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1. Introduction 
The two-phonon components of low-lying states in even-even 

deformed nuclei have been discussed for a long time / 1" 9 / . These 
components can essentially influence the properties of low-lying 
states such as the excitation energy, electromagnetic transitions, 
form-factors in transfer reactions, etc.. The question of 
two-phonon components became now very urgent due to a rich 
experimental information^ * on low-lying levels in 1 6 8 E r . This 
nucleus is considered now as a kind of a proving ground for 
theoretical models. Apparently, the experimental data in l Er can 
hardly be described without including two-phonon components into 
consideration. 

One of the most obscure problems is the existence of 
low-lying states with dominating two-phonon components (we shall 
call them the two-phonon states) in deformed nuclei. Still there 
are no reliable experimental data undoubtedly testifying to the 
existence of these states. Theoretical models provide 
contradictory predictions. The QPNM asserts that low-lying 
two-phonon states should not exist in deformed nuclei since the 
violation of the Pauli principle in the wave function leads to the 
shift of the strength of these states towards higher excitation 
energies''1" . Other approaches'*" , in particular, the 
microscopic multiphonon model СМРЮ and the self-consistent 
collective coordinate method (SCCMi admit or at least do not 
reject the existence of these states. It is to be emphasized that 
both schematic calculations in the MPM in which the multiphonon 
wave function is constructed of only two y-vibrational phonons in 
the Tamm-Dancoff approximation CTDA) and more realistic 
calculations in the SCCM in which the wave function is constructed 
of many phonons of different multipolarity in the random phase 
approximation (RPA) provide similar results. The comparison of 
these models^' shows that the discrepancy between the QPNM 
predictions and those of other models is mainly due to the fact 
that in contrast with the MPM and SCCM the QPNM disregards the 
interaction with multiphonon configurations which lowers the 
energies of low-lying two-phonon states. 
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In the present paper we show that the discrepancy between the 
models can be removed by taking into account in the QPNM the 
interaction with complex configurations. For this purpose a 
multiphonon version of the QPNM is constructed. 

The analysis of the interaction of two-phonon states with 
other configurations faces troubles within the HPM and SCCM since 
the SCCM has a rather cumbersome structure and the MPM deals with 
the numerical diagonalisation of the Hamiltonian matrix without 
the secular equation . In this connection, the second aim of this 
paper is to derive such formulas, which are on the one hand as 
simple as possible and on the other hand clarify the coupling 
between different configurations and can be used for numerical 
estimates. 

In sect. 2 the Hamiltonian and wave function are considered 
in a multiphonon version of the QPNM. In sect. 3 an analysis of 
the matrix elements between the components of the wave function 
with a different number of phonons is presented in detail. In 
sect. 4 the secular equation is derived, the influence of 
multiphonon configurations on the properties of low-lying 
two-phonon states is discussed and the comparison with other 
models is made. Summary and conclusions are expounded in sect. 5. 

2. The Hamiltonian and wave function 
The Hamiltonian has the form 

H - H p + » U r + H - « ' C 1 ) 

where H^ is the average field as the Saxon-Woods potential, H 
is the monopole pairing interaction, f ^ are the isoscalar and 
isovector multipole-multipole forces. After calculating one-phonon 
excitations within the RPA, the normalised Hamiltonian CI} can be 
expressed through the phonon and quasiparticle operators 

where 
HQ = I *qBCqqO) - 1/4 J _L„.Q!Q-(. С 3 ) 

q gsX.)J» , B B 

g"'=M ' 
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14^= -1/8 J L„„.CQ!Q! + Q.Q. ) . 

HaQ= "^ 4 1 I? T, «Q- + Q ->BCq,q,-*d + h . O 

The following notation has been used in С35-С5Э : 
Of- 1/2 2 < ^ , A+Cq.q^)-*» A C q . q ^ ) ) , С 6 ) 

where A+Cqiqajii) and BCq iq ap) are operators of the type a* a* and 
я, ч г 

a*. a_ with К + К =jj; at is the creation operator of the one-qua-
q q ' г q 

siparticle state with quantum numbers q and energy s ; q=oq, K=aK, 
£=op, K£0, (£0; К is the angular momentum projection onto the 
nuclear symmetry axis; a=-\; g=X^i are the multipolarity and number 
of the RPA phonon; У is the summation only over neutron CT=N> 
or only over proton Ст=2) one-quasiparticle states. The 
expressions for the functions L . и Т*т can be determined from 
ref. . These functions are the larger the higher is the col­
lectivity of phonons. If the phonons are close to 
two-quasiparticle states these functions approximately equal zero. 

