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1. Introduction

The two-phonon components of low-lying states 1n even-even
deformed- nuclei have been discussed for a long timé1™% | These
components can essentially influence the properties of low-lying
states such as the excitation energy, electromagnetic transitions,
form-factors 1in transfer reactions, etc.. The question of
two-phonon components became now very urgent due to a rich
experimental mf‘ormat.mr(1 -157 on low-lying levels in Er. This
nucleus is considered now as a kind of a proving ground for
theoretical models. Apparently, the experimental data in Er can
hardly be described without including two-phonon components into
consideration.

One of the most obscure problems is the existence of
low-lying states with dominating two-phonon components (we shall
call them the two-phonon states) in deformed nuclei. Still there
are no reliable experimental data undoubtedly testifying to the
existence of these states. Theoretical models provide
contradictory predictions. The QPNM asserts that low-lying
two-phonon states should not exist in deformed nuclei since the
violation of the Pauli principle in the wave function leads to the
shift of the strength of these states towards higher excitation
energies’l"a’. Other approaches""'g’. in particular, the
microscopic multiphonon model (P78 and the self-consistent
collective coordinate method (SCCM)”® admit or at least do not
reject the existence of these states. It is to be emphasized that
both schematic calculations in the MPM in which the multiphonon
wave function is constructed of only two y-vibrational phonons in
the Tamm-Dancoff approximation (TDA) and more realistic
calculations in the SCCM in which the wave function is constructed
of many phonons of different multipolarity in the random phase
approximation (RPA) provide similar results. The comparison of
these model€®” shows that the discrepancy between the QFNM
predictions and those of other models is mainly due to the fact
that in contrast with the MPM and SCCM the QPNM disregards the
interaction with multiphonon configurations which lowers the
energies of low-lying two-phonon states.



In the present paper we show that the discrepancy between the
models can be removed by taking into account in the QPNM the
interaction with complex configurations. For this purpose a
multiphonon version of the QPNM is constructed.

The analysis of the interaction of two-phonon states with
other configurations faces troubles within the MPM and SCCM since
the SCCM has a rather cumbersome structure and the MPM deals with
the numerical diagonalisation of the Hamiltonian matrix without
the secular equation . In this connection, the second aim of this
paper is to derive such formulas, which are on the one hand as
simple as possible and on the other hand clarify the coupling
between different configurations and can be used for numerical
estimates.

In sect. 2 the Hamiltonian and wave function are considered
in a multiphonon version of the QPNM. In sect. 3 an analysis of
the matrix elements between the components of the wave function
with a different number of phonons is presented in detail. In
sect. 4 the secular equation is derived, the influence of
multiphonon configurations on the properties of low-lying
two-phonon states is discussed and the comparison with other
models is made. Summary and conclusions are expounded in sect. 5.

2. The Hamiltonian and wave function

The Hamiltonian has the form
H.H:p+Hpalr+Hnm’ 1)
where fL is the average field as the Saxon-Woods potential, }L“r
is the monopole pairing interaction, fL_ are the isoscalar and
isovector multipole-multipole forces. After calculating one-phonon
excitations within the RPA, the normalised Hamiltonian (1) can be
expressed through the phonon and quasiparticle operators
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The following notation has been used in (3)-(5) :

e . + 0y -9 iy
Q*= 12 zcwg‘ qu (q,q,4 ¢q‘ qu(ql q -2 (6)
q,9;

+

where A' (q,q, @) and B(q,q, f) are operators of the type a and

a, i

a’ a. with K +K =y; o' is the creation operator of the one-qua-

9, 4, q

sxparucle state with quantum numbers g and energy ¢ ; q=oq, K=ok,

p=ou, K20, ¢20; K is the angular momentum projection onto the

nuclear symmetry axis; o=11; g=Aui are the multipolarity and number

of the RPA phonon; Z is the summation only over neutron (7=N)
q,q,€T

or only over prot:on (t=2) one-quasiparticle states. The

expressions for the functions L o' ¥ l""'r can be determined fram

ref?%”. These functions are t.he lau'gerl the higher is the col-
lectivity of phonons. If the ©phonons are close to
two-quasiparticle states these functions approximately equal zero.

