum mechanics arise from the

fact that, due to the instantanecous nature of the collapse of'

the wave function, possible actions performed in a certain
space region can, wunder specific circumstances, induce
immediate changes in distant regicons, In this connection two
important questions arise:; first, do these changes correapond
to scome modifications of the physical situation in the distant
region ? Secondly, are these modifications detectable, so that
one can take advantage of them to send faster~-than-light
signals 7

In order for the above questions to have an unambiguous
meaning, it is necessary to specify at which level of
description of physical processes one is raising them, In
particular it is important to make a clear disctinction
between the ensemble and the individual levels of
description.

To understend the above mituation one can make reference
either to the well known EPR-Bohm type set-up for an
"entangled” state of a composite aystem S=S1+53, the
components being far apart and hnon-interacting, or to the
position mcasurement of a particle whose state is the linear
superposition of two distant packets. In the first case, as is
well known, at the level of the individual members of the
ensemble, the far away system {let us say S3) is (32) “gteered
or piloted into one or the other type of state"” according to
the measurement which is performed on §; and the apecific

result which is obtained. In the second case, let us write
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Yix,t)=¥;{x,t)+¥a(x,t), ¥{(x,t} and ¥six,t) being appreciably
different from zero only in two far apart regions o and og,
respectively. Then, a measurement aimed to test whether the

particle is in ®; and yielding, e.g., the anawer "no" {"yes"),

instantaneously collapses Pix,t) to Yolx,t) (¥plx,t)),
Correspondingly the quantity JSfgpdxl¥(x,t}|? (i.e. " the mean
value"* of the projection operator on region o), changes from

1/2 to either 1 or 0 according to the outcome of the positicon
measurement at «y. This puts into evidence how, if interpreted
as a theory describing individual systems, quantum mechanics
exhibits nonlocal features.

The situation is quite different when looked at from the
ensemble point of view., In fact, as is well known (??}) pno
measurement procedure in a given region can change the
statistical distribution of prospective measurement results in
a distant region.

These remarks, although made in the context of ordinary
quantum theory with a reduction postulate, are not essentially
modified (i.e. the word "instantaneously” must be changed to
"rapidly”) in the case of the CSL theory with its reduction
dynamics.

4.1.3. Relativistic Oddities with Observations,

In the above analysis we have discussed a measurement
process in a given reference frame O. The consideration of the
instantaneous change of the atate vector induced by a
measurement raises interesting questions when looked at by
different observers, Since the distance between the two space
regions o) and «3 mentioned above can be arbitrarily large,
even the passage to a reference frame which is moving with
respect to O with an arbitrarily small velocity can change the
time order of simultaneous (for 0) events occurring in the tweo
regions.

To illustrate briefly the main points of the problem we
consider the observer O lcoking at a system of one particle in

the state ¥{x,t)=¥j(x,t)+¥5(x,t} which is a superposition of
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two well localized wave packets propagating in opposite

directions with respect to the origin x=0. Disregarding the

extension and the spreading of the wave packets we can

represent the situation by the space~time diagram of Fig.l, in

which the two world lines 1 and 2 are associated to ¥; and %3,

respectively. Suppose that, at the space time point C=(x1,t1)

there is a device designed to test whether the particle is
there or not, and let us suppose that, In the specific

individual case we are considering, the result of the test is

"yes". This is a covariant statement on which all observers

Blxy.t) C{1 )

Fig.1 : World lines of two well-localized wave packets 1 and
2, belonging to a single particle which is detected at

event C.

must agree. If one adopts the wave packet reduction postulate
of standard guantum theory and one assumes that the collapse
occurs for each reference frame along the hyperplane-t'=const.
where t' i3 the subjective time of the event € for such a
frame, one meets a puzzling situation. Let us in fact consider
an objective point B on world line 2, which is space-like
separated from C and which is labelled by (xp,tz) {seec Fig.l}.
Accarding to 0, tg<ty and, by the above assumption, no
reduction has occurred at time t; and the state vector is
¥(x,tz). If one considers the projection operator Pz on the
space region around xp, one has <¥|Pgi¥> = 1/2. Accordingly we
could say that the situation is such that, at time tz, O
cannot attribute to the particle the "property" of being or

not being in the region around xjp.