The term r|n generates quasiparticle and phonon excitations. 
The quasiparticle-phonon interaction HLj couples the wave function 
components differing by an odd number of phonons. The term НЬл 
couples the components differing by an even number of phonons. 
This term has earlier been neglected in the QPNM. By analogy with 
the principle of cancellation of dangerous diagrams' one can 
show that in the one-phonon approximation H Q Q W U I be compensated 
by the first term of Hit- Further, we shall see that with the 
inclusion of the multiphonon wave function and Pauli principle the 
interaction HQQ n a s n o t *-° be neglected. 

С 4 ) 

С 5 Э 
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The multiphonon wave function is taken in the form 
V CKn)=CRt0,+ У ^ " < У Q + + У р К° R < 2 > 6 Q + Q + 

P J, ». P . ' K o 9 . 9гЯг **.". 9.9* ", +^' Ko 9, К 

+... + У p K° R( n > 6_ _ . Ql ... Ql J | > . С 7 ) 
e,...en

 IJ

i--Vn я,---зп Ji1+.-.+Hn.«te 3, э п 

where R'n is the n-phonon amplitude; | > is the RPA vacuum. 
" ' 3 n 

i.e. Q_I >=0; p is the number of the state with given K". The 
Кгопескег symbols connect the projections of phonon moments 
onto К . The coefficients p,,° ,, are chosen so that the normali-

o rU . . . U 

sat ion condition of the wave function i s 
С4*СК")Ф„CK^J^R'01 )*+ У C R ' " ) 2 / 0 + У CR f 2' З 2 / 0 

P " P ° ^ 9 , 3. g , ^ 9 i 9

2

 9 . 3 * 

r. C 8 3 

+ . . . + У CR( n > ) N ° =1 , 
9,>g a>••>э п 

where 
N ° =1 + 5C °Cg ...g |g ...g ) , Q , 
g . . . g э п э1 , э 1 "п . I И J 
К 

The function ЭС °Cg ...g |g ...g Э appears only if the Pauli 
principle is violated in components with n£2. One can easily be 
convinced that к к. p ° =p ° n " l / a ( 10 ) 

_K where the coefficient p ° takes into account the cases when 
*l ' ' ' 'n 

nonzero moment projections of some phonons are coupled to the 
total projection equal to zero (for instance, for the states with 
К я=4 + composed of four r-vibrational phonons we have p ° =l/r2). 

9999 
For simplicity, we have omitted indices К and p in the amplitudes 
Q< II) 

V 
will be omitted in the functions in C9)-C10) 

R and the Kronecker symbols in С9). Further, the index К e. • • • s„ о 
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The wave functions С7) are not orthogonal because of 
nonorthogonality of n-phonon components Q* . ..Q*| >. Indeed, at 
9, • • • gn*g,' • • • i; we have ' n 

< |Q. ...Q. Q.+,...Q.+J >~Kg n...gJg;...g;) * 0. (11 ) 
The above nonorthogonality will not effect the results given below 
since in what follows we shall use approximations at which 
nondiagonal quantities of the type С П ) are neglected. 

Note that the wave function (7) and Hamiltonian CI) are in fact 
the same as in the MPM. Therefore, the basic results given below 
are valid also for the MPM. There are several essential 
differences between our approach and the MPM: i) instead of RPA 
the MPM uses the TDA, ii) the Hamiltonian in the MPM in contrast 
with C2)-C5) is not expressed through phonon operators, Ш ) in 
the MPM a direct diagonalisation of the Hamiltonian matrix is 
performed (the secular equation is not used). 