The Lterm H, generates quasiparticle and phonon excitations.
The quasiparticle-phonon interaction HuQ couples the wave function
components differing by an odd number of phonons. The term
couples the components differing by an even number of phonons.
This term has earlier been neglected in the QPNM. By analogy with
the principle of cancellation of dangerous dlagrams’ one can
show that in the one-phonon approximation HQ will be compensated
by the first term of Hu Further, we shall see that with the
inclusion of the multiphonon wave function and Pauli principle the
interaction HQQ has not to be neglected.



The multiphonon wave function is taken in the form

wpczf)=ck‘°’+2R“’6 Q +3 p B 5 _ _Qf Q*
g % H K3, ; ; H M, 9,8, H U, . K, 9 9,

+..+3y p° v 6 R U Y I TR 2|
g -..9 HyooHp 99 Bt HHLK gy 9n

where R;“f g is the n-phonon amplitude; | > is the RPA vacuunm,
t°" " %n
i.e. Q_| >=0; p is the number of the state with given KZ. The
KronecEer symbols connect the projections of phonon moments
= K,
onto K . The coefficients p .pare chosen so that the normali-

n
sation condition of the wave functlon is
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where

K, = Ko

Ng‘...gz-1 +X (gn"'gx Igl"'gn) . (9

K
The function X °(gn...g‘|g,...gn) appears only if the Pauli
principle is violated in components with n22. One can easily be
convinced that

-n O T1/2
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where the coefficient p“° u takes into account the cases when
RETTR
nonzero moment project:ons of some phonons are coupled to the

total projection equal to zero (for instance, for the states with
K™=4* composed of four y-vibrational phonons we have E:;gg=1/v,53.
For simplicity, we have omitted indices Ko and p in the amplitudes
R‘“’ g, .and the Kronecker symbols in (9). Further, the index K

9,
w1ll be omitted in the functions in (9)-(10).



The wave functions (7) are not orthogonal because of
nonorthogonality of n-phonon components QF ...Q%| >. Indeed, at
g g,

g,...9,%g,...g, we have !

< ...Q @ ...Q") > ~xg ... ‘...g) # 0. (11)
Ioa,, OEIOE: Qa’,{ g9, --9,19/...9;
The above nonorthogonality will not effect the results given below
since in what follows we shall use approximations at which
nondjagonal quantities of the type (11) are neglected.

Note that the wave function (7) and Hamiltonian (1} are in fact
the same as in the MPM. Therefore, the basic results given below
are valid also for the MPM. There are several essential
differences between our approach and the MPM: i) instead of RPA
the MPM uses the TDA, ii) the Hamiltonian in the MPM in contrast
with (2)-(5) is not expressed through phonon operators, iii) in
the MPM a direct diagonalisation of the Hamiltonian matrix is
performed (the secular equation is not used).

3. Matrix elements
Now we derive expressions for the matrix elements

g ...9
M’a .;‘= ’ ’ 6- - 6-0 -
9,...9, py'...pnpyl...ymz “n""’“n‘ko p‘+..,¢ym,l°
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taking account of the Pauli principle. For Lhis purpose we use
exact commutation relations (taking account of the quasiparticle

structure of phonons) between the operators in (3)-(5) and (7). As

[ n
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an example, we give the commutation relations for the phonons with
g=20i (for simplicity, we use index i instead of g):.

(01'(01 .Q:‘ 11.):'(2(1,13|111')o‘,+ xcitizu,i')o:,;. ( 14)
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It. is seen from (16.1)-(17.4) thal the functions X(i i i 1 ) and

1 2 x
X(x i1d, ) are of an order of y* and y*¢, respectively.

In general expressions for the matrix elements (121-(13) are
rather cumbersome. It is more convenient Lo consider tLhese
expressions for the wave function (7) formed by phonons of only
one type with g=201. Then, the state (7) has quantum numbers KI'=0}
and the matrix elements (12)-(13) conserving all the basic
properties of the general case acquire a simple and clear form
convenient for analysis and numerical estimates:
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Expressions (18)-(22), except for the terms with index n21, hoid
at n20. The forms of N and E‘n'z for some values of n, we shall
need in what follows, are given in table 1.In (18)-(24) and table 1

n n
we use the notation: M:EMg:::g , anNm WSO L=ng ,
A Wn

Table 1. Expressions for N and A:’z for some values of n in the

approximation g =...=g =201.

