JAERI-M 90-017

日本原子力研究所 Japan Atomic Energy Research Institute

1

JAERI-Mレポートは、日本原子力研究所が不定期に公刊している研究報告書です。 入手の間合わせは、日本原子力研究所技術情報部情報資料課(〒319-11茨城県那珂郡東 海村)あて、お申しこしください。なお、このほかに財団法人原子力弘済会資料センター (〒319-11 茨城県那珂郡東海村日本原子力研究所内)で複写による実質頒布をおこなって おります。

JAERI-M reports are issued irregularly.

Inquiries about availability of the reports should be addressed to Information Division Department of Technical Information, Japan Atomic Energy Research Institute, Tokaimura, Naka-gun, Ibaraki-ken 319-11, Japan.

©Japan	Atomic	Energy	Research Institute, 1990
榀	集兼発行	H	本原子力研究所
ED	吊	1 12	ばらき印刷㈱

JAERI-M 90-017

燃料体スタック実証試験部(T_i)多チャンネル試験結果・1 (不均一発熱試験結果)

日本原子力研究所東海研究所高温工学部 日野竜太郎・高瀬和之・丸山 創^{*}・宮本喜晟

(1990年1月24日受理)

高温工学試験研究炉の炉心熱流力設計および安全性の評価に寄与するため、大型ヘリウムガス ループ(HENDEL)の燃料体スタッフ実証試験部(T₁)では、模擬燃料体カラム模型「多チャン ネル試験装置」を用いて、ヘリウムガスを750℃まで加熱する中温試験を行った。

本報は、模擬燃料体カラムに装荷した12本の模擬燃料棒の発熱量を不均一にした場合と、傾 斜状に変化させて実機燃料体カラム内の発熱分布を模擬した場合の中温試験結果についてまとめ たものである。本試験により、極端な発熱分布及び実機相当の発熱分布における流量配分特性、 黒鉛ブロック内温度分布特性等が明らかとなった。

1

Experimental Test Results of Multi-channel Test Rig of T₁ Test Section

II. Nonuniform Power Distribution Test

Ryutaro HINO, Kazuyuki TAKASE, Soh MARUYAMA⁺ and Yoshiaki MIYAMOTO

Department of High Temperature Engineering Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received January 24, 1990)

Nonuniform power distribution test was performed with the multichannel test rig of the fuel stack test section (T_1) in order to contribute the licensing of the JAERI's High-Temperature Engineering Test Reactor (HTTR). In the test, helium gas was heated up to 750°C under asymmetric and slantwise power distributions realized by changing input electric powers of 12 simulated fuel rods respectively.

Experimental results showed that the distribution of helium gas flow rate was influenced by the temperature distortion in the mock-up fuel stack. Calculated results with the numerical thermal analysis code indicated that the temperature distortion in the fuel stack was flattened by the thermal conduction in the graphite block.

Keywords: HTTR, Helium Gas, Power Distribution, Flow Rate, Fuel Stack, Temperature Distortion, Numerical Analysis, Graphite Block

+ Department of HTTR Project, Oarai Research Establishment

Ï

目

1. まえ	えがき	1
2. 試頻	後装置	3
2.1	試験装置の概要	3
2.2	試験計装	4
3. adh	☆テータの 整理 力法及び試験条件 ─────────────────────	11
3.1	試験データの整理方法	11
3. 2	試験条件	12
4. 試馴	资結果 ······	18
4.1	不平衡出力試験結果	18
4.	1.1 流量配分	18
4.	1.2 温度分布	19
4.2	傾斜出力試驗結果	19
4.3	数值解析結果	20
5. 結	畜	45
謝 辞		45
参考文	鈬	46
付録1	ヘリウムガス物性値	47
付録 2	黒鉛等の物性値	48
付録 3	T _{1-M} 用中温 試験 用 漠擬燃料棒の各部寸法	49
付録4	T _{1-M} 用黒鉛ブロックの燃料孔内径	55
付録5	流路圧力損失の評価方法	56

Contrast of the second s

ł

Contents

1. Introduction	1
2. Experimental apparatus	3
2.1 Outline of experimental apparatus	3
2.2 Experimental instrumentation	4
3. Data arrangement and test conditions	11
3.1 Data arrangement	11
3.2 Test conditions	12
4. Experimental results	18
4.1 Asymmetric power distribution test	18
4.1.1 Flow rate distribution	18
4.1.2 Temperature distribution	19
4.2 Slant power distribution test	19
4.3 Numerical analysis	20
5. Conclusion	45
Acknowledgement	45
References	46
Appendix 1 Properties of helium gas	47
Appendix 2 Properties of graphite and so on	48
Appendix 3 Dimensions of simulated fuel rods for T _{1-M} test	49
Appendix 4 Dimensions of fuel channels in graphite blocks	
of T _{1-M}	55
Appendix 5 Fressure loss estimation in test section	56

1

١

.

•

1. まえがき

日本原子力研究所(原研)では、ヘリウムガスを冷却材とする高温ガス炉(Very High Temperature Gas-cooled <u>Reactor</u>; VHTR)の技術的基盤の確立とその高度化を目的として 高温工学試験研究炉(<u>High Temperature Engineering Test Reactor</u>; HTTR)の開発 を進めている¹⁾現在の炉心設計は圧力 4 MPaのヘリウムガスを 950 ℃まで昇温させることを目 標としており、設計及び安全性の評価のために高温高圧条件下での炉心燃料体の高温性能、健全 性等の実証データが必要とされている。

そこで,原研の大型ヘリウムガスループ「大型構造機器実証試験ループ(<u>Helium Engineer-ing Demonstration Loop</u>; HENDEL)」 に燃料体スタック実証試験部(T_l)を設置し, HTTRの運転条件と同じ高温高圧条件のもとで燃料体の伝熱流動特性を実証する試験を進めて きた。

T₁ 試験部は,燃料冷却チャンネル1本を模擬した1チャンネル試験装置と燃料体1カラムを 模擬した多チャンネル試験装置から構成されている。1チャンネル試験装置は,燃料冷却チャン ネルの伝熱流動特性の詳細な試験,制御棒駆動装置の性能試験等を目的とし、多チャンネル試験 装置は燃料体カラムの伝熱流動特性を調べることを目的としている。ここで,燃料体1カラムは, 六角柱の黒鉛ブロック内に燃料棒を装荷した燃料ブロックを積み重ね,その上下に黒鉛製の可動 反射体ブロックを設置したものをいう。Fig. 1.1 に燃料体の概要を示す。燃料棒は黒鉛ブロック に開けられた燃料孔に装荷され,冷却材であるヘリウムガスは燃料孔と燃料棒の隙間を下降しな がら加熱される。燃料冷却チャンネルとは,燃料孔と燃料棒から構成される環状流路をいう。

多チャンネル試験装置では、実機と同じ材質の六角柱状の黒鉛ブロックに12個の燃料孔を設け、それぞれに電気発熱方式の模擬燃料棒を挿入している。したがって、12本の燃料冷却チャンネルが並列に設置された連成系であり、その伝熱流動特性についてはほとんど不明である。そこで、基礎的な伝熱流動特性を把握するために、当初、12本の模擬燃料棒出力を均一にしてへりウムガスを約750℃まで加熱する中温試験を実施し、黒鉛ブロック内温度分布、流量配分、熱伝達率等を調べた^{2),3)}。