3. Matrix elements 
Now we derive expressions for the matrix elements 

M°; • • • »;=PM, • • • л . . . 4 Z V . . .p.. *.V • • • *K к 
V - f f n 

i m с 12 J 

x< IQ . . . Q H Q + . . . Q + I >. 
»n 3, '< К 

=P/j . . .u Pu'. . . u' 2 6u • . . .*lt , R u' + . . . + р \ R 

x< |Q . . . Q Q + . . . Q + I > 
9. 9. 9 n talcing account of the Pauli principle. For this purpose we use 

exact comutation relations (talcing account of the quasiparticle 
structure of phonons) between the operators in C3)-(5) and (7). As 
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an example, we give the commutation relations for the phonons with 
g=20i (for simplicity, we use index i instead of g):. 

[Q ,[Q ,Q+ ]].]> { X a t i a | i 3 i ' ) Q # + i u . i . J i . i 'XJ* ,» . С 14 ) 
i l l , » 1 i a * j 
t а з i 

W4,V'0>2^';Q; f +c**'Q }, С 15) 
a 4i Г 

where 
Stti i |i rJ-1/гТа 1"'» b,*/ , С 16.1 ) 

1 a' 3 4 i q (q a q aq t 

ЯС1 i |i i A)-l/2j »'•'• d'1'4 , С 16.2 ) 
i а' з 4 L, q_ q_ q a 

г 1 1' =7Сю* / - #* #• ), С 17.1 ) 
q 3 

11' 1 1' 1 1' b =TCw ю + л л ), С 17.2 ) 
4,4, * 4 4 / 4 , 4 , Ч4,*4,4, 

чз 
И* „ 1 1 ' 1 1 ' 
с =Ytw ф + ф V ). С 17.3 ) 
4,4, ̂  "4 34,Ч4а 4,4/4,4, 

4, 
И* _ 1 1' 1 1 ' 

d =JCv ф - ф v ). С 17.4 ) 
4,4, ̂  Ч Ч . Ч Ч , 4,q/q,q, 

It is seen from (16.1)-С 17.4) that the functions JKi i i i ) and 
XCi ii ii ji 4) are of an order of y* and цг*ф, respectively. 

In general, expressions for the matrix elements C125-C13) are 
rather cumbersome. It is more convenient to consider these 
expressions for the wave function (7) formed by phonons of only 
one type with g=201. Then, the state (7) has quantum numbers Кл»0* 
and the matrix elements С12)-C13) conserving all the basic 
properties of the general case acquire a simple and clear form 
convenient for analysis and numerical estimates: 
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where 

M"=N ( n u t i ) t <5(LS0 > , 

M"*'=N nv£n+l)/2~U + dCLTO > +dCrc), 
n n t i n i t 

M"+2=N Д п , г + tfCtoX.LSO > , 
n n*z n n i l r 

№*3=6(ГсУ , n 

Д =-1/8 LSTCn-Dn , 
n 

u=i/N 2 < |QgHQg

+Qgl > • 

( 18 ) 

С 19 ) 

С 20 ) 

С 21 ) 

С 22 ) 

С 23 ) 
С 24 ) 

Expressions C18D-C22), except for the terms with index n£l, hold 
at n>0. The forms of N and R*z for some values of n, we shall 

n n 

need in what follows, are given in table l.m d8)-(24) and table 1 

we use the notation: M ^ f ^ p T . N E N f ^ | , u=u , L=L , 
m g n a. 

Table 1. Expressions for N and Д п* г for some values of n in the 
approximation g =...=g =201. 

n N 
Q _ 

А п + г 

й 

0 1 -1/C8-/I7) LSC 

1 1 - l / c e / i ? ) LSI: 3(1+30 

2 1/2! C2I+90 - l / c s / I u n L5( бсг+заг+зж2: 
3 1/3! СЗ!+9ЭС+ЗЯг) — 
4 1/4! С41+72Я+66Х2 •189?) —_ 
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3C=9((gg|gg). ЭГ=ЗКдд|дд). Г=Г* Т , c=c« ,tfCF) is a value of an 
order of F. As is seen from С18Э-C245 and table 1, in the 
approximation g =...=g =201 all the functions arising due to the 
inclusion of the Pauli principle into consideration can be 
expressed through 3f. 