';1" ----------- N _______________________ 'AR:; _______________
e | e Lo O [ 1
0 1 18720 Lx
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%=%(gg|ag) ., §=§(gg|gg), r=r9? | ¢=c99 ,6(F) is a value of an
q,q, 9,9

order of F. As is seen from (18)—%23) and table 1, in the
approximation gl=...=gn=201 all the functions arising due to the
inclusion of the Pauli principle into consideration can be
expressed through &.

In (18)-(24) we have written down only the terms that are
dominating in both the RPA and TDA. For the other terms which
contain inverse phonon amplitudes ¢ and are absent in the TDA we
give only the order of their magnitude. It is seen that in the TDA
the Hamiltonian (2) couples the wave function components differing
from each other not more than by two phonons. For collective
one-phonon states ,when the inverse amplitudes ¢ can be compared
in magnitude with the direct ones p, the RPA should be used
instead of the TDA, In this case, there arises coupling between
components differing more than hy two phonons. Alsoc, additional
terms including the functions % and ¢ appear in the matrix
elements (18)-(20). For instance, in the RPA

b§=1/2! 2+ R -1/41%-12 Li), (25)

where the addition 1,2 LX ~ 1/2 Ly*¢ is comparable in value with
the leading term 14 LX ~ 1.4 Ly*.

The functions 4 and A)*® appear only if the Pauli principle
is taken intc account (%#0). Since -25%<0, for low-lying
collective phonons (for which always L>0) the functions A, and
A:*‘ may take only positive values. The function 4 increases with
n, IXiand L. It implies the shift of the strength of the n-phonon
configuration towards higher excitation energy. Just the positive
shift A, under the violation of the Pauli principle made it
possible to conclude within the QPNM173/ that low-lying
two-phonon states should not exist in deformed nuclei.

The underlined terms in (18), (20) and (22) are generated by
the interaction . This interaction, earlier disregarded in the
QPNM, couples the wave function components differing by an even
number of phonons and results 1n the considerable additions in the

diagonal matrix elements Mj.



Let us get numerical estimates for N, and M; .For simplicity,

we assume that ¢g g?wg Q. that means in fact the TDA. As a re-
19,

sult, we may negleél terms of the type 8(F) and coupling between
the components differing by more than two phonons. Since the aim
of the present paper is the study of two-phonon states, it is
sufficient to conserve only the components with n<4 in Lhe wave
function (7).For the quantities L, U and X we use typical values
obtained in the microscopic calculations within the QPNM for 168Er
and given in table 2 (in these calculations the wave function
contained only one- and two- phonon components and a large phonon
basis was taken into account).

Table 2. The values of L, U and X for some two-phonon states

State [ L wev U, MeV | X
ot 4 0,2 -0,5
i _
0y, 20 0.5 0.3
4;7 20 0.5 -0,7

The quantities N , M'*' and M'*? as a function of X are given
in figs. 1a-1d. It is seen from fig. la that for a certain value
of X the quantity N, vanishes, i.e. the corresponding n-phonon
component disappears. The larger n, the smaller the violation of
the Pauli principle is needed for total disappearing of the
component. The four-phonon component disappears approximately at
the value of X obtained in the realisltic calculations (see table
2). This result confirms that in real nuclei the states composed
of n24 phonons may be forbidden due to the violation of the Pauli
principle.

Figure 1b represents the shifts q|which take the large
values.Figures 1lc and 1d preseni the matrix elements M:‘land

M:‘..IL is shown that if the Pauli principle is slightly viclated,
the interaction between complex components is stronger than
between the simple ones. In particular, the two-phonon component
interacts more strongly with the three-phonon component than with

10
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Fig. 1. The quantities N, 4, M:" and M:" (figs. a), b), ¢) and
' d), respectively) as a functions of X. The calculations
have been performed with formulas presented in table 1 and
with (19), (20) and (23).
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the one-phonon one. This indicates that in studying two-phonon
states one cannot use only the components with ng2 in the wave
function (7). With increasing |%| complex components are
suppressed more rapidly than the simple ones. As a resuli, the
situation is reverse: the coupling between simple components
becomes stronger than between complex ones. ‘e

It is seen from figs. 1c¢ and 1d that the matrix elements M R
existing only if the Pauli principle is violated, are comparable

in magnitude with NF+‘. This indicates once more the necessity of*
taking account of the interaction

Figures la-1d, obtained for the case when the conflguratxons
are composed of the same phonons, provide a general and somewhat
crude picture. However, this picture should be the similar also in
the case when the configurations are composed of different phonons
if they are low-lying ones. It is known that the principal
two-quasiparticle components of low-lying piioncns are formed by a
small number of quasiparticle close to the Fermi level. This fact
leads to approximaiely the same violation of the Pauli principle
as in the case considered above. Note that in figs. 1a-1d the
dependence of L on X is neglected,which is incorrect in general.
For instance, for two-quasiparticle states (when X%-2) we have
L%0. Thus, in the general case al 32 there should be a downward
bend of the straight lines describing 4 and Mj and some change of
the curves for other matrix elements.