However, there exists an observer 0' such that tp'>t;’,
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where ts’ and ty’' are the time labels attributed by 0' to the
events B and C, respectively., For O0O' the particle has
triggered the detector in C at ty'. Therefore at ts' the state
of the system is ¥). Then, for O', the mean value of the
projection operator Py at ty' is zero % Observer Q' can then
state that the particle has the property of "not being around
B". Thua, O and 0' do not agree on a statement referring to a
local property at an objective apace-time point,

It is useful to note that this ambiguity occurs only for
the points of the world line 2 which are spacelike with
respect to C; for a point B in the past of C all observers
agree in stating that the particle has no definite local
property while for a peint B in the future of C all observers
agree in saying that the particle "is not around B".

The above discussion follows essentially the one given in
ref.(28). The consideration of these kinds of difficulties
have led various authoras to take different attitudes.
Bloch{2®} and Aharonov and Albert{?0} derive from this the
concluaion that one cannot attach an objective meaning to wave
functions for individual systems. Hellwig and Kraus{Z9) have
tried to solve the ambiguity about the wave function at a
given objective space time point by requiring that the
collapse of the state vector due to the measurement at C takes
place on the surface which delimits the past light cone
originating from C, Thus, at points outside the past light
cone the statevector is reduced, while at points inside the
past light cone the statevector is unreduced. This is a
covariant statement and leads the authors to the
identification of & unique state vector to be asgsocjiated to
any given aspace-time point. However, such a prescription
impliea that there are space—like surfaces {those crossing the
past cone of C) to which it is not possible to associate a
definite state vector. This, as nicely illustrated by Aharonov
and Albert{3o}, forbids the conaideration of nonlocal
observables on these hypersurfacea; for example it does not
allow one to speak consistently of the total charge of the

system. Moreover, the assumption that the reduction occurs on
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the hypersurface delimiting the past 1light cone raises
conceptual difficulties with the cause-effect relation: in
certain reference frames the cause would seem to occur later

than the effect
4,2 Relativistic Reduction Models

We discuss here the local and nonlocal features of
reduction models in the relativiastic case. In order to
investigate whether the dynamics presented in Section 3.2
induces nonlocal effects we make reference to the procedure
outlined in ref.{34), 1.e. we consider whether a modification
of the Lagrangian density in a space-time region C, can have
effects in & region B which is space-like separated from it
{this will be discussed in Subsections 4.2.1. and 4.2.2). In
particular, since we want to study the possibility of nonlocal
effects due to the reducing character of the dynamics, we will
take into account medifications of the Lagrangian density Ly

coupled to the noise.
The problems which we want to diascuss require the

conesideration of "local obaervables". By this expression we
mean the integral of a function of the interaction picture

fields and their derivatives:
AI(dl=Idx'f¢(x')F[°I(x'),auol(x')] (4.2}

with fol{x) a function of class C”™ with a compact support « on
the space-like surface o, The physically interesating
quantities, for our analysis, are the mean values* of such
local observables. As usual it is necessary to make precise
the level at which the nonlocality problem is discussed. We
will consider it, as before, both at the ensemble and at the
individual level.

At this last level, we will discuas alse questions
analogous to those considered in Sect. 4.1.3 which arose when
one looked from a relativistiec point of view at the wave

packet reduction postulate. In the present context, they
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emerge naturally from the relativistic dynamics described by
the Tomonaga-Schwinger equation. In particular, it turns out
that, for all Tomonaga-~Schwinger saurfaces coinciding on «,
the mean value of the loca]l observable depends upon the
specific Tomonaga~Schwinger surface on which it is evaluated
{see Subsection 4.2.3). This is not the case with the
Tomonaga-Schwinger description of an ordinary relativistic
quantum field theory, and it gives rise to interesting
questions about the possibility of attributing objective
properties to the systems which we will discuss in Subsection
4.2.4.

