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ABSTRACT

We analyze the one-component, one-dimensional, reaction-diffusion equation through a

simple inverse method. We confine the system and fix the boundary conditions as to induce pattern

formation. We analyze the stability of those patterns. Our goal is to get information about the

reaction term out of the preknowledgment of the pattern.
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The one-component, one-dimensional, reaction-diffusion equation was recently revis-
ited and profile reaction-rate pairs were generated through a simple inverse method [1]. In that
work, travelling wave solutions were found to be stable in unbounded systems, provided the front
waves propagated with bounded velocities. We shall use in this letter that inverse method of solu-
tion. After confining the system to finite geometries, we shall propose several steady state profiles
motivated on different physical problems. We shall find their associated source terms and analyze
their stability in front of perturbations. By means of this analysis we shall provide information
about the dynamical nonlinear excitation of the media for those cases in which the pattern is (say
experimentally) given.

The equation we care about is:

(z , t ) + / (u ) ( l a )

where u is the concentration of the species of interest, D is its diffusion coefficient and / ( u ) some
unknown function which quantifies a local source for the diffusing species. As we are considering
the steady state situation, we set:

u(x,t)=u(x) (16)

which corresponds to a stationary profile.

The inversion procedure, whose details can be found in Ref.[l], works as follows: we
first lower the degree of the equation by introducing a new variable

iKu) = ux(x) (2a)

(that can be done since Eq.( 1) is autonomous [2]) and assume that the nonlinearity is only a function

of the new variable:

(26)

(this assumption is not essential but preserves analyticity). Then we invert the role of the variables
by setting:

and so,
dd> —Dib

u — — = . (3)
dij) -R(V0

Note that if we set

c c L

where c^ is some reference concentration value and L is a characteristic length of the system, say
its one-dimensional size, Eq.(3) is dimensionless.



Case a:

Let us first consider a simplified form for the flux of thermal neutrons [3] in the core of
a reactor. We restrict the geometry to 0 < % < 1 and propose the pattern:

with boundary conditions:

which fix

(or

(4a)

(46)

fl_

Following the steps sketched above, we get:

2il/2

(5)

and through Eq.(3) with the defintions (2):

/(«) = DB2(u-A) . (6)

Let us now analyze the stability of the proposed pattern generated by the reaction rate (6). We set,
as usual,

4>{x,t) = <f>a(x) + e(x,t) (7)

with cf>a coming from (4) and e some small perturbation. We get

st(x,t) = Dexx( x, t) + Fa( x) e( x, t)

where
Fa(x) = =-j- = const.

As Eq.(8) is linear it is separable into product solutions of the form

rendering

with

and so, T] ~ sin(/j7ra;) and

(8)

(9)

(10)

(11)

77(0) = t ) ( l ) = 0

r. 2 2 DB

3

+ Xp = 0 . (12)



The first eigenvalue is the only one which matters

The pattern will be stable for X > 0, that is for ^ < TT2 . ^ = 7r2 locates a critical line in the
parameter space.

Case b:

We shall revisit now the Schlogl model for a nonlinear chemical reaction showing a

nonequilibrium phase transition [4]. We propose the typical hyperbolic-tangent profile

<f>(x) = ̂ [ 1 + tanh (Bx)] (13a)

with the boundary conditions

= 4 [ 1 ± tanh B] (136)

for a system confined to — 1 < x < 1. We obtain

rendering

= 1 -15 -1 \ d4)

f(u)=2{j\ D{-u* + 3Au2 -2Au] (15)

which is the expected cubic nonlinearity.

Let us now analyze the stability of the hyperbolic-tangent pattern. After applying a small
local perturbation we re-obtain Eq.(ll), the coefficient of r\{ x) in the r.h.s. being now

6A4>(x)-2A2} . (16)

Again sign (\) will discriminate the stability of (13). The parameter space will be divided in
regions of different regimes characterized for the stability, or not, of the proposed pattern. The
critical values of the parameters should be found numerically and they will be reported elsewhere.
We shall give here a qualitative argument inspired in the former simple case, which is routine in
the theory of thermal neutrons [3]. With that end we homogenize the function Fb(x) by replacing
it by its average in the region — 1 < x < 1, where the system is defined

5^-2] . (17)

Stability can be ensured whenever (Fb) < 0, that is X > 0 so if B is small, tanh (B) ~ B and the
pattern is unstable. If B is large enough, tanh (B) ~ 1 and the pattern is stable.



Case c:

We consider now a pattern whose shape is similar to the former one. It has an associated
nonlinearity which again corresponds, although now asymptotically, to a SchlOgl type of model

with

<f>(±l) = A 1 ± — t g - 1 B (18fc)

so

rendering

r

f(u) = —t

B{l + tg* If
= a0 + a\u + a2u

2 + o3u3 + . . . (20)

a0 = 2DAB2(B2 - 1); oi = -10DB2 (B2 + \
„ _ 10 B 4 . - _ 10 DB*

We shall analyze the stability of this profile in the same manner we did with the former one. The
coefficient of r}( x) in the r.h.s. of the analogous of Eq.(l 1) is now:

2DBHl-4B2x2-4B*x*]

The average on — 1 < x < 1 produces:

so for small B,

and for large B

^ ~ B \2 B ' " 7 3 " 3
As before, the pattern is stable when B is large enough.



Case d:

The last case we shall consider in this letter gives rise to a model for autocatalytic reac-
tions [5]. We propose

= A$ech2(Bx) (23a)

with boundary conditions

.£(±1) = A s e c h 2 B or <f>'(±l) = B tanh [B<j>(±l)] (236)

and get

AJ <2 4 )

which renders:

/(tO = DB
A

U -*DB2u (25)
A

The usual stability analysis produces

Fd(x) = 4£>B2[3 stch2(Bx) - 1] (26)

as the coefficient of the last term in the r.h.s. of the analogous of Eq.(l 1). Taking the average of Fd
on — 1 < x < 1 we get:

(Fd) = 4JDB(tanh B - B) (27)

which is negative, and so the pattern is stable, when B is large enough.

We have considered four cases of one-component one-dimensional reaction-diffusion
systems in finite geometries. In those systems, for restricted values of the parameters, spontaneous
pattern formation takes place. The simplest one, for which we located a critical line in the parameter
space, corresponds to a simplified model for the flux of thermal neutrons in the core of a reactor. The
other three cases, which respectively mimic two versions of the Schlogl model for non-equilibrium
phase transitions and a simple autocatalityc reaction, were treated in a qualitative fashion. The
asymptotic values of the parameters for which the proposed pattern is stable were determined. The
critical values of those parameters will be numerically investigated and reported elsewhere.

We stress the fact that in a simple reaction diffusion system in one-dimension, a stable

pattern can be generated by the introduction of the proper boundary conditions. The pattern merges

out of the balance of the maintained boundary conditions, the diffusion and the contribution of the

dynamically distributed sources in the medium. We have provided a procedure for investigating

those distributed sources whenever the pattern was known.
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