4. Basic equations of the multiphonon version of the QPNM

Let .us consider the multiphonon version of the QPNM with the
Hamiltonian (2) and wave function (7) including the components
with 02n<4 phonons of a different type. Then, in contrast with the

accepted QPNM’1'3/, the wave function (7) contains the components

with n=3 and 4 and phononless (n=0) component, The latter will be
shown Lo influence the properties of low-lying states essentially.
Let us show that the inclusion of configurations with n=3 and 4
leads to the appearance of terms in the secular equation which can
be treated as a shift of the strength of low-lying two-phonon
states towards lower excitation energies.

12



Using the variational procedure

SCCP*RT B WMD) -nC (P RMHUERTII-13=0, (26)

vhere 5 is the energy of the state with Kf , we get the system of
equations for the amplitudes R;“’
L

.gn
RO+ Y R M =0, (2r.1)
gy, 99 9,9,
172
g g . g a.g .
RYVP () + ) RELMITE 4y R MR, cerz2)
9, g, gHgr 9192 9, g & g 91929, 9,
t 2 t72%3
R(z) P (n) +R(0)M0 + R(l)Mglgz+ 2 R(3) g;g;g;
9,8, 9,9, 5,9, & g, g g;g;g;glg;g; 9,9,
g°9.9.9°
+ Y RS LM, € 27.3)
g"g’zg'ag‘ 172%3%4 152
R(:n P (n) +2R(1)Mg:gzg:+ 2 R(z) Mg‘gzga
9,9,9, 9,9,9, g9 s g §, %i% 9%
g-9.9.9,
£y RM, M2 274, (27.4)
e e ,91929394 9,9.9,
91929394
C4) ) (2) g g g.g
P (n) + 2 R, Mi-2rars
9,9,9,9, 9,9,9.9, gg, 919 99
{3) g.9.,9.9
+ 2 Ry g g Mgfg?g? ‘=0, (27.8)
g‘lg'zg; 17273 “17%2%3
where
P (n)=N (w +, .. .+w_ +A -n. ¢ 28)
$ 98y " G 9 9 Sp 88y "

From (27.13-(27.5) one can easily derive the system of equations
forlQ;’; . For this purpose, the sums of products of matrix

2
elemenis of the same type are c¢onsidered in the coherent
approximation that, for instance, for the amplitudes R'*’ has
9,9,9,9,
the form

13



XY 9,9,9,9, 9,"9:9:9:3 o (H" 9,9,9‘),. 29
973" uRgl”g:g;'g:MD; p‘ag': 9; 9'39-3 9, 93939‘ 9; 9;9':
172%2%¢
As a result we have
TR =0, TS
where 9,9, 172 M1 72
9.9, 99

glgt - ] IM 178 -1
Fg; 95(n)-P°x gatn)(dg'.g; 692'9;4»69"9,'691’ g;)+ M, L, N

_ 192,892, - lidadagd dadag?
PR A S KO BRI AN e R NI €31)
g 3,10,

k k k k_ k k k k -1

- M 1 23 4“5 'ﬂ 3 QP (r’) .
t’kagak‘ glgﬂ glq! klklk:kd
ﬁ’:":’: H"i"a"a H"l"a',angngzp't
=] - n)
8,9, 9,9, Z_ v 9 9 (32>
k k. k. k k k k. k. -1
- MI!!OMllidp ()'
. kzk , dilads 99, k kgk kT
1 23 4
3.9 -1
12 (=P m - S i e ety
3,459, 1,0,4,0 2 ] g " ¢ 313)
K k_k k. _ -
D Ak A
kK k k. k JI Jl"i 1 33 4
1 2 2 4

In (31)~(33) indices j and k run the same values as index g. If
the Pauli principle is neglected, the coupling of the two-phonon
component. with Lhe n=0 and 4 components disappear whereas with
the n={ and 3 ones is conserved:

9,82 4.