4.2.1, Ensemble Level

As already emphanized, at the ensemble level, the
statistical operator and therefore the physics of the two
models considered in Sect.3 coincide. Thus, to investigate
properties referring to the statistical ensemble, one can make
reference to the atochastic dynamics with hermitian coupling,
which can be easily handled by familiar methods,

With reference to the mocdel of Sect. 3.1, we consider the
mean value of a local observable Aj({o)

<Ap(o)>=Tri{arp(oiey{a)} {4.3)
Let us denote by [4(0,05) the evolution operator

c
i[adx LI(x)V(x)

_ 0
UV{o.col- T e {4.4)

and by Apylo)=UTy(o,0p)A1(0)4{o,03) the observable in the
Heisenbery plcture which corresponds to Ap(O) for the
realization V of the stochastic potential. Let Ag(9) be the

stochastic average over V of Agyld):

Ag(o)=FDIVI PIV]Agy (o) (4.5)
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We then have
cag{o)>= Tr {agle)elggl} (4.6)

The support of Aj(9) defines a partition of space-time into
three regions: the future, the past, and the set of points
which are space-like separated from all points belonging to

this support. {see Fig.2).

futura

—

Fig.2 : The support of the local observable A;{¢), and the set
of points 3 bearing a space-like relation to this support.

We choose now a space-time region C entirely contained in
region 3 and we consider a modification of the Lagrangian
density Lyix) coupled to the noise, We replace Ly{x) with a
new density LI'(x)=LI(x)+ALI(x), with aly(x) different from
zero only for x€C.. If Agy~ (O} denotes the local observable in
the Helisenberg picture, when we replace Ly(x) with [Er™(x), we
have

o +
i[g§ALI(¢Hv{x))V(x)

- 0
{o)=]|Te AHVIG) Te

o
1faxar (o, (x))Vix)

o

0

A
HY (4.7)
The fields ®yy(x) which appear in aly(x) are the fields in
Heisenberg picture for the original Lagrangian density
Lo(x)+L1{x)V(x). The appearence of ALp(x) actually restricts
the integration in the exponential to the space-like region C,

which is space-like separated with respect to the support of
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Agy(o). It follows that the exponential commutes with Agyl(9o),

and therefore
AHV~{°)=AHv(U) {4.8)

for any given realization of the stochastic potential. One
then has

Ay (a)=Aglo) {4.9)

i.e., due to Eq.(4.6), at the level of the statistical
ensemble any modification of Ly(x) in a space-time region C
cannot cause physical changes in regions which are space-like
separated from it. We stress that this conclusion is true for
the case of nonhermitian coupling as well as for the case of
hermitian coupling, even though the argument was carried out
in terms of the hermitian coupling alone, as it depends solely
upon the statiatical operator which 18 identical for both
couplings.

4.2.2. Individual Level

From the result (4.8) of the previous Section it is also
evident that, in the case of an hermitian coupling,{ i.e. for
{3.17}} a wvariation of the Lagrangian density Ly{x} in a
region C has no effect on the mean value of any local
observable with support spacelike separated from C, even at
the level of an individual system( i.e., for any realization
of the stochastic potential). This property is related to the
fact that, in this case, no Heisenberg reduction takes place.

The situation js quite different in the case of a
non-hermitian coupling. In fact, let us consider Eq.(3.21) and
the operator Sy(o,T5) given by (3.29). The mean value of a
local observable Ap(o) is then
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<¢v(o)|AI(c$|WVlci>
2

<AI(U)>= {4.10)

ulvv(o)>u
+
—cviuoi|SV(U,UO)AI(G}SV(0,00)|v(ool)

2
ﬂSth.GolIWIGD)>N

We now replace in (3.21) Lp(x) by Li(x)+alLy(x), ALyi{x) being
different from zero only for x€C, and we denote by stic.oo)
the corresponding evolution operator. The mean value <AIAtc)>
of the same local observable, for the game initial condition,

igs now
at A
e VS, (0,0 A (T15 (0,0 }|¥ (T }>
<al(e)>= 0 v 8LV 2° o (4.11)
usvlo,ooj|0{aul>u
Note that in general
<ApBia)rfcapion (4.12)

in spite of the fact that [aLy(x), Ay(c)]=0, ¥x,

4.2.3 Mean Values of Local Observebles and Oddities in
Relativistic Reduction Models.

Let us consider a physical system satisfying the initial
condition [¥{op)>=|¥3> on the space-like surface Tg, the local
observable A and two arbitrary epace-like surfaces ¥; and 0Oy

coinciding on the support =« of A {3ee Fig.3).