その後、連成系としての特性をより詳細に把握するために、12本の模擬燃料棒のうちの1本 の発熱量を変化させた場合(不平衡出力試験)と、黒鉛ブロック平径方向に12本の模擬燃料棒 の発熱量を傾斜させた場合(傾斜出力試験)について試験を実施し、模擬燃料棒の表面温度分布、 黒鉛ブロック内温度分布、流量配分を調べた。このときの試験部出口へリウムガス温度は約750 ℃で、中温試験条件である。なお、本試験で得られたデータ及び結果は、HTTRの安全審査用 データ及び資料として使用されている。HTTR用解析コードの検証に用いられた例については、 文献〔4〕に詳細が報告されている。

本報では、多チャンネル試験装置の概要と試験計装、試験データの整理方法と試験条件、並びに中温試験結果について記述する。

Fig 1.1 Fuel element of HTTR

2. 試 験 装 置

2.1 試験装置の概要

T₁ 試験部は、燃料冷印チャンネル1本を模擬した1チャンネル試験装置(T_{1-S})と燃料体1 カラムを模擬した多チャンネル試験装置(T_{1-M})から構成されており、既設の M₁ ループから所 定の圧力、温度、流量のヘリウムガスの供給を受ける。Fig. 2.1 に T₁ 試験部の系統を示す。ガ ス循環機 B₁ より送り出されたヘリウムガスは加熱器 H₁ で所定の温度に調整された後、流量計 を経て1チャンネル試験装置と多チャンネル試験装置に流入する。流入したヘリウムガスは、そ れぞれの装置に装荷された模擬燃料棒により約750 ℃まで加熱された後、内蔵冷却器と冷却器 C₁ で冷却され、混合タンク MT₁、フィルター F₁を経て再び循環機 B₁に戻る。T₁試験部の詳細は 文献〔5〕に報告されている。

多チャンネル試験装置の概要を Fig. 2.2 に示す。多チャンネル試験装置は、模擬燃料体カラム の試験体を中心に内蔵冷却器等を圧力容器内に収納した構造で、圧力容器の上部より所定の温度、 圧力、流量でヘリウムガスが流入し、内蔵冷却器を経て流出する。模擬燃料体カラムは、炉心燃 料体1カラムを実寸規模で模擬したものであり、模擬燃料棒と黒鉛ブロックで構成される。

黒鉛ブロックは、高さ570 mm,面間距離299 mmの六角柱状をしており、鉛直方向に11段 積み重ねた構造である。このうち、上方から3~9段目までが模擬燃料棒によって加熱される燃 料体領域、残りの1、2段目と10、11段目は非加熱の上部・下部可動反射体領域を模擬してい る。本報では、燃料体領域の黒鉛ブロックを燃料ブロックと呼ぶ。上部・下部可動反射体及び燃 料ブロックには、直径53 mmの冷却材流路が12個設けられており、それぞれの流路に外径46 mmの模擬燃料棒②が挿入されている。なお、燃料ブロックの冷却材流路は燃料孔とも称する。 約260℃のヘリウムガスは、内径53 mmの燃料孔と外径46 mmの模擬燃料棒との隙間の環状流 路③(燃料冷却チャンネル)を下降しながら約750℃まで加熱される。

黒鉛ブロックの外周には、インコロイ 800 製のサポートブロック⑤を介して補償ヒータブロッ ク⑥が設置されている。補償ヒータブロックは、コージーライト製の断熱ブロックにカンタルヒ ータを組み込んだもので、燃料体のガードヒータとして機能する。模擬燃料体カラムの下方には、 1000 ℃程度のヘリウムガスを 200 ℃以下に冷却できる内蔵冷却器⑦が設置されている。なお、 模擬燃料棒には流路の保持等のためにスペーサ・リブ④が取り付けられており、燃料冷却チャン ネルは突起付きの環状流路である。

使用した模擬燃料棒の構造をFig. 2.3 に示す。模擬燃料棒は、外径 31.6 mmのシースヒータに、 外径 46 mm, 全長 570 mmの黒鉛スリーブを合計 7 本差し込み,接続した構造である。シースヒ ータは、インコネル 600 製シースの内部に、有効発熱長 530 mm のニクロム 5 製発熱体を中間電 極を介して 7 段連結した構造である。発熱体の周囲には、窒化ホウ素(BN)を充てんして、電 気絶縁性を保持している。模擬燃料棒各段(サブロッド)の長さは、黒鉛ブロックの高さと同じ 570 mm である。発熱体は、模擬燃料棒の上部・下部電極からの交流直接通電により発熱する。 模擬燃料棒の軸方向の発熱分布ははぽ一様である。黒鉛スリーブは、実機燃料棒スリーブとほぼ 同じ材質の黒鉛を用い、その表面には軸方向と周方向にそれぞれ3ケ所ずつスペーサ・リブを取 り付けて実機の形状を模擬している。 12本の模擬燃料棒の出力は、それぞれ単独に0~100kW の範囲で変化させることができる。

2.2 試験計装

多チャンネル試験装置における試験計測点の概要をFig.2.4 に、計測項目とその点数をTable 2.1 にそれそれ示す。模擬燃料体表面温度は、各投のサフロッドの黒鉛スリーブ上端から 410 mm の位置に取り付けた K型シース熱電対 (¢ 1.6 mm)により測定される。熱電対は、黒鉛スリ ーブ内面に掘られた溝に沿って導かれ、計測点近傍で黒鉛スリーブを貫通し、表面に掘られた溝 に導かれる。熱電対の先端は表面に埋め込まれた金属製のピンに溶接固定されている。上記の計 測点の位置は温接点の位置である。模擬燃料棒の上部電極リード棒には各燃料冷却チャンネルの 入口ガス温度を計測するための K型シース熱電対 (¢ 1.6 mm)が取り付けられている。

燃料ブロックの温度はFig. 2.5 に示すように、ブロックの上端より 285 mm 下方の外面上のA 点及び B点, さらに上端より 410 mm 下方の断面内の C点に設置した K型シース熱電対 (\$ 3.2 mm) で測定される。とくに、2 段目の燃料ブロックについては D~H点を追加し、中心角 30° の断面内温度分布を測定できるようにしている。

また、燃料ブロック下部の下部可動反射体の12個の燃料冷却チャンネルにはピトー管とK型 シース熱電対(\$\phi 3.2 mm)が設置され、それぞれの流路を流れるヘリウムガス流量と出口ガス温 度が計測される。そのほか、試験体入口・出口に設けられた導圧管により、入口・出口圧力と試 験部全体の圧力損失が計測される。

Table 2.1	List	of	measuring	items
-----------	------	----	-----------	-------

	ltem	Number
	Helium gas temperature (1) Inlet temperature (Upper plenum) (2) Channel inlet temperature (3) Channel outlet temperature (4) Outlet temperature (Bottom plenum)	1 12 12 1
Temperature	Surface temperature of simulated fuel rod	84 (7X12)
	Fuel block temperature (Surface)	18
	n (Internal)	12
	Temperature of compensation heater block	18
	Static pressure at inlet of test region	1
Pressure	Static pressure at outlet of test region	1
	Differential pressure between inlet and outlet of test region	1
Flow rate	Total flow rate	1
	Hellum gas velocity at channel outlet	12
lnput power	Electric power of simulated fuel rod	12

Ŧ

.

.

. .

Fig.2.1 Flowsheet of M₁ loop and T₁ test section

- 6 -

Fig.2.2 Schematic drawing of multi-channel test rig (T_{1-M})

1

∞ 1

.

Fig.2.3 Schematic drawing of simulated fuel rod (Unit: mm)

Fig.2.4 Axial measuring positions in multi-channel test rig

٢

Fig. 2.5 Measuring positions in graphite fuel block

ı.