Fc;o'.(n) Pot 9,(77)(69,.9;69..9; * 69‘.9'.69‘. 9;)

o 192,91 %an" - wlidataghidadag?

ZH: LA XA M:;g,. By m s
"I"IJI
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The secular equation has the form
det | Fo: °'c)||-o (35)

In the QPNM” 1-3~ , lnstead of (30) the system of equations for
the amplitudes R“’ is considered and the quantity P (n is

shown to be a pole of the secular equation. In the present paper,
since we investigate two-phonon states, the final system of
equations is written for the amplitudesR! "9 . Note that due to

approximation of the type (29), some det.alls of the secular
equation will depend on the type of the amplitudes for which the
final equations are written. However, the basic properties of the
secular equation to be considered below will not change.

The secular equation (35) obtained in the approximation (29)
may have extraneous roots. So, this equation is inapplicable for
realistic calculations but can be used for analysis and numerical
estimates.

The diagonal part of the secular equation at N g >0 can be
written in the form 9192

172 P -
Fg'g.(n)-Nglgz(mg.+ m°.+ A’:’a n ( 36)

-1 glgi 2,.-1_ 9192 2p-1 - !"2 Iy2p-
AR A LD U PR L sz’ o

1 2 3
k k_k

-3 LAy a* RIS 2220
kl kikikﬂ .

Earlier, in the refs.”!3/ only the terms
_— = 1 193 ~1 ¢ 37

R W ch’ P2 ) )
have been taken into account in t.he diagonal part.

Let us consider the t.wo—phonongcompo%aent. g g, with the
strength mainly concentrated in the state with energy n. It is
seen from (36) that the interaction of the component g g, with the
other components leads to the additional terms which can be
treated as ‘shifts with respect to the energyw, vwg +% g The

[} 2 17a
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signs of the shifts are determined by the energy positions of
these components with respect to 3. All the n-phonon states lying
above (below) the state g g, in the excitation energy will push
out the strength of this state towards lower (higher) energies.
Here, one can easily see an analogy with the well-known quantum
mechanical example of mutual pushing apart of two interacting
levels.

If the two-phonon component considered is a low-lying one,
the majority of components interacting with it lie higher in
energy. These components will lead to a general coherent shift of
the strength of 9,9, towards lower energies and this shift
will cancelto a certain extent the shift % g arising due to the

violation of the Pauli principle. Thus, t.lhea statement'1™3 that
deformed nuclei should not contain low-lying two-phonon states
which is based on the effect produced by the violation of the
Pauli principle without taking into account the coupling with
complex configurations needs revision.

It is to be mentioned that equation (3B) allows one to analyse
some results obtained in the MPM and SCCM. For instance, the
calculations within these models systematically provide that the
0; state is higher than the 4; state. This result is somewhat
diFficult to explain within the ﬁPM and SCCM but it can easily be
interpreted with the use of eq. (36). Indeed, if the wave function
(7) is composed only of y-vibrational phonons, then the G state
will contain components with n=0, 2 and 4 whereas the 4% state
~-components with n=2 and 4. Equation (36) will be

(wg+wg+Agg-n (38>

gxga 3 2 172

9192 -
Fq‘gz(n)—N
k_k_k
2 3 442 1
9. ) P;:kak:lk4

(n)).
% k. k k k.

1 2 3 &

It is seen from (38) that the interaction of the component 9,9,
with the phononless one that occurs only in the 0%-states,shifts
the strength of the @, state towards higher éxcitation energy,
which explains the above result.an analogous situation is expected

for two-phonon 0*and 2% levels constructed of octupole phonons

AR Sl ) i,
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with Aue=311 and for two-phonon 0° and £ levels constructed of
phonons with Aui=321,

5, Summary and conclusions

The multiphonon version of the oPM{1~3/ takes into account
not only the Pauli principle but also other effects important for
the properties of low-lying two-phonon states (coupling with
multiphonon configurations and phonon correlations in the ground
state). Simple equations characterising the coupling between
different components of the wave function and secular equation are
derived. In virtue of Lhe approximations made in this paper these
equations cannot be used for realistic calculations but they are
useful for clarifying the considered effects and for numerical
estimations., They can serve as a starting point in considering a
complicated nature of the interaction of configurations with a
different number of phonons.