E

»

Fig.3 : The space-like surfaces ©; and @p coinciding on the

support « of local observable A.
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When the dynamics {3.17) due to a hermitian interaction is
considered, for any given realization of the stochastic
potential, as is well known, the mean value of A in the state
I#y(o1)> coincides with the one in the state |¥y{op)>. There
follows, at the individual level for the case of the hermitian
coupling and, as & consequence, at the ensemble level for both
cases of hermitian and skew-hermitian coupling,that the mean
value of a local observable does not depend on the particular
space-like surface which one chooses among all those
coinciding on its support. This shows that also in the case of
dynamical reduction models, at least at the ensemble level,
one can consistently define, as in standard quantum field

theory, local observables.

Again, the situation at the individual level is gquite
different in the skew-hermitian case. In fact, for a given

realization of the stochastic potential one has

t
<vv(02)|A|wv(cz)> ) <vV(all|sV(a2.cllASV(oz.allIvv(cll>
2 2

(4.13)

"IWVI02)>" nsv(oz,01]|vvlcl)>n

which, in general, ia different from
<vv(01]|Aiwv(all>/n|wv{al)>u2 even though the space-time
region spanned in tilting o7 into O3 is space~like separated

from the support « of A, and, consequently
[A,Sylog,01)]=20 (4.14)

This dependence, at the individual level, of the mean value of
a local observable upon the space-like surface (among those
coinciding on the support) over which it is evaluated, is not
per se a difficulty of the theory. It becomes however a
difficulty if one wishes to claim that such a mean value

corresponds to an objective property of an jindividual system.

47

Before facin# this problem {see next Subsection), a deeper
analvsis of the implications of relativistic reduction models
for microscopic (case al below! and macroscopic (case bl}

systems is necessary.
case al.

Let us start by reconsidering the case in Subsect. 4.1.3,
of a microscopic svstem coupled to a macroscepic one which
acts as a "measuring apparatus” in the sense of dvnamical
reduction models. Let Ay and Ao be two local ohservables of
the microsystem whose supports « and &3 are space~like
separated , and suppose the macroscopic svstem is devised to
measure Ai. For our purposes we can ignore the hamilteonian
evolution for the cperators and we consider the
Tomonaga-Schwinger evolution equation of the state vectoer, for

a specific realization of the stochastic potential

El¥(a)>
ST L iy _gtasntxvin-a fio 11w (4.15)

Here Ly.glx} [describing the local system-apparatus
interaction]) and Ljf{x} may be taken as different from zero

only in a space-time region C which is space-like with respect
to x3 {see Fig.4).

Fig.4 : A macroscopic apparatus measures local observable Aq
in space-time region C. Ay's support &) is space-like
separated with respect to «2, the support of another local

observable Aj.

48



Let us assume that the local observables A; and A2 have a
purely point gpectrum with eigenvalues 0 and 1, and let us
consider the initial atate

[¥(og)>=(1/72)0 |¥12+1¥2> ) x> {4.186)
with
Api¥;>=8;51¥;>5 1,4=1,2 (4.17)

le> being the untriggered apparatus state, Let us furthermore
assume that the particular realization of the stochastic
potential V{(x) is one of those "yielding the result 1! for the
measurement of Ay". The situation is then the following:

i. The state associated to Oy and ¢y is |¥{oy}>

ii. The state associated to Oz is (N being a normalization

factor)
o
2 2
fax iz, _gtxrrr v 2ix)
<
1#(0,)>= F e ! I¥(og)> (4.18)

which, wunder the assumptions which have been made, is
approximately an eigenatate of Ap pertaining to the eigenvalue

Zero.
iii, The state associated to ;" is alse (¥{g}>,

Indeed, the relativistic CSL dynamics considered in Sect.3.3
is such that, when a space-like hypersurface crosses the
region C towards the future, no matter what is the behaviour
in regions far apart from C, the state vector associated to
this hypersurface collapses to the eigenstate of Ay

corresponding to the eigenvalue which has been found.
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Looking at the problem from the point of view of the
evolution from O3 to @3 one could be tempted to say that,
since the mean value of Ap has become practically zero as a
consequence of the "measurement” in the space time region C,
an element of physical reality associated with A has emerged.
This is a nonlocal effect of the type of those occurring in an
EPR set up.