•

3. 試験データの整理方法及び試験条件

3.1 試験データの整理方法

12本の模擬燃料棒のそれぞれの総発熱量Q_i(i=1~12)は、印加される電力量から換算す ることができるが、模擬燃料棒各段(サブロッド)の発熱量については、総発熱量と各サブロッ ドの発熱体の抵抗値を基にして算出しなければならない。各サブロッドの発熱量Q_{in}(n=1~ 7)は、発熱体低抗値の温度変化を考慮して次のようにして算出する。

- (1) 各サブロッド中央の黒鉛スリーブ表面温度を、測定した温度を基に非加熱部を考慮して算出 する。これを代表温度とする。
- (2) 各サブロッドの発熱量の初期値を与える。
- (3) 黒鉛スリーブ表面温度と発熱量の初期値を基にして、
 - (a) 黒鉛スリーブ内面温度を熱伝導方程式を用いて計算する。
 - (b) インコネルシースの表面温度を, 黒鉛スリーブとインコネルシースの間の薄いヘリウムガ ス層の熱伝導方程式を用いて計算する。このとき, インコネルシースの熱膨張も考慮する。
 - (c) インコネルシースとニクロム5発熱体表面の間の窒化ホウ素層について熱伝導方程式を計算し、ニクロム5発熱体温度を求める。
 - (d) ニクロム5発熱体温度を基にして電気抵抗値の温度変化率βを求め、次式で電気抵抗値を 算出する。

$$R_{1,n} = R_{01,n} * \beta$$

ここで, Roi,n(Ω)は常温における電気低抗値である。

(e) 電気抵抗値の合計 $\sum_{n=1}^{\infty} R_{i,n} \ge A \otimes R_{i,n} \ge 0$ 比を基にして、各段の発熱量 $Q_{i,n}$ を次式で 算出する。

$$Q_{i,n} = Q_i * R_{i,n} / \sum_{n=1}^{7} R_{i,n}$$

(4) 上記(e)で求めたQ_{1,n} が初期値と一致しない場合は、これを初期値として(3)の計算を一致するまで繰り返す。

計算に使用したヘリウムガスの物性値を付録1に、黒鉛、インコネル 600 及びニクロム5の物 性値を付録2 にそれぞれ示す。

各サブロッドにおける熱流束 q_{1.n}は次のようにして与える。

 $q_{i,n} = Q_{i,n} / (\pi * Di_{i,n} * Lt_{i,n})$

Di₁n: 各サブロッドの外径

Lt_in: 各サブロッドの有効発熱長

燃料冷却チャンネルにおけるヘリウムガスの物性値は、ヘリウムガスの混合平均温度を基にし て付録1に示す式から算出し、各燃料冷却チャンネルにおける流速、レイノルズ数を次のように して計算する。 $u_{i,n} = \frac{W_i}{S_i * \rho}$ S₁ : 各段の流路断面積 (= π (Do_{1,n}² - Di_{i,n}²)/4) Di_{1,n} : 各サブロッドの外径 Do_{1,n} : サブロッドに対応する燃料孔の内径 W₁ : ヘリウムガス流氓 ρ : ヘリソムガス密度

(2) レイノズル数

$$\operatorname{Re}_{i,n} = u_{i,n} * \operatorname{De}_{i,n} / \nu$$

Dei,n : 等価値径 (= Doi,n-Dii,n)

ν : ヘリウムガスの動粘性係数

サブロッドの寸法,温度測定位置,有効発熱長等を付録3に,黒鉛ブロックの燃料孔内径を付 録4に示す。

また、ピトー管による流量計測は、ピトー管部で計測された動圧と静圧の差を、ヘリウムガス 物性値を基にして流量に換算する。このとき、ピトー管の流量係数について空気試験装置で調べ たが、それを用いて算出した流量の合計とT_{1-M}入口で計測した総ヘリウムガス流量Wとは必ず しも一致しない。そこで、算出した流量とその合計との比を基にして、総ヘリウムガス流量から 各燃料冷却チャンネルを流れる流量を求めた。算出方法は4.1.1項に記してある。

3.2 試験条件

不平衡出力試験は、燃料棒の発熱量が極端に変化したときを想定した試験である。このような 出力分布が発生する可能性はゼロに近いが、実機の安全解析をサポートし、かつ、このような状 況でも燃料ブロックの健全性が確保されることなどを実証するために行った。不平衡出力試験条 件を Table 3.1~3.3 に示す。 表中の Re_{in} は、12本の燃料冷却チャンネル入口におけるレイノ ルズ数を平均した値を表す。レイノルズ数の定義は前述した通りである。ヘリウムガス流量は T_{1-M} 入口で計測した総ヘリウムガス流量を表す。

ところで、実機炉心の反応度は制御棒を挿入した制御ブロックを中心として、その周囲6カラ ムの燃料体で取り囲んだ1領域ごとに制御される。このときの領域内の中性子束分布は、制御棒 による中性子吸収のためにすり鉢状に傾斜した分布となり、制御ブロックに近い燃料棒ほど発熱 量が低下する。そのため、燃料体カラム内の発熱分布は傾斜状に変化し、それに伴って燃料ブロ ック断面内に大きな温度勾配を生じて熱応力を増大させる可能性がある。

そこで、このような発熱分布を模擬した試験(傾斜出力試験)を行い、燃料ブロック内部の温 度分布特性、流量配分特性等を調べた。試験条件をTable 3.4 に、また、12本の模擬燃料棒の 発熱分布の概要を Fig. 3.1 に示す。模擬燃料棒の発熱量は、平均発熱量Q に対して±10 %の範 囲内で変化させている。この発熱変化は実機よりも多少大きめの設定である。

Run	number	0713	0714	0715	0716	0717	0718
Flow rat Inlet ga Pressure Rein (Inlet R	te (g∕s) as temp. (℃) e (MPa) Reynolds number)	$\begin{array}{r} 4 \ 9. \ 2 \\ 2 \ 5 \ 5 \\ 3. \ 9 \ 4 \\ 1 \ 8 \ 2 \ 0 \end{array}$	$\begin{array}{r} 49.5\\256\\3.94\\1830\end{array}$	$\begin{array}{r} 4 \ 9. \ 3 \\ 2 \ 5 \ 6 \\ 3. \ 9 \ 4 \\ 1 \ 8 \ 3 \ 0 \end{array}$	$\begin{array}{r} 49.5\\ 256\\ 3.94\\ 1830 \end{array}$	$ \begin{array}{r} 49. \\ 257\\ 3. 94\\ 1830 \end{array} $	49.5 257 3.94 1830
Power ((kW)	Channel #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12	8.7 8.5 8.9 8.7 0.0 8.6 8.5 8.7 8.7 8.7 8.7	$\begin{array}{c} 8. \ 6\\ 8. \ 7\\ 8. \ 6\\ 8. \ 9\\ 8. \ 6\\ 4. \ 4\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\\ 8. \ 6\end{array}$	8.6 8.5 8.8 8.6 6.5 8.6 8.5 8.7 8.6 8.6 8.6	8.6 8.6 8.8 8.7 8.6 8.5 8.5 8.5 8.6 8.6 8.6	8.6 8.5 8.8 8.6 10.8 8.6 8.6 8.6 8.6 8.6 8.6 8.6	8.7 8.6 8.5 8.8 8.6 12.9 8.6 8.6 8.6 8.6 8.6 8.6

•

•

Table 3.1 Conditions of asymmetric power distribution test (Rein ≒ 1800)