In (18)-(24) we have written down only the terms that are 
dominating in both the P.PA and TDA. For the other terms which 
contain inverse phonon amplitudes ф and are absent in the TDA we 
give only the order of their magnitude. It is seen that in the TDA 
the Hamiltonian (2) couples the wave function components differing 
from each other not more than by two phonons. For collective 
one-phonon states .when the inverse amplitudes ф can be compared 
in magnitude with the direct ones y/, the RPA should be used 
instead of the TDA. In this case, there arises coupling between 
components differing more than by two phonons. Also, additional 
terms including the functions 9f and С appear in the matFix 
elements (18)-(20). For instance, in the RPA 

M M / 2 ! (2 + 50C2o - 1/4 L5f - 1/2 1.30 , С 23 ) 
г _ 

where the addition 1/2 L9C ~ 1/2 ЦРф is comparable in value with 
the leading term 1/4 UK •» 1/4 Ly*. 

The functions Д and Д п + г appear only if the Pauli principle 
is taken into account (90*0). Since -2<9K0, for low-lying 
collective phonons (for which always L>0) the functions A„ and 
Л п + г may take only positive values. The function Д increases with 
n,Inland L. It implies the shift of the strength of the n-phonon 
configuration towards higher excitation energy. Just the positive 
shift A n under the violation of the Pauli principle made it 
possible to conclude within the QPNtf .that low-lying 
two-phonon states should not exist in deformed nuclei. 

The underlined terms in (18), С20Э and (22) are generated by 
the interaction (4̂ ,. This interaction, earlier disregarded in the 
QPNM, couples the wave function components differing by an even 
number of phonons and results in the considerable additions in the 
diagonal matrix elements Mj[. 
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Let us get numerical estimates for N and M" .For simplicity, 
_. n m J 

we assume that <№ fyz . that means in fact the TDA. As a re-
suit, we may neglect terms of the type <5(F) and coupling between 
the components differing by more than two phonons. Since the aim 
of the present paper is the study of two-phonon states, it is 
sufficient to conserve only the components with n^4 in the wave 
function C7).For the quantities L, U and Я we use typical values 
obtained in the microscopic calculations within the QPNM for 1 6 8 E r 
and given in table 2 С in these calculations the wave function 
contained only one- and two- phonon components and a large phonon 
basis was taken into account). 

Table 2. The values of L, U and 9C for some two-phonon states 

State I, MeV U, MeV % 

0 + 

rr 
4 + 

rr 

4 
20 
20 

0,2 
0,3 
0,5 

-0,5 
-0,3 
-0,7 

The quantities N , M"*' and M"*2 as a function of % are given 
in figs. la-Id. It is seen from fig. la that for a certain value 
of Ж the quantity N„ vanishes, i.e. the corresponding n-phonon 
component disappears. The larger n, the smaller the violation of 
the Pauli principle is needed for total disappearing of th« 
component. The four-phonon component disappears approximately at 
the value of 3f obtained in the realistic calculations (see table 
2). This result confirms that in real nuclei the states composed 
of n24 phonons may be forbidden due to the violation of the Pauli 
principle. 

Figure lb represents the shifts A which take the large 
values.Figures lc and Id present the matrix elements M and 
n+a 
M n .It is shown that if the Pauli principle is slightly violated, 
the interaction between complex components is stronger than 
between the simple ones. In particular, the two-phonon component 
interacts «юге strongly with the three-phonon component than with 
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Fig. 1. The quantities N , Д , M"*' and M"** Cfigs. a), b), c) and 
d), respectively) as a functions of St. The calculations 
have been performed with formulas presented in table 1 and 
with (19), (20) and (33). 
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the one-phonon one. This indicates that in studying two-phonon 
states one cannot use only the components with nS2 in the wave 
function (7). With increasing |SK| complex components are 
suppressed more rapidly than the simple ones. As a result, the 
situation is reverse: the coupling between simple components 
becomes stronger than between complex ones. + 

It is seen from figs, lc and Id that the matrix elements M , 
existing only if the Pauli principle is violated, are comparable 

n+i 
in magnitude with M . This indicates once more the necessity of* 
taking account of the interaction HQQ. 