However, one must realize that the same change of the mean
value of A2 occurs when one considers the Tomonaga-Schwinger
evolution frem ©; to 0,7, in accordance with iii. This gives
rise to an ambiguity in the mean value of Az, i.e. in =a
quantity that, when the support «p shrinks to zero, refers to
a unique objective space-time point. This is not surprising;
it corresponds Bimply to the emergence, within the
relativiatic reducing dynamics, of the aspects discussed in
Subsect.4.1.3 for the standard quantum theory with a reduction
postulate, In fact, one can remark that @7 can be
approximately identified with a t'sconst hyperplane for a
boosted observer for which the interaction with the
macro-object has already taken place®,

case b).

Let wug discuss now the same problem for macroscopic
systems. We consider a situation analogous to the previous cne

but in which there are two macroscopic Bsystems performing
measurements of the observables Ay} and A3. The initial
condition is given by assigning to the surface Oy the state

[¥(op)>=(1//2}[ [¥1>+1¥2>] [ xy> Ixg> {(4.19)

where |Xy> and |Xg> refer to the untriggered apparatuses. The
evolution equation, with the usual approximation, is now
El#ic)> 2Ly _(x) 41, (X1 Ly (VXD 4Ly, (x)V(x)-

Eo(x}

e 2 ni-an 2 ixy 11ecen> (4.20)
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with obvious meaning of the symbols. To clearly define the
situation from the physical point of yiew we assume that the
time which is necessary in order that the microsystem triggers
the apparatus is sensibly shorter than the typical reduction
time for the apparatus. This means that in the above equation
we can consider Lj_gix) and Lp.gix) to be different from
zero only in the regions Cy and Bj, respectively, and Lypix}
and Ly2{x} in the regions Co and Bp, respectively, as shown in

Fig.5.
=f‘|l
L
I,/,/j::::ﬁa
A CO NN
.hl
& _— & "
ay ™ e
Fig.5 : Measurements take place in C; and Bj, followed by

reduction dynamics in C; and Bz, of local observables Ay
and Ap, respectively.

Let us also assume that the specific realization of the
stochastic potential is one leading to the value 1 for Ay, We
are interested in discussing the states of the macrosystem
used to measure Ay and the mean values of its obgervables on
various hypersurfaces. In particular, let Ap” be the
observable of the apparatus corresponding to the yes-no
experiment asking whether the result 0 has heen found in a
measurement of Ap. We consider a t=const hypersurface o(t) and
also the bent hypersurfaces ¢ {t) containing the spatial
suppert of As™ at time t [see Fig.5}. The situation can now be

summarized as follows:

1. For t<tg the state assocliated to any surface O(t) or o (t}

has always the form of a factorized state; one of the factors
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refers to the apparatus 2 and is Ix2>. Note that what changes
in going from o(t) to  ov{t) ia the state of the

system+apparatus 1.
it. For t=t] Lhe state associated to ¢(ty} is
1900t 1))>=(1//2) [ 1¥> Ixg 15 %004 1950 [ X O I xp 1> (4.21)

with the obvious meaning that the superscripts identify the
states of the macroscopic apparatuses which have been
triggered by the interaction with the microsystem, these
states being labelled by the eigenvalues which have been
found,

From (4.21) one sees that the state |¥{o(t1})> is not a
factorized state and as a consequence it cannot be an
eigenstate of any observable of apparatus 2. In particular the
mean value of A~ in the state (4,21} is 1/2.

However, it 1s important to remark that the state to be
associated to the surface o"(t;) drawn in Fig.5 is, for the
particular realization of the stochastic potential

(W(o™(ry))>=|¥1> 1% 2> [xp9> (4.22)
This state is factorized and it i{s an eigenatate of A",

iii. The state to be associated with any surface a{t) and
o”{t) when t>ty, 1is once more a factorized state with the
factor |x2°> for the apparatus 2,

The conclusion is that, even though the dependence of the
mean value of a local observable upon the space-like surface
in which it is evaluated is present also in the case of
macro-objects, this dependence occurs only for a time interval
of the order of the one which is necessary for the reduction
to take place,
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1.2.4. Objective Properties of Micro and Macroscopic Systems.