- 13 -

Run	number		0719	0720	0721	0722	0723	0724
Flow rate (g/s) Inlet gas temp. (°C) Pressure (MPa) Rein (Inlet Reynolds number)			124 275 3.87 4480	1 2 4 2 7 5 3. 8 8 4 4 8 0	1242753.894490	$ \begin{array}{r} 1 2 3 \\ 2 7 5 \\ 3. 8 9 \\ 4 4 5 0 \end{array} $	123 275 3.89 4462	$124 \\ 275 \\ 3.90 \\ 4478$
Power (kW)	Channel 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	#1 #2 #3 #5 #5 #5 #7 #7 #10 #11 #12	21.4 21.4 21.3 21.6 21.4 0.1 21.3 21.3 21.6 21.6 21.6 21.5	$\begin{array}{c} 21. \\ 4\\ 21. \\ 5\\ 21. \\ 3\\ 21. \\ 6\\ 21. \\ 4\\ 21. \\ 3\\ 21. \\ 5\\ 21. \\$	$\begin{array}{c} 21.5\\ 21.5\\ 21.4\\ 21.6\\ 21.5\\ 16.3\\ 21.3\\ 21.4\\ 21.6\\ 21.5\\$	$\begin{array}{c} 21.5\\$	$\begin{array}{c} 21.5\\ 21.6\\ 21.4\\ 21.6\\ 21.5\\ 26.9\\ 21.5\\$	$\begin{array}{c} 21.5\\ 21.5\\ 21.4\\ 21.8\\ 21.6\\ 32.4\\ 21.5\\ 21.5\\ 21.5\\ 21.5\\ 21.6\\ 21.5\\$

.

Table 3.2 Conditions of asymmetric power distribution test (Rein 녹 4500)

- 14 -

Ru	n number	0725	0726	0727	0728	0729	0731
Flow rate (g/s) Inlet gas temp. (°C) Pressure (MPa) Rein (Inlet Reynolds number)		2752693.9310000	$274 \\ 269 \\ 3.93 \\ 9990$	275 269 3.92 10000	2752693.9210000	274 269 3.92 9990	2752693.9210000
Power (kW)	Channel #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12	$\begin{array}{c} 47.8\\ 47.7\\ 47.7\\ 47.9\\ 47.8\\ 0.0\\ 47.6\\ 47.8\\ 47.8\\ 47.9\\ 47.6\\ 47.9\\ 47.6\\ 47.9\\ 47.7\end{array}$	47.7 47.8 47.7 47.9 47.8 24.0 47.6 47.6 47.7 47.8 47.7 47.7 47.7	47.7 47.5 47.5 47.8 47.7 35.7 47.5 47.6 47.9 47.7 47.7 47.7	47.7 47.8 47.7 47.9 47.8 47.7 47.7 47.7 47.9 47.8 47.8 47.8 47.8 47.7	47.7 47.7 48.1 47.9 47.9 59.6 47.7 47.7 47.7 47.7 47.7 47.7 47.7	$\begin{array}{r} 47.7\\ 47.9\\ 47.7\\ 47.8\\ 47.6\\ 71.5\\ 47.7\\ 47.7\\ 47.7\\ 47.7\\ 47.7\\ 47.7\\ 47.8\\ 47.7\\ 47.8\\ 47.7\end{array}$

Table 3.3 Conditions of asymmetric power distribution test (Rein ≒ 10000)

٠

,

Run numb	1019	1020	1022	1023	
Flow rate (g/ Inlet gas te Pressure (MP Rein (Inlet Reynolds no	$\begin{array}{c} 82. \ 4\\ 269\\ 2. \ 04\\ 3000 \end{array}$	1242792.024470	192 265 4.00 7010	302 271 3.99 11000	
Power Chann (kW)	e 1 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12	17. 2 $18. 4$ $18. 0$ $17. 2$ $16. 2$ $16. 5$ $18. 1$ $18. 9$ $18. 0$ $16. 2$ $15. 5$ $16. 3$	$\begin{array}{c} 25. \ 7\\ 27. \ 0\\ 27. \ 0\\ 25. \ 7\\ 24. \ 5\\ 24. \ 4\\ 27. \ 0\\ 28. \ 3\\ 27. \ 1\\ 24. \ 5\\ 23. \ 1\\ 24. \ 5\end{array}$	$\begin{array}{r} 40. \ 0\\ 42. \ 0\\ 42. \ 0\\ 40. \ 2\\ 38. \ 0\\ 38. \ 0\\ 42. \ 1\\ 44. \ 0\\ 42. \ 1\\ 38. \ 1\\ 36. \ 0\\ 38. \ 0\\ 38. \ 0\end{array}$	62.9 66.0 63.2 59.7 59.8 66.1 69.0 66.2 59.8 59.8 56.5 59.9

.

.

x

Table 3.4Conditions of slant power distribution test

-

.

٠

Fig.3.1 Slant power distribution

ŧ

4. 試験結果

4.1 不平衡出力試験結果

4.1.1 流量配分

各燃料冷却チャンネルを流れるヘリウムガス流量(w,)は、先ずチャンネル出口部に設置した ピトー管の指示値(△P,単位はmmAq)を基に、次式で算出する。

$$w_{ic} = V_p * \rho * \pi * D_{out}^2 / 4$$

ヘリウムガス密度 P は、ピトー管入口圧力と出口温度の計測値を用いて、付録 1 に示す式から算 出する。ピトー管入口圧力は、試験部入口圧力からピトー管入口までの圧力損失の計算値を差し 引いて求める。圧力損失の算出方法を、付録 5 に記してある。

次に,計算した w_{ic}と T_{I-M}入口部で計測した総流 量Wを用いて,次式で各チャンネルを流れるヘリウムガス流量(w_i)を決める。

$$w_{1} = W * (w_{1c} / \sum_{1}^{12} w_{1c})$$

これは、上式で計算される各チャンネルの流量(w,)の総和が Wと必ずしも一致しないため、それを補正するために行う。

Fig. 4.1~4.3 に、燃料冷却チャンネルを流れるヘリウムガス流量の測定例を示す。ここで、 縦軸はヘリウムガスの流量(w;)と平均流量 w(=総流量 W/12)との差 (w/w-1)*100(%) を表す。横軸は燃料冷却チャンネルの番号であり、その位置は図中に示してある。また、図中の Qaは、Na6チャンネルを除く11本のチャンネルに装荷された模擬燃料棒の発熱量を平均したも のである。

各図の(c)は、12本の模擬燃料棒の発熱量が均一な条件での結果であるが、Fig. 4.1の入口レイノルズ数が約1800の場合は、全体的に流量の偏差が大きくなっている。この原因として、

T_{1-M}に流入するヘリウムガス総流量が小さいため, M₁ループにおける流量の脈動の影響を強 く受けること, 模擬燃料棒の発熱量の調整に多少のばらつきを生じて各チャンネルのヘリウムガ スの昇温状況が若干異なったことなどが挙げられる。いずれの図においても, Na 6 チャンネルの 発熱量がゼロの場合には, 他のチャンネルよりもかなり多くヘリウムガスが配分され, また, 発 熱量が増加してQaよりも50%高くなった場合には, 流量は他のチャンネルよりも小さくなって いる。これは, Na 6 チャンネルの出力変化の影響を受けて, チャンネル間で熱が黒鉛ブロックを 介して熱伝導で移動し, 各チャンネルのヘリウムガス温度が変化することにより圧力損失状況が 変わり、ヘリウムガスが再配分されるためである。例えば、あるチャンネルの加熱量が増加する と、ヘリウムガス温度が上昇し、加速損失及び摩擦損失による圧力損失が増加するために、12本 のチャンネルにおいて圧力損失の平衡が成り立つように流量が减少する。