Figures la-Id, obtained for the case when the configurations 
are composed of the same phonons, provide a general and somewhat 
crude picture. However, this picture should be the similar also in 
the case when the configurations are composed of different phonons 
if they are low-lying ones. It is known that the principal 
two-quasiparticle components of low-lying phonens are formed by a 
small number of quasiparticle close to the Fermi level. This fact 
leads to approximately the same violation of the Pauli principle 
as in the case considered above. Note that in figs. la-Id the 
dependence of L on 9f is neglected,which is incorrect in general. 
For instance, for two-quasiparticle states С when %>-2) we have 
L*0. Thus, in the general case at %Ф-2 there should be a downward 
bend of the straight lines describing Д and M 2 and some change of 
the curves for other matrix elements. 

4. Basic equations of the multiphonon version of the QPNM 
Let us consider the multiphonon version of the QPNM with the 

Hamiltonian (2) and wave function (7) including the components 
with 0SnS4 phonons of a different type. Then, in contrast with the 
accepted QPNW''1" , the wave function (7) contains the components 
with n=3 and 4 and phononless Cn=0) component. The latter will be 
shown to influence the properties of low-lying states essentially. 
Let us show that the inclusion of configurations with n=3 and 4 
leads to the appearance of terms in the secular equation which can 
be treated as a shift of the strength of low-lying two-phonon 
states towards lower excitation energies. 
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Using the variational procedure 
«СФ^СК") Н ФСК'г»-7)ССФ*СКпЖКп))-1>=0, С 26 ) 

о " о ' о о 

where 75 is the energy of the s t a t e with Kn , we get the system of 
equations for the amplitudes R* n l 

o , • • • e n 

R< с» + v R< z> tf> = 0 c 2 7 ! 3 

gfg a «.»2 9 . 9 * 

R ' " P С7}) + У R'f> . M 9 ' 9 ' 2 + 7 R ' f W M 9 ' 9 * 9 ' 3 ^ , С 27.2 5 

R < 2 ! P ( r ? )+R < 0 > M° + 7 R l . l l M 9 , , 9 a + У R ' 3 > . . M 9 ' 9 * 9 i 

9 . 9 г

 9 , 9 г ' 9 . 9 г £; 9 . 3 i g; g^g;, 9. а г 9 з 9 . 9 * 

+ У R'*\ . .М 9 ' , д = 9 ' з 9 '*=0, С 27.3 5 
, . A , g g g g g з 

R < 3 > p ст?) + y R ( : > M 9 : 9 a 9 3

+ у ^ ' , M 9 ! S ? 9 ] 

9 э g 9 g g A g g . £* э э s s 
1 2 3 1 2 3 g 1 1 n ' п' » 1 » э = « a « 

+ ? R '* \ . . М 9 ; 9 к Э з 9 ; = 0 , С 27.4 J 
, f-. , д ; з к э з 9 ; 9 i 9

2

s 3 

g g g g 

J * > _ . . ^ _ < г > , .g. s 2 g 3 3 4 

P Стр + У R , ,M ! 
. д. д , д , д ж ' „A,- 9 9 : g 9 Г 9 г " 1 = г ° ' 9 г 

« < з> д д д д 
+ У R . . M! f . *=0 , С 27.5 5 

, и, , a g g g g g 
where 

V ' - 9 n 9 . •••Зп 9 i 9 n V - ' 3 n 
From (27. D-C27.5) one can eas i ly derive the system of equations 
f o r R ' 2 ' . For t h i s purpose, the sums of products of matrix 
elements of the same type are considered in the coherent 
approximation tha t , for instance, for the amplitudes R ( 4 > has 
the form ° . 8 * в з в 4 
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г п.*. M 9, 9» 93 94 H
9«W 9;;.tf.> CM 0''» 9' MI f ? «)*. (29) "аГя;'в;'о; в ; в ^ g,g ae a s,g ag,g 4 

As a result we have 

where а;», 9 ' 9 * 9 , ° * 

f!.l!?«4>-P,, „ «»>«. „.« „-Ч, „.<*, я . ) + М 9 , 9 а М 9 , Я , 7)-°; 9 i 9 « 9 * V 9 > 9 *' 9 a a i ' °» a »' B t ° ° 