We started this section by relating the possibility of
attributing objective properties to Individual systems to
requirement {4.1) being satisfied to an extremely high degree
of accuracy. In the relativistic case, however, as shown with
great detail in the previous Subsection, the mean value of a
projection operator associated to a local observable is
affected by an ambiguity depending on the space-like surface
used to evaluate it, and, under specific circumstances, by
changing the surface its - value can vary from e.¥. 1/2 to
almost exactly 1. This shows that the above definition of
objective properties for individual systems is inadequate, and
must be made more precise,

We think that the appropriate attitude is the following:
when considering a local observable A on its associated
support we say that an individual system has the objective
property a,l a being an eigenvalue of A}, only when the mean
value of P, is extremely close to one, when evaluated on all
space-like hypersurfaces containing the support of A.

Thus, according to this prescription, one cennot attribute
an objective property to an individual system when there is
an appreciable dependence of the mean value of the local
observable upon the surface used to evaluate it.

Let us analyze the implications of this attitude in the

cases of microscopic and macroscopic systems. For a
microgsystem, with reference to case a) of the previous
subsection, we obzerve that no objective property

corresponding to a local observable can emerde as a
consequence of a "measurement process" performed in a region

which is space-like separated from the support of the

considered observable. Thisz does not mean that microsystems
cannot acquire objective local properties as a consequence of
a measurement performed in another space-time region; in fact,
with reference to the discuszion in a} and to an EPR-Bohm-like
set-up one can remark that if one considers the spin component

of particle 2, when the particle is in the future of the
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redion in which the spin of particle I has been measured, then
one can attribute to particle 2 the obgective local property
of having its spin "up" or “"down".

We wish to emphasize again that the discussion under b}
has shown that the impossibility of associating local
properties to macrosystems lastz anly for & time interval of
the order of that which is necessary for the "spontaneous
dvnamical reduction" to take place. In fact, before the

macroapparatus 2 interacts with the microsvstem the state of
the apparatus is obviously well defined and corresponds to the

untriggered state, independently of the considered surface.
After the reduction ensuing from the interaction of the
microsystem with it, apparatus 2 ia again in a well defined
gtate, corresponding to the result which it has registered.
Moreover this result is "correctly" correlated to the result
registered by apparatus 1 7,

in conclusion, the dynamical reduction model presented in
this work, together with the prescription for the attribution
of objective properties to physical systems proposed in this
Subsection, allows one to overcome the difficulties discussed
in Subsection 4.1.3. The theory assigns a state vector to any
space~like hypersurface and the dependence, at the individual
level, of the mean value of a local observable upon the
specific space-like surface used to evaluate it, does not
constitute & difficulty. It simply requires a8 precise and
appropriate criterion for relating the objective properties of
a physical system to the mean values of local observables: in
particular, this criterion permits the attribution of
objective local properties to macro-objects, at the individual
level. In a sense, the above analysis should have proven once
more that dynamical reduction models meet the requirement put
forward by J.S.Belll?) for an exact and serious formulation of
quantum mechanics, i.e. that it should "allow electrons to
enjoy the cloudiness of waves, while allewing tables and
chairs, and ourselves, and black marks on photographs, to be
rather definetely in one place rather than another, and to be

"

described in classical terms.'
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APPENDIX A.
In this Appendix we show that the consistency condition

[2.21) for the sgtatistical
satisfied if, and onlv if, the random fluctuations have a

operator evolution will be
white noise time behaviocur.