4.1.2 温度分布

(1) 表面温度分布

Fig. 4.4 ~ 4.6に,流れ方向における模擬燃料棒の表面温度分布例を示す。構軸に加熱開始 点を原点とする無次元距離を取り,№1,2,6,8,12 チャンネルの模擬燃料棒表面温度 と入口/出口へリウムカス温度を示してある。

各図にみられるように、模擬燃料棒表面温度は№6 チャンネルの発熱量が低い場合には、隣 接する№1と12 チャンネルの模擬燃料棒表面温度も低く、逆に高い場合には隣接するチャン ネルも高くなっている。これらの模擬燃料棒表面温度差は、№6 チャンネルの発熱量がゼロの 時、加熱部出口付近において最も大きくなるが、出口ガス温度差はその差よりもかなり小さい。 例えば、№6 チャンネルの模擬燃料棒の発熱量がゼロである Run# 0719 の場合、№6 チャンネ ルの模擬燃料棒表面温度は、隣接する№ 12 チャンネルと比較して約 120 ℃、最も離れた№ 8 チャンネルよりも約 160 ℃低い値を示すが、流路出口におけるヘリウムガス温度は、№ 12 チ ャンネルと約 35 ℃、№8 チャンネルとは約 60 ℃程度の差しかない。また、この温度差は入口 レイノルズ数が高いほど大きくなっている。実機の入口レイノルズ数は 4000 以下であり、燃 料棒の発熱量がゼロとなることはないので、それほど大きな温度差は生じないといえる。 (2) 黒鉛ブロック内部温度分布

Fig. 4.7~4.9 に、中心角 30°の 1/12 セクター内の黒鉛ブロック温度分布例を示す。図に 示す黒鉛ブロック温度は 2 段目のもので、模擬燃料棒表面温度も示してある。図にみられるように、Na 6 チャンネルの発熱量がゼロで、入口レイノルズ数が高い場合に最も温度差がつく。 ちなみに、入口レイノルズ数が約 1800 のとき約 3 °C(Fig. 4.7(a))、4500 のとき約 10 °C (Fig. 4.8(a))、10000 のとき約 16 °C(Fig. 4.9(a))である。しかし、温度の計測点数に限 りがあるため、黒鉛ブロック全断面内の温度分布を詳細に把握することは困難である。そこで、 T_{1-M}用の 3 次元温度分布解析コードを開発した。このコードを用いた解析結果については 4.3 節で述べる。

4.2 傾斜出力試験結果

Fig. 4. 10 と 4. 11に、入口レイノルズ数が約 4500 のときと約 7000 のときの流量配分を示す。 図中の Q a は、12本の模擬燃料棒の平均発熱量で、発熱分布はFig. 3.1 に示すとおりである。流 量配分の偏差は、最大でも 2 %程度であり、前述した不平衡出力試験結果と比べるとはるかに小 さい。

Fig. 4.12 と 4.13 に、流れ方向における模擬燃料棒の表面温度分布と入口/出口へリウムガス 温度を示す。模擬燃料棒表面温度の最大値と最小値の差は、例えば、Fig. 4.12の入口レイノル ズ数が約 4500 の場合には約 60 ℃程度で、それほど大きくはない。出口ガス温度差については、 例えば、入口レイノルズ数が約4500の場合には約30℃、7000の場合には約40℃であるが、各 燃料冷却チャンネル間で熱移動がない、すなわち断熱と仮定して出口温度差を計算するといずれ も約100℃となる。このとき、次式で出口ガス温度を算出した。

 $Q_1 * 860 = c_P * w_i * 3600 \checkmark 1000 * (Tout_i - Tin_i)$

ここで、 Q :
模擬燃料棒の発熱量 (kW)

cp : ヘリウムガス比熱 (kcal/kg ℃)

Tini : 入口ヘリウムガス温度 (℃)

Tout : 出口ヘリウムガス温度 (℃)

w, : ヘリウムガス流量の実測値 (g/s)

このことから、かなりの熱が黒鉛ブロックを介してチャンネル間を熱伝導で移動していることが 分かる。この熱移動は、一方で黒鉛ブロック断面内の温度分布を平担化することにもなる。

4.3 数值解析結果

 T_{1-M} 用 3 次元温度分布解析コード「TBLOCK」を用いて、黒鉛ブロック内温度分布の数値 計算を行った。コードの詳細は文献〔6〕に記されている。本解析では、 T_{1-M} の体系を模擬す るために、模擬燃料体の周囲及び上下端面は断熱境界とした。模擬燃料棒の熱伝達率 h は、 T_{1-S} と T_{1-M} で得られた次の実験式^{2,3,7,8,9}を用いた。

> Re ≤ 1800 h = 6.8 * λ_g / De Re ≥ 2000 h = 0.0215 * Re^{0.8} * Pr^{0.4} λ_g / De

このとき、ヘリヮムガスの熱伝導率 λg 等の物性値は、ヘリウムガス温度の変化を考慮して付録 1 に示す式から求めた。

Fig. 4.14 と Fig. 4.15 に、不平衡 出力試験におけるNu 6 チャンネルの模擬燃料棒表面温度と 出口温度の解析結果を示す。Fig. 4.14 は、Nu 6 チャンネルの発熱量がゼロの場合で、Fig.4.15 は、平均発熱量よりも 150 %高い場合である。黒鉛ブロックの温度は、Nu 6 チャンネルに近い Fig. 2.5 中のC点での測定温度と解析値を示している。図にみられるように、解析結果は実験結 果と良く一致しており、本コードの有効性が確認できた。

Fig. 4.16 に, 黒鉛ブロック断面内温度分布の解析例を示す。Fig. 4.16(a)と(b)は不平衡出力 試験条件での解析結果で, (a)はNa 6 チャンネルの模擬燃料棒の発熱量がゼロの場合, (b)は150 % 高い場合である。Fig. 4.16(c) は, 傾斜出力試験条件での解析例で, いずれも加熱開始点から 3.745 m (x/De = 535)の位置における解析例である。この位置は, 出口に近く, ブロック温度 が最も高くなる位置でもある。

Na 6 チャンネルの模擬燃料棒の発熱量がセロの場合には、Fig, 4.15 にみられるように、同一 水平断面内の模擬燃料棒表面温度の最大値と最小値の差は 150 ℃を越えているにもかかわらず、 黒鉛ブロック内部での温度差は、Fig. 4.16la) にみられるように 35 ℃程度である。また、Na 6 チャンネルの模擬燃料棒の発熱量が、150 %高い場合では約17℃という結果であった。一方、 傾斜発熱試験条件では、Fig. 4.16(c)に示すように、出力分布の傾斜方向に沿って約20℃の温度勾配がついている。いずれもかなり小さい値であり、燃料ブロック断面内の温度は、ブロックの優れた熱伝導性能によって均一化される方向にあるといえる。

このことは、炉心下部にある高温プレナムブロックに流入するヘリウムガスの温度差が小さく なること、また、燃料ブロックの熱歪が軽減されることを意味し、実機炉心設計に余裕を与える ものである。

.

1

Fig.4.1 Flow rate distribution in asymmetric power distribution test (Rein = 1800)

.