* в в в , Г , 9 « 9 * в « в » J > J » J » 
9 J . V , 

It к.It.к. к.к.к.к, -I 

к к к к 
1 * 3 4 

1 M a V ' 4 ' D ' " *Рк к к к С * } ' Г ,. 9 . 9 * 9 . 9 а к . к « к 1 к 4 

Я. Я. (• Я Я Я ' в,д а д,д а £ я д я { ^ } 

_ к.к.к к к к к к , -i 
I V J J Мд д Рк к к к с » э 

к к к к 
I * * 3 * 4 

V . J » J .J .J , J 9 9

 ( 3 3 3 

_ k . k . k . k . -> 

k k k k < * » i * 3 4 

In C3D-C33) indices j and к run the same values as index g. If 
the Pauli principle is neglected, the coupling of the two-phonon 
component with the n=0 and 4 components disappear whereas with 
the n*l and 3 ones is conserved: 

J« Ja Jj 
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The secular equation has the form 
det||F°J*fCn)||=0. (35) 

In the QWW'1"3''', instead of C30) the system of equations for 
the amplitudes R^" is considered and the quantity P Cn) is 
shown to be a pole of the secular equation. In the present paper, 
since we investigate two-phonon states, the final system of 
equations is written for the amplitudes R'*' . Note that due to 

9 j a a approximation of the type С29), some details of the secular 
equation will depend on the type of the amplitudes for which the 
final equations are written. However, the basic properties of the 
secular equation to be considered below will not change. 

The secular equation С35) obtained in the approximation (29) 
may have extraneous roots. So, this equation is inapplicable for 
realistic calculations but can be used for analysis and numerical 
estimates. 

The diagonal part of the secular equation at N >0 can be 
written in the form ' * 

F"'°*CT))=N Я <М + в + Д „ - n С 36 ) 
a.e, g,ea g, a, g,e 2 

+ Г* <СМ Я , Я а) г7}-'- 5сМ 3 , в а) гР-Сп) - yCM J' J* J 3) Ip-V , Cn) 9,за о £ э g i 9,эг J,JaJ, 
J i J a J i 

" I ™ 'з* " *>%\ k k CTJD». 
.. u •. u i * K i K a 3 * 4 к к к к 
1 ЛЯ 4 

Earlier, in the refs.' 1 _ 3' only the terms 
К . <Ч, + w„ + К n -4 " K l

a 1 t»£,B'5P:,(i|)> ( 37 ) 
'iS, Bt "» 9 t 3 2 9 i a a ff 9 ° 

have been taken into account in the diagonal part. 
Let us consider the two-phonon component g, ĝ  with the 

strength mainly concentrated in the state with energy n. It is 
seen from (36) that the interaction of the component g tg a with the 
other components leads to the additional terms which can be 
treated as shifts with respect to the energyw *-W • A. _ . The 

•i "* "t ™« 15 



signs of the shifts are determined by the energy positions of 
these components with respect to 4. All the n-phonon states lying 
above (below) the state g g in the excitation energy will push 
out the strength of this state towards lower (higher) energies. 
Here, one can easily see an analogy with the well-known quantum 
mechanical example of mutual pushing apart of two interacting 
levels. 

If the two-phonon component considered is a low-lying one, 
the majority of components interacting with it lie higher in 
energy. These components will lead to a general coherent shift of 
the strength of g g towards lower energies and this shift 
will cancel to a certain extent the shift Л „ arising due to the 
violation of the Pauli principle. Thus, the statement' that 
deformed nuclei should not contain low-lying two-phonon states 
which is based on the effect produced by the violation of the 
Pauli principle without taking into account the coupling with 
complex configurations needs revision. 

It is to be mentioned that equation (36) allows one to analyse 
some results obtained in the MPM and SCCM. For instance, the 
calculations within these models systematically provide that the 
0* state is higher than the 4* state. This result is somewhat 
difficult to explain within the MPM and SCCM but it can easily be 
interpreted with the use of eq. (36). Indeed, if the wave function 
(7) is composed only of y-vibrational phonons, then the O* state 
will contain components with n=0, 2 and 4 whereas the 4 + state 
—components with n=2 and 4. Equation (36) will be 

Flll*W% я <wg + шя + L9 я ~ * C ю } 

+ С « M ^ S V - I ^11к'кзк*^К\ „ v tij)»-
9 ' ° 2 к к к к 9' 3 а k . V » k 4 

1 8 3 4 
It is seen from (38) that the interaction of the component g g 
with the phononless one that occurs only in the 0+-states,shifts 
the strength of the tf state towards higher excitation energy, 
which explains the above result.An analogous situation is expected 
for two-phonon 0*and 2* levels constructed of octupole phonons 
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with X^t=311 and for two-phonon 0* and t levels constructed of 
phonons with Xpi»321. 