Let us denote by A{q,t;q’,t')=algq-q’,t-t’) the covariance
positive definite and
(Al(g,t;q',t"1=Alq*,t';a,t)) function. Eq, {2.17) defines, when

function which is a symmetric
the covariance function Alg,t;q’',t') ls used to evaluate the

stochastic average appearing in it, the coordinate
representation of the operator IL{t,tp)el(tp). One then sees
that, for the consistency requirement {2.21) to be satisfied,

the following equality must hold:

t t
[dr]dr'[2A(o.r-r')-Acq-q'.f-r'J-Atq'-q.T-f')l=
t t

6 o

tl tl

JdTIdT'[2Al0.T~T'J-Atq-q'.T-T'I-AIQ'-Q.T-T')]+ (A1}
Yo s

t (t

[dTJdT'[ZAto.T—T')—A(q-q’.T-T'!-A(q'-q,r-r’)]

.t.' t.,

for any tg<t'<t and arbitrary fixed q and q’.

If the noise is white in time, i.e.

Alg-q',t-t')=B(gq-q')18{t-t") (A.2)

one immediately checks that (A.1) is satisfied.

We prove now the necessity. To this purpocse we assume that
Alq,t;q’',t'} instead of being of form {A.2} is a continuous
function of its t=t'+e€ with ¢

arguments, We consider
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arbitrarily small. Condition {A.1} implies:

! t'+e t'+€ t!
Jdedr' e(r-T* )4 {ar fdr'ftv-r'1=o {A. 31
t t! L’ t
[+] o
for any t', where
FLT-T")}=2A00,T-T'V-Alg-q' ,T-T')-Alg'-q,T-T"), th.4%

Due to the fact that f(T} is a continuous and even function,
tA.3) implies, to the firat order in «:

t‘
[ar ter-tryz0, wver {A.5)
te
With the change of variables z=T-t', (A.5) becomes
0
jdz £1z)=0 , Wt'>t (A.8)
t_-t! o
o]

Since fi{z) is a continuous function, (A.6) implies f{z})=0.
Suppose one evalutes the integral [Jdxdx'Af{x,x'}F({x}F(x'},

(q,t),

factorized function F{x)=hiq)g(t]) with Jdqh{g)l=0. Then the

where x 18 a shorthand for choosing for Fix) a

vanishing of f{z) implies, by (A.4)

Jdxdx'Alx,x" YF(x)F{x'}=Sdqhiq)} fdq'h(q’') fdTfdoA{0,T-a)g(T)g({c) =0
tA. 7}

We see that the 1l.h.s. of (A.7) can vanish for functions F{x])

which do not vanish almost everywhere. This is absurd since it

contradicts the hypothesis that A{x,x') be positive definite.

APPENDIX B.

In this Appendix we show that the compatibility property

(2.29t for the cooked probability density can only be
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gatisfied if the random fluctuations have a white noise time
behaviour.
Let us consider the stochastic equation for the state

vector analogous to (2.24]

v, fa,t)

3T = V(q.tl*vlq.t) {B.1)

In Eq.(B.1), V{q,t) is a Gaussian noise with zero mean and
covariance function Alg-q’,t-t'}) which, instead of being of
form (A.2), is supposed to be a continuous function of its
arguments.

For a given initial condition Tv~(q.tol=W(q,tul, let us

consider the state vectors

- —git-t )
¥ tla, t)=¥,lq,t)e {B.2)

In {B.2} g(t-tgy) is a "counterterm” which has to be chosen in
such a way that the average of the square norm of the state

vectors ¥y(q,t) be conserved:

t t
glt-t )= JdT jdr'A(o.r~r') (B.3)
t t
o [+]

Note that when Af{q-q’,t-t'} has the form (A.2}, then g{t-tg)
reduces to (t-ty)B{0), as it must.

As usual, we consider the normalized state vectors
¥yt nl¥y{e)>n and the cooked probability density
FelVl=PlV]n|¥y(t)>n2, where P[V] is the probability density
associated to the Gaussian noise with zero mean and covariance
Alg~-q',t=v"}, As a conseguence, the equation for the
statistical operator turns out to coincide with the one which
one would obtain in the hermitian case with the same
expectation values for the gaussian noise.