Fig.4.1 (Continued)

Fig.4.2 Flow rate distribution in asymmetric power distribution test (Rein = 4500)

Fig.4.2 (Continued)

Fig.4.3 Flow rate distribution in asymmetric power distribution test (Rein ≒ 10000)

Fig.4.3 (Continued)

JAERI-M 90-017

(b) $Q_6/Qa = 50\%$

Fig.4.4 Axial temperature distribution in asymmetric power distribution test (Rein ≒ 1800)

JAERI-M 90-017

(c) $Q_6/Q_8 = 100\%$

(d) $Q_6/Q_a = 150\%$

Fig.4.4 (Continued)

JAERI-M 90-017

Fig.4.5 Axial temperature distribution in asymmetric power distribution test (Rein = 4500)

,

(c) $Q_6/Q_a = 100\%$

(d) $Q_6/Q_8 = 150\%$

Fig.4.5 (Continued)

JAERI-M 90-017

(a) $Q_6/Q_8 = 0\%$

Fig.4.6 Axial temperature distribution in asymmetric power distribution test (Rein ≒ 10000)

JAERI-M 90-017

(c) $Q_6/Q_8 = 100\%$

(d) $Q_6/Q_8 = 150\%$

Fig.4.6 (Continued)

٠,

(a) $Q_6/Q_8 = 0\%$

(b) $Q_6/Q_a = 50\%$

Fig.4.7 Horizontal temperature distribution in graphite fuel block (Rein ≒ 1800)

(c) $Q_6/Q_a = 100\%$

(d) $Q_6/Q_a = 150\%$

Fig. 4.7 (Continued)

(b) $Q_6/Q_8 = 50\%$

Fig.4.8 Horizontal temperature distribution in graphite fuel block (Rein 4500)

(c) $Q_6/Q_8 = 100\%$

(d) $Q_6/Q_8 = 150\%$

-

.

Fig.4.8 (Continued)

(a) $Q_6/Q_8 = 0\%$

(b) $Q_6/Qa = 50\%$

Fig.4.9 Horizontal temperature distribution in graphite fuel block (Rein ≒ 10000)

(c) $Q_6/Q_8 = 100\%$

(d) $Q_6/Q_8 = 150\%$

Fig.4.9 (Continued)

Fig.4.10 Flow rate distribution in slant power distribution test (Rein = 4500)

Fig.4.11 Flow rate distribution in slant power distribution test (Rein ≒ 7000)

JAERI-M 90-017

Fig.4.12 Axial temperature distribution in slant power distribution test (Rein ≒ 4500)

Fig.4.13 Axial temperature distribution in slant power distribution test (Rein ≒ 7000)

Fig.4.14 Comparison of analytical and experimental results in asymmetric power distribution (Q₆/Q₈ = 0%)

Fig.4.15 Comparison of analytical and experimental results in asymmetric power distribution (Qs/Qa = 150%)

Fig.4.16(a) Bird's eye view of calculated temperature distribution in horizontal plane at x/De=535 (asymmetric power distribution test, Qe/Qa = 0%)

Fig.4.16(b) Bird's eye view of calculated temperature distribution in horizontal plane at x/De=535 (asymmetric power distribution test, Qs/Qa = 0%)

Fig.4.16(c) Bird's eye view of calculated temperature distribution in horizontal plane at x/De=535 (slant power distribution test)

من

5. 結 言

実機燃料体と同一形状,材質を有する模擬燃料体を用いて,カラム内の発熱分布を不均一に変化させた試験(不平衡出力試験)と,傾斜状に変化させた試験(傾斜出力試験)を行い,ヘリウムガスを約750℃まで加熱して,次の結果が得られた。

- (1) ヘリウムガス流量は、模擬燃料権の発熱量変化に従って配分される。とくに、不平衡出力 試験では、発熱量を変えたチャンネルを中心にして配分状況が大きく変化する。
- (2) 各チャンネル出口のヘリウムガス温度差は、チャンネル間での熱移動がない断熱条件で計算した温度差に比べてかなり小さく、かなりの熱が黒鉛ブロックを介してチャンネル間を熱伝導で移動していることが明らかとなった。

これに関連して、3次元温度分布解析コードを用いて燃料ブロック断面内の温度分布を計算した結果、断面内温度分布は、ブロックの優れた熱伝導性能によって平担化される方向に あることが明らかとなった。

なお、本試験終了後に試験体を取り出して目視検査を行ったが、模擬燃料棒,黒鉛ブロック等 にはなんら異常がみられなかったことを付記しておく。

謝 辞

本試験を遂行するに当たって、種々のご指導を頂いた河村 洋前 HENDEL 開発試験室室長、 井澤直樹 前HENDEL 管理室主査、下村寛昭HENDEL 管理室室長、多大なご協力を頂いた HENDEL 管理室の方々に深く感謝します。

参考文献

- 1) 「高温工学試験研究の現状」,日本原子力研究所,1988.
- 2)日野,丸山,高瀬他:「高温ガス実験炉燃料体の伝熱流動試験(I),HENDEL 多チャンネル試験装置による均一発熱試験結果、日本原子力学会誌、Vol. 28, Na 6, pp. 527-533 (1986).
- 3) 丸山, 高瀬, 日野他: 「燃料体スタック実証試験部(T₁)多チャンネル試験結果・1(中 温模擬燃料棒を用いた均一出力分布試験)」, JAER-M 85-067 (1985).
- 4) 丸山, 藤本, 木曽他: 「熱流動・熱伝導速成解析コードFLOWNET/TRUMPの検証」, JAERI-M 88-173 (1988).
- 5) 井澤,高瀬,丸山他: 「 燃料体スタック実証試験部 (HE NDEL T₁)の概要と建設」, 日本原子力学会誌, Vol. 27, No. 12, pp. 1136-1146 (1985).
- 6) 丸山, 菱田: 「VHTR燃料体3次元熱伝導解析コード(TBLOCK)」, JAER-M 85-145 (1985).
- 7) 高頼、丸山、日野他:
 「高温ガス実験炉燃料体の伝熱流動試験(1), HENDEL 1 チャンネル試験装置による一様発熱試験の結果」、日本原子力学会誌、Vol. 28, № 5, pp. 428-435 (1986).
- 8) 日野,高頼,丸山他: 「高温ガス実験炉燃料体の伝熱流動試験(N), HENDEL 1 チャンネル試験装置による高温試験結果」,日本原子力学会誌, Vol. 30, Na 4, pp. 343-349 (1988).
- 9) Maruyama, S., Takase, K., Hino, R. et al.: "Experimental studies on the thermal and hydraulic performance of the fuel stack of the VHTR, Part I: HENDEL single-channel tests with uniform heat flux", Nuclear Engineering and Desigh, Vol. 102, pp. 1-9 (1987).

付録1 ヘリウムガス物性値

ヘリウムガス物性値の算出に当たっては、圧力P(kg/cm²)と温度T(℃)を用いる。圧力と温 度は下記の式でPbarとTkに換算する。

P bar = 0.9807 * P (bar) Tk = 273.16 + T (K) (1) 比热 $c_p = 1.2406$ (kcal/kg °C) • (2) 密度 *ρ* (kg/m³) $\rho = ((1 + 4 * Pbar * Xx / 0.0207723 / Tk)^{0.5} - 1) / 2 / Xx$ ここで、 $Xx = 4.5 \times 10^{-4} + 5.42$ (1890 + Tk) (3) 熱伝導率 λg (kcal/mhr ℃) $\lambda_{a} = 2.5542 \times 10^{-3} \times T k^{0.69}$ $+7.9378 \times 10^{9} \times T/(T^{5} + 4.29 \times 10^{14})$ + 2.0038 * 10^{-4} * ρ + 2.0554 * 10^{-6} * ρ^{2} (4) 粘性係数 μ (kg s/m²) $\mu = 3.8545 * 10^{-8} * Tk^{0.69}$ $+ 5.0985 * 10^{-8} / (0.52 + Tk / 569.6)$ + 2.7226 * 10^{-11} * ρ^2 (5) 動粘性係数 $\nu = \mu * 9.80665 / \rho$ (m²/s) (6) プラントル数 Pr=v/(λ/cp/p)*3600