5. Summary and conclusions 
The Miltiphonon version of the QPNrf*~3/ takes into account 

not only the Pauli principle but also other effects important for 
the properties of low-lying two-phonon states (coupling with 
multiphonon configurations and phonon correlations in the ground 
state). Simple equations characterising the coupling between 
different components of the wave function and secular equation are 
derived. In virtue of the approximations made in this paper these 
equations cannot be used for realistic calculations but they are 
useful for clarifying the considered effects and for numerical 
estimations. They can serve as a starting point in considering a 
complicated nature of the interaction of configurations with a 
different number of phonons. 

Numerical estimates are obtained for the matrix elements 
coupling different configurations. The Hamiltonian term Q +Q +, 
which has earlier been disregarded in the QPNM while considering 
two-phonon excitations, was shown to be important. This 
interaction coupling configuration differing by two phonons 
arises if the Pauli principle is violated. 

It is shown that if the violation of the Pauli principle 
shifts the strength of low-lying two-phonon states toward higher 
excitation energies, the coupling with multiphonon configurations 
can give an opposite effect of the same order. As a result, the 
multiphonon version of the QPNM admits, in principle, the 
existence of low-lying two-phonon states in deformed nuclei, which 
is in agreement with the .results of other microscopic models / 8 , 9Л 
However, these states have not yet been observed experimentally. 
Apparently, in real nuclei the majority of low-lying two-phonon 
states, owing to the interaction with other configurations, are 
distributed over many levels. Then, the low-lying states will 
have, as a rule, small two-phonon components. The absence of 
low-lying two-phonon states may hold for many deformed nuclei but 
it will be caused more by the fragmentation of two-phonon states 
than by their pushing due to the violation of the Pauli principle. 
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This situation would not contradict the conclusions of the 
available nodels and the experimental data on the transfer 
reactions"'13"15?' 

The author is grateful to Profs. V. G. Soloviev, 
R. Piepenbring, 0. Scholten and to Drs. A.I. Vdovin, V.V. Voronov 
and Nguen Dinh Dang for fruitful discussions. 
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Нестеренко В.О. Е4-89-51 
Многофононный вариант КФМЯ: приложение 
к проблеме существования низколежащих 
двухфононных состояний в деформированных 
ядрах 

Предложен многофонный вариант квазичастично-фононной мо­
дели ядра /КФМЯ/, удобный для качественного анализа взаимо­
действия конфигураций с разным числом фононов. Подробно об­
суждаются свойства матричных элементов, связывающих такие 
конфигурации. Показано, что если нарушение принципа Паули 
приводит к сдвигу силы низколежащих двухфононных состояний 
вверх по энергии возбуждения, то связь с более сложными 
конфигурациями дает обратный эффект такого же порядка. 
В результате, многофонный вариант КФМЯ допускает существо­
вание низколежащих двухфононных состояний в деформированных 
ядрах, снимая тем самым противоречие, имевшее место по это­
му вопросу между КФМЯ и другими микроскопическими моделями. 

Работа выполена в Лаборатории теоретической физики ОИЯИ. 
Препринт Объединенного института ядерных исследований. Дубне 1989 

Nesterenko V.O. E4-89-5I 
The Multiphonon Version of the 
Ouasiparticle-Phonon Nuclear Model: 
Application to the Problem of Existence 
of Low-Lying Two-Phonon States in Deformed 
Nuclei 

The multiphonon version of the quasiparticle-phonon nuc­
lear model (QPNM) convenient for an analysis of an interac­
tion between configurations with a different number of pho-
nons is proposed. The properties of the matrix elements 
coupling these configurations are discussed in detail. It 
is shown that if violation of the Pauli principle shifts 
the strengths of low-lying two-phonon states towards highei 
excitation energies, the interaction with complex configu­
rations (three-phonon, etc.) provides the opposite effect 
of the same order. As a result, the multiphonon version of 
the QPNM admits the existence of low-lying two-phonon sta­
tes in deformed nuclei thus removing the discrepancy bet­
ween the OPNM and other microscopic models. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. j 
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