According to (B.1) and {B.2), the square modulus of ¥yiq,t}
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t
zjdrvtq,rl-2g{t-tol

to

(¥ (a,t11%= e 1%(q,0)12 (B.4)

With reference to the discussion followindg Eq.(2.28) we have,
for the cooked probability density FglV] = Pplvy,Va):

t .t -
—%[dTIddIqudEV(q,T’A{q-E,T-GlVlE.Ul
- - i R
1 2 o "o
PC[V]=ﬁ-dQ|V(Q.OlI e

t -~
2fdrvia,m)-2g(t-t )

t
.e ° = (B.5)

—%JSTISOIqudEW(q,T,;.tl;[q-ﬁ.T-G)Wtﬁ.U.;.ti

) 5 ~ 2 e "o
ﬂdqlwq.ml e

In Eq, (B.5), we have denoted by A" the inverse of the

covariance function A and by %Wigq,7,q9”,t) the function:

~ t ~
w(q|Tert,=v(Q|T)‘ZIdn A(gq-q,T-n) (B.6)

to

Using (B.5) one can easily evaluate Pp~[Vy1=0plva]lPelvy,vyl,
getting:

Poiv )= G Jaatvia,0n?

(B.7)
vogs

t .t ~ ~ -~
—-zl-fd'rj.dd'[[dqdﬁwtq, T.q.t)qu-g.T'U)Wl E'Q|q| t)
t. ot

1]
e
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For the compatibility requirement (2.29) to be satisfied,
P,"[V{])=P.[V1} must hold for any ¥(q,0}), where FclV)] is given
by {B.7) with the variable t' replacing t in the argumcnts of

the functions W appearing there. This implies

t? - t -~ -~
ldGA(q-q,T-G):jddA(q-q,T-a] Y q,q; ¥ to(T(t’(t {n.s)
t
© o

Equation (B.8), together with the assumption that
Alg-q',t-t’) is & continuous function, implies Af{g-q',t-t'isg,

which is absurd.
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FOOTNOQTES

We notle that H.P. Stapp adds to the terms "Heisenberg

reductions” and "von Neumann reductions”, when he is using
them in our sense, the specification "objective", Since in

this paper we limit our considerations to models which
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represent an actual modification of quantum mechanics, we
have suppressed, for brevity this specification.

See also the treatment of ref.{24),

For an exhaustive discussion the reader is referred to the
excellent boock hy M. Redhead (31).

We are using the common phrase "mean value" to represent
diagonal matrix elements like (4.1}, even though the
statistical connotation of this phrase has no meaning in
our discussien.

Obviously, to be rigorous, both the statement that the
state is ¥y or ¥, as well the consideration of the
projection operators Pjand Pp are not correcl hecause one |
should consider a relativistic description of the system
and of the observables, However, since 0' is moving with a
very small welocity v<<c with respect to 0O, the above
approximations are appropriate.

The bending of the surface at the left of oy shown in
Fig.4 is allowed since, under the assumptions we have
made, Lyj(x}=0 in that region

Perhaps it is worth noticing that it would be possible to
give another covariant prescription for the attribution of
objective local properties to physical systems. More
precisely one could, for any local observable A, consider
the mean value of the projection operator Py on one of A’'s
eigenmanifolds evaluated for the state vector associated
to the surface which delimits the future light cone of the
support of A. Then, If this mean value is extremely close
to 1, one asserts that the system has the objective
property a. This is quite different from the previously
considered criterion [i.e. that the mean value be
extremely close to one on all hypersurfaces containing the
support of A) and would, in case al of the previous
subsection, lead te the assignment of the objective
property corresponding to the value zero for the
observable A to the microsvstem, contrary to what would
occur by the adoption of the previous criterion.

This attitude would correspond to the following
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particular interpretation, at the relativistic level, of
the EPR criterion for elements of physical reality: "if
there exists at least one observer who can predict, almost
lin the above specified sensel with certminly and without
disturbing a system in any way, the value of a physical
quantity, then there exists an element of physical reality
corresponding to that quantity”.

We do not want to enter here into a detailed
discussion of the conceptual implications involved in
adopting the above prescription., We will analyze them in
a forthcoming paper. We believe that thev lead to some
conceptual difficulties in connection with the
cause-effect relation. This is not surprising since the
considered prescription is analogous, in the present
context, to the Hellwig-Kraus{2%) postulate about wave
packet reduction. For these reasons we drop the criterion

considered in this footnote.
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