Numerical estimates are obtained for the matrix elements
coupling different configurations. The Hamiltonian term Q*Q*,
which has earlier been disregarded in the QPNM while considering
two-phonon excitations, was shown to be important. This
interaction coupling configuration differing by two phonons

arises if the Pauli principle is violated.

It is shown that if the violation of the Pauli principle
shifts the strength of low-lying two-phonon states toward higher
excitation energies, the coupling with multiphonon configurations
can give an opposite effect of the same order. As a result, the
multiphonon version of the QPNM admits, in principle, the
existence of low-lying two-phonon states in deformed nuclei, which
is in agreement with the results of other micros,cop.ic models /8-
However, these states have not yet been observed experimentally.
Apparently, in real nuclei the majority of low-lying two-phonon
states, owing to the interaction with other configurations, are
distributed over many levels. Then, the low-lying states will
have, as a rule, small two-phonon components. The absence of
low-lying two-phonon states may hold for many deformed nuclei but
it will be caused more by the fragmentation of two-phonon states
than by their pushing due to the violation of the Pauli principle.

17



This situation would not contradict the conclusions of tLhe
available models and the experimental data on the tiransfer
reactions”

The author s grateful Lo Profs. V.G. Soloviev,
R. Piepenbring, 0. Scholten and to Drs. A.I. Vdovin, V.V. Voronov
and Nguen Dinh Dang for fruitful discussions.
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Hecrtepenxo B.O. E4-89-51
MHorodoHOHHbIT BapuaHT KOMA: nmpunoxenue
X npo6neMe CymeCTBOBAHHA HH3KOJIeXauMX
OBYXGOHOHHBX COCTOSHHI B AedopMHMPOBAaHHbLIX
AApax

flpensioxeH MHOrodOHHBIT BapPHAHT KBa3Huac THYHO—GOHOHHON MO
neny appa /KOMA/, yooGHeit ANA KadyeCTBEHHOr'O aHaNM3a B3auMoO-
aeficTBHA KoHbUrypanuit ¢ pasHoM 4HcliioM doHoHOB. llogpoGHO 064
CYyXOalTCA CBOHCTBAa MAaTPHUYHLIX 3JIEMEHTOB, CBH3bBAMHX TaKHe
KoddHrypauuu. [lokasaHo, 4YTO eciH HapyumeHHe NpHHuuna laymm
NPHBOAMT K CABHTY CHIIBI HH3KOJEXamuXx ABYXGOHOHHBIX COCTOAHHH
BBepX Nno JHeprHuH Bo3GyxHeHHA, TO CBA3b C Goliee CIOXHLMH
KoHndurypauuamMd paet obGpaTHuit addekT Taxoro xe nopsaxa.
B pesynbraTe, MHorodoHHpii BapHadHT KOMA ponyckaeT cymecTBO-
BaHue HH3KOJleXamnxX ABYXGOHOHHHX COCTOAHHI B AedopMupOBaHHBIY
Anpax, CHHMasg TeéM CaMbiM NPOTHBODEYHE, HMEBMEEe MecTO IO 3TOo-]
My sonpocy Mmexay KOMA u gpyruMH MMKDOCKONHYECKHMH MOOEJISIMH.

Pabora BamosieHa B JlabopaTopHH TeopeTHYeckoil du3uku OHIH.
Tpenpuut O61eaMHeNHOr0 MMCTHTYTA AAEPHBIX Hcenenonauwis. JlyGua 1989

Nesterenko V.O. E4-89-51
The Multiphonon Version of the
Quasiparticle-Phonon Nuclear Model:
Application to the Problem of Existence
of Low-Lying Two-Phonon States in Deformed
Nuclei
The multiphonon version of the quasiparticle-phonon nuc-
lear model (QPNM) convenient for an analysis of an interacH
tion between configurations with a different number of pho
nons is proposed. The properties of the matrix elements
coupling these configurations are discussed in detail. It
is shown that if violation of the Pauli principle shifts
the strengths of low-lying two—phonon states towards higher
excitation energies, the interaction with complex configu~-
rations (three—phonon, etc.) provides the opposite effect
of the same order. As a result, the multiphonon version of
the OPNM admits the existence of low-lying two-phonon sta-
tes in deformed nuclei thus removing the discrepancy bet- |
ween the OPNM and other microscopic models. !
The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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