11

•

 \mathcal{L}^{I}

付録2 黒鉛等の物性値

```
(1) 黒鉛熱伝導率(黒鉛スリーブ、燃料ブロック等) λg (kcal/mhr ℃)
         \lambda g = 26.37655 + 0.8169476 * T
                -6.181526 * 10^{-3} * T^{2}
                + 2.150494 * 10^{-5} * T^{3}
                 -4.207394 \times 10^{-8} \times T^{4}
                 + 4.874144 * 10<sup>-11</sup> * T<sup>5</sup>
                 -3.308559 * 10^{-14} * T^{6}
                 + 1.212845 * 10^{-17} * T^7
                 -1.847671 \times 10^{-21} \times T^{8}
(2) 窒化ホウ素熱伝導率 × bn (kcal/mhr ℃)
         \lambda_{bn} = 3.88362 + 6.070614 * 10^{-3} * T
                 -1.046514 \times 10^{-5} \times T^{2} + 5.06314 \times 10^{-9} \times T^{3}
(3) ニクロム5の電気低抗変化率 β
          \beta = 1.017657 - 4.49413 * 10^{-4} * T
                + 7.935643 \times 10^{-6} \times T^2 - 5.164237 \times 10^{-8} \times T^3
                + 1.840618 \times 10^{-10} \times T^4 - 3.783696 \times 10^{-13} \times T^5
                +4.417738 \times 10^{-16} \times T^{6} - 2.709139 \times 10^{-19} \times T^{7}
                + 6.764642 \times 10^{-23} \times T^{8}
(4) インコネル 600 の特性値
  (a) 熱伝導率 \lambda_{inc} (kcal/mhr ℃)
         \lambda_{inc} = 64.66561 - 0.3946704 * T
                + 1.21578 \times 10^{-3} \times T^2 - 1.751215 \times 10^{-6} \times T^3
                + 1.231814 *10^{-9} * T<sup>4</sup> - 3.397479 *10^{-13} *T<sup>5</sup>
  (b) 熱膨張率 βexp (1/°C)
        \beta \exp = (13.24145 + 3.39624 \times 10^{-3} \times T)
                                                                        1
                   + 1.115586 \times 10^{-7} \times T^{2} \times 10^{-6}
        T : 温 度(℃)
```

Pin		加	熱	長さ	š (m)		
No.	1段	2段	3段	4段	5段	6段	7段
No.1	0.516	0.519	0.519	0.517	0.518	0.512	0.520
No.2	0.519	0.517	0.515	0.519	0.519	0.513	0.522
No.3	0,521	0.520	0.520	0.522	0.521	0.520	0.524
No.4	0.516	0.518	0.517	0.517	0.520	0.513	0.525
No.5	0.522	0.519	0.519	0.521	0.520	0.518	0.524
No.6	0.516	0.520	0.516	0.522	0.521	0.522	0.525
No.7	0.517	0.520	0.517	0.522	0.521	0.519	0.524
No.8	0.520	0.518	0.516	0.521	0.520	0.518	0.524
No.9	0.518	0.524	0.520	0.521	0.519	0.516	0.523
No.10	0.521	0.521	0.518	0.523	0.517	0.517	0.525
No.11	0.519	0.519	0.518	0.521	0.515	0.519	0.526
No.12	0.521	0.523	0.517	0.519	0.515	0.517	0.523

付録3 T_{1-M}用中温試験用模擬燃料棒の各部寸法

•

•

~^

Pin	μ γ γ	長 面	温 度	測 5	己 位	置 (r	n)
No.	1段	2段	3段	4段	5段	6段	7段
No.1	0.4097	0.4097	0.4097	0.4097	0.4092	0.4102	0.4097
No.2	0.4102	0.4092	0.4097	0.4102	0.4092	0.4097	0.4097
No.3	0.4107	0.4092	0.4087	0.4087	0.4097	0.4087	0.4097
No.4	0.4097	0.4097	0.4097	0.4102	0.4097	0.4092	0.4092
No.5	0.4097	0.4097	0.4097	0.4097	0.4097	0.4097	0.4087
No.6	0.4097	0.4097	0.4097	0.4097	0.4097	0.4097	0.4097
No.7	0.4097	0.4092	0.4097	0.4097	0.4092	0.4102	0.4097
No.8	0.4097	0.4092	0.4097	0.4092	0.4092	0.4092	0.4097
No.9	0.4107	0.4097	0.4097	0.4102	0.4097	0.4092	0.4097
No.10	0.4097	0.4097	0.4097	0.4092	0.4097	0.4097	0.4097
No.11	0.4092	0.4097	0.4092	0.4097	0.4097	0.4097	0.4097
No.12	0.4092	0.4092	0.4092	0.4097	0.4097	0.4097	0.4097

Pin	サブロッド全長 (m)								
No.	1段	2段	3段	4段	5段	6段	7段		
No.1	0.57015	0.57015	0.57020	0.57020	0.57015	0.57020	0.57010		
No.2	0.57010	0.57020	0.57020	0.57020	0.57020	0.57000	0.57020		
No.3	0.57020	0.57020	0.57020	0.57020	0.57020	0.57015	0.57015		
No.4	0.57020	0.57015	0.57020	0.57020	0.57015	0.57020	0.57015		
No.5	0.57010	0.57020	0.57015	0.57020	0.57012	0.57020	0.57015		
No.6	0.57010	0.57020	0.57020	0.57020	0.57020	0.57020	0.57015		
No.7	0.57015	0.57020	0.57020	0.57020	0.57020	0.57020	0.57015		
No.8	0.57015	0.57020	0.57020	0.57020	0.57020	0.57010	0.57020		
No.9	0.57010	0.57020	0.57020	0.57020	0.57015	0.57015	0.57020		
No.10	0.57015	0.57020	0.57020	0.57020	0.57020	0.57015	0.57020		
No.11	0.57015	0.57020	0.57020	0.57020	0.57010	0.57020	0.57020		
No.12	0.57015	0.57020	0.57020	0.57020	0.57015	0.57010	0.57020		

Pin	黒	鉛	スリ	- 1	外	径 (m	m)
No.	1段	2段	3段	4段	5段	6段	7段
No.1	45.950	45.965	45.950	45.960	45.960	45.950	45.950
No.2	45.955	45.955	45.945	45.935	45.950	45.955	45.955
No.3	45.940	45.965	45.980	45.935	45.945	45.955	45.960
No.4	45.975	45.955	45.940	45.950	45.950	45.955	45.955
No.5	45.970	45.935	45.940	45.920	45.940	45.950	45.955
No.6	45.970	45.930	45.925	45.955	45.925	45.950	45.970
No.7	45.935	45.950	45.970	45.955	45.955	45.945	45.955
No.8	45.940	45.935	45.950	45.965	45,980	45.935	45.975
No.9	45.955	45.970	45.930	45.940	45.950	45.945	45.970
No.10	45.945	45,965	45.950	45.955	45.995	45.945	45.945
No.11	45.955	45.960	45.960	45.955	45.960	45.960	45.945
No.12	45.980	45.955	45.955	45.950	45.940	45.955	45.940

Pin	黒	鉛	スリ	- ブ	内谷	Ł≊ (mr	n)
No.	1段	2段	3段	4段	5段	6段	7段
No.1	32.135	32.135	32.145	32.140	32.145	32.175	32.155
No.2	32.125	32.160	32.135	32.135	32.155	32.135	32.160
No.3	32.130	32.140	32.130	32.150	32.145	32.175	32.170
No.4	32.130	32.155	32.150	32.130	32.120	32.155	32.160
No.5	32.135	32.135	32.160	32.135	32.150	32.160	32.170
No.6	32.130	32.135	32.155	32.140	32.155	32.170	32.165
No.7	32.120	32.145	32.140	32.145	32.150	32.175	32.165
No.8	32.140	32.155	32.140	32.140	32.155	32.150	32.165
No.9	32.130	32.125	32.150	32.145	32.145	32.155	32.175
No.10	32.120	32.140	32.145	32.140	32.135	32.170	32.175
No.11	32.130	32.130	32.150	32.150	32.120	32.150	32.180
No.12	32.130	32.145	32.155	32.145	32.160	32.155	32.165

.

各チャンネルのシースヒータ外径 (mm)								
No.1	No.2	No.3	No.4	No.5	No.6			
31.62	31.61	31.60	31.61	31.61	31.61			
No.7	No.8	No.9	No.10	No.11	No.12			
31.61	31.61	31.61	31.60	31.62	31.61			

Pin		烧瓷	体管	反 3	抵抗	(Ω)	
No.	1段	2段	3段	4段	5段	6段	7段
No. 1	0.1792	0.1799	0.1800	0.1804	0.1803	0.1793	0.1782
No.2	0.1795	0.1806	0.1809	0.1808	0.1783	0.1755	0.1765
No.3	0.1768	0.1773	0.1770	0.1767	0.1777	0.1770	0.1761
No.4	0.1789	0.1794	0.1797	0.1803	0.1810	0.1788	0.1778
No.5	0.1768	0.1778	0.1771	0.1766	0.1774	0.1763	0.1755
No.6	0.1780	0.1791	0.1807	0.1789	0.1795	0.1773	0.1771
No.7	0.1781	0.1776	0.1789	0.1783	0.1783	0.1785	0.1771
No.8	0.1790	0.1792	0.1802	0.1808	0.1795	0.1797	0.1763
No.9	0.1779	0.1784	0.1778	0.1798	0.1780	0.1777	0.1756
No.10	0.1786	0.1791	0.1788	0.1803	0.1781	0.1773	0.1758
No.11	0.1805	0.1809	0.1812	0.1819	0.1816	0.1809	0.1788
No.12	0.1776	0.1793	0.1776	0.1797	0.1784	0.1780	0.1770

ø

付録4 T_{1-M}用黒鉛ブロックの燃料孔内径

Block		燃	料	孔	内	≩ (r	nm)	
No.	1、2段	3段	4段	5段	6段	7段	8段	9段
No.1	53.045	53.090	53.060	53.050	53.020	53.070	53.080	53.040
No.2	53.035	53.040	53.060	53.060	53.030	53.060	53.070	53.050
No.3	53.040	53.050	53.080	53.050	53.020	53.060	53.060	53.050
No.4	53.040	53.100	53.060	53.050	53.040	53.070	53.070	53.040
No.5	53.040	53.090	53.070	53.070	53.030	53.080	53.070	53.050
No.6	53.045	53.090	53.060	53.050	53.060	53.070	53.080	53.060
No.7	53.045	53.070	53.050	53.050	53.030	53.040	53,100	53.060
No.8	53.045	53.070	53.040	53.050	53.020	53.050	53.080	58.060
No.9	53.045	53.060	53.070	53.050	53.030	53.050	53.070	53.050
No.10	53.050	53.090	53.070	53.060	53.040	53.060	53.080	53.040
No.11	53.045	53.100	53.060	53.100	53.040	53.080	53.060	53.060
No. 12	53.045	53.050	53.060	53.060	53.040	53.080	53.070	53.060

付録5 流路圧力損失の評価方法

(1) 入口流路部の圧力損失

入口流路部における圧力損失は次式で与えられる。このとき、計算に必要な各部の圧力損失係 数は、1チャンネル試験装置における測定データを基にして決定している。

 $\triangle Pin = 1.42 * (\rho_{1n} * u_0^2 / 2g)$

+ $(0.316 \text{ Reo}^{-0.25}) * (1.14 \times 0.025) * (\rho_{10} * u_0^2 \times 2g)$

+ $(4.303 \text{ Re}_1^{-0.112}) * (\rho_{10} * u_1^2 / 2g)$

ここで、ヘリウムガスの密度 ρ_{in}は、入口ガス温度測定値と入口圧力から付録1 に示す式を用い て計算する。以下、ヘリウムガスの物性値はすべて付録1の式を用いる。

下図に入口流路部圧力損失に用いた寸法の概要を示す。レイノルズ牧Reo, Reo, 流速uo, uo は下図に示す寸法から算出する。

(2) 燃料冷却チャンネル部の圧力損失

燃料冷却チャンネル部の圧力損失は、各段毎に次の圧力損失式から計算する。

$$\Delta P = 4 f * \frac{L}{De} * \frac{\rho_{m} u^{2}}{2} + (\rho_{out} * u_{out}^{2} - \rho_{in} * u_{in}^{2})$$

ここで、L は各段の全長(570 mm)で、等価直径 De,流速 u は付録3,4 に示す寸法を基に それぞれ計算する。入口・出口のヘリウムガスの密度 Pin, Pout 及び各段の平均密度 Pmは、入口 ・出口ガス温度と各段中央における温度と、それぞれの位置における圧力を基に計算する。それ ぞれの位置の圧力は、入口圧力測定値からそこまでの圧力損失を差し引いて得られる。 また、f は摩擦損失係数で、1 チャンネル試験結果より次式で与えられる。

$$Re \leq 1900$$
 $f = 28 / Re$
 $Re \geq 2000$
 $f = 0.094 Re^{-0.25}$

(3) 出口流路部の圧力損失

出口流路部における圧力損失は、下図に示すように5領域に分割して計算する。出口部全体の 圧力損失は次式で与えられる。各部の計算に必要な圧力損失係数は、1チャンネル試験装置にお ける測定データを基にして決定している。

(a) ②領域

$$\Delta P 2 = (0.316 \operatorname{Re}_{2}^{-u_{2}5}) * (0.045 / 0.007) * (\rho_{0} * u_{2}^{2} / 2g) + (33256 * \operatorname{Re}_{2}^{-1.483}) * (\rho_{0} * u_{2}^{2} / 2g)$$

(b) ③領域

$$\triangle P 3 = (0.316 \operatorname{Re}_2^{-0.25}) * (0.7775 / 0.053) * (\rho_0 * u_3^2 / 2 g) + (1.0) * (\rho_0 * u_3^2 / 2 g)$$

- (c) ④領域 $\triangle P 4 = (0.316 \operatorname{Re}_{2}^{-0.25}) * (0.0905/0.025) * (\rho_{0} * u_{4}^{2}/2g)$ $+ (1.02) * (\rho_{0} * u_{4}^{2}/2g)$
- (d) ⑤領域

 $\Delta P 5 = (0.316 \operatorname{Re}_{2}^{-0.25}) * (0.080 / 0.019) * (\rho_{0} * u_{5}^{2} / 2 g)$ $+ (2.0) * (\rho_{0} * u_{5}^{2} / 2 g)$

	2 領域	③領域	④領域	⑤領域
A (m ²)	$(0.053^2 - 0.046^2) \pi/4$	$0.053^2 \pi/4$	$0.025^2 \pi/4$	$(0.025^2 - 0.006^2) \pi/4$
Z (m)	0.045	0.7775	0.0905	0.08
De (m)	0.053 - 0.046 = 0.007	0.053	0.025	0.019
u(m⁄s)	$u_2 = w / \rho_{out} A_2$	$u_3 = w/\rho_{out}A_3$	$u_4 = w \rho_{out} A_4$	$u_5 = w \neq \rho_{out} A_5$

以下に、②~⑤の領域の面積、長さ、等価直径及び速度を示す。

•

1

•