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Introduction

The relations between integrable systems and conformai field theories have
first been worked out in the continuum limit'1'. Using Coulomb gas'2! and Bethe

ansatz'3' techniques, critical exponents and partition functions were obtained for

various lattice models, giving exact results of practical interest'4! as well as a pre-
cise correspondence with conformai theories'". It was later realized that the two
subjects exhibit numerous similarities, and although this is maybe unexpected a

priori, that some prints of the conformai invariant structure are present on the lat-

tice before the continuum limit' ' '. We review here recent progress on this question
following refs.[8"10].

One of the key ingredients in conformai field theories in the study of the Virasoro

algebra which has mainly been accomplished via the Feigin Fuchs construction'11'.
On the lattice it turns out that the Temperley Lieb algebra'12' and the quantum

group'13' play a similar role. Several aspects of this correspondence are described

in parts 1, 3, 5.

Besides this algebraic point of view we show how critical exponents may be

calculated using a lattice version of braiding'14' before the continuum limit (part

2). We also discuss the modular invariance constraint for finite systems (part 4).

Possible extensions are considered in the conclusion.



The following are notes of lectures given at the 8*A Symposium of Theoretical
Physics on "Conformai Field Theory and Statistical Mechanics'". Sokcho (Korea)

July 3-July 8 (1989). I want to thank the organizers D. Kim and D. Song who
invited me to this conference and kindly introduced me to Korean civilization. I

am also grateful to the students and other lecturers, especially T. Eguchi, D. Kim,

I.G. Koh, for interesting discussions.

I. Uqsl(2)as lattice screening operators algebra

A standard way of studying conformai field theories is the Feigin Fuchs cons-
truction'1 XJ. Restricting for simplicity to minimal c < 1 theories it involves as a first
ingredient a free bosonic field'15' with charge a0 at infinity (c = 1— 24c*o). Screening

operators Q± are then introduced as contour integrals of vertex operators Va± of

dimension h = 1, h = 0 (a± = ag ± yT-Fof). For a2, = ~V , Q± are nilpotent
operators and they can be used in a BRS way to restrict the Fock space of the

bosonic theory to the one of the minimal theory'16'.

From the lattice point of view it is known that vertex models are described

by free fields in the continuum limit*17'. These models have degrees of freedom

associated to bonds of the square lattice, and taking values in some representation

of a Lie algebra. For the minimal series we have to consider the 6-vertex model

associated to spin j = \ sl(2) representation'2'. Its Boltzmann weights are encoded
in a R matrix satisfying the Yang Baxter equation (u is the spectral parameter)

R =

•sin(7-u) 0 0 0
0 sia7 sinu 0
0 sinw shi7 0
0 0 0 sin(7-a)

(1.1)

The equivalent of adding a charge QO at infinity consists in performing a gauge
transformation that breaks Z-i symmetry, giving

R =

sin(7 — u)
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e =
1 1

9 + 9-1 1

i°
P

°\o

0
«-'
-1
0

0
-1
9
0

0
0
0
0

(1.2)

(1.3)

(1.4)

Conformai theories are usually studied by separating z and zcomponents. It is
not clear how to do so in general on the lattice. In our case the most convenient



is to consider a system with boundaries, whose continuum limit will be described

by a single Virasoro algebra'18'. Hence we consider the vertex model (1.2) in the
geometry

time
with transfer matrix

(1-5)

(1.6)

In the following it is simpler to deal with (1.6) in the very anisotropic limit with

L-l L-l
ff —a. —

,=1
i - l ( -l\

jXcX , cYcY , 9 + 9 cZtjZ , (9 ~ g ) fcZ
« :>«+i + ^« ^1+1 "" -- ô — ̂ i ^i+i "" -- 7 - Wi ~* *

(1.7)
The critical region corresponds to f real. Then we get the XX Z hamiltonian plus

an imaginary boundary term. Eigenvalues can nevertheless be proven to be real.
The interesting property'9' of (1.7) is that it commutes with Ugsl(2). This is

obvious when q = 1. In general denning

S± =

one checks that

The operators (1.8) satisfy the commutation relations

-2Sf _ a-1Sz

st® g"5^-1 ® -

(1.9)

= ±S* (1.10)

and (1.8) derives in fact from multiple applications of the coproduct formula'13'19'

A : Uqsl(2) —*Vq®Vq



The generators (S±,SZ) have qualitatively the same properties'15' than (Q±, Q3)

(where Qs = / dip). Indeed applied to a given eigenstate S do not change its

eigenvalue (analogous to Lg) but increase or lower its U(l) charge Sz.

For q a root of unity q = expiir(p — p')/p. it is also known that lattice models

whose continuum limit is in the minimal series are of Restricted Solid on Solid

(R3OS) type'5'20^. In the simplest (diagonal) case such models have variables asso-

ciated to sites of the square lattice, and taking values in the Ap-\ Dynkin diagram

p-2 p-1

Face Boltzmann weights are

w(abcd) = sin(7 - u)6tc + 2sinw casfacdeabd (1-12)

where

acdCabd — J^-^ad - 7~ T3 - (1-13)
(2), (a)q

The essential result shown in'9-' is that the vertex space />®jjj can be reduced

in this case to the RSOS space by a BRS construction using quantum groups.

The proof of this relies on the analysis of Uqsl(2) representation theory when

q is a root of unity . In the generic case, it is known that results are in one to one

correspondence'21' with 9=1 ones. Thé-Casimir operator-_heing given by

(U4)

with C\a) = Cj\a) if S+\a) = 0, Sz\a) = j\a). When q? = ±1. two new features

arise. First one can show that 5* become nilpotent

(5±)' = 0 fl.15)



hence highest weight representations can only have spins 0 < j < £yi. Second the

Casimir values Cj become invariant under an affine Weyl Group

(f = jmodp
\j = — 1 - j mod p v '

Cj is thus not sufficient to label representations, and sets of states associated to

different j's representations for q generic can mix in the root of unity case when

(1.16) holds. Accordingly U = pffe splits inW9'22J

- Type I representations which are indecomposable but not irreducible, are not

highest weight and are obtained by gathering two q—generic sl(2) representations

with spins j, j' = — 1 — j mod p.

- Type II representations which are still isomorphic to sl(2) ones, with spins

Representations with j = £-^- are also isomorphic to sl(2) ones. Since their

q—dimension Dj = 53 Q23 — (2.7 + l)j = 0, they are nevertheless called type I

by convention. Then, Dj changing of sign in the second of the transformations

(1.16), type I representations are fully characterized by their q—dimension being

zero. Type II representations have Dj £ 0 and their highest weights obey

. . KerS+ , _,

Im

A metric can be introduced in H such that (5+) = 5~. Type I representations

contains then null states. Type II representations are all unitary when q = e*K/p

only, a result analogous to the unitary theorem in Virasoro representations'1^.
(L) / L \ ( L \

ffl>=(i_.l — l i _ . _ - | i s the number of spin j representations
\ 2 3) \ 2 3 )

in the generic case, the number of type II ones for q a root of unity is giwn by

It coincides with the number of paths on a truncated Eratteli diagram. The

latter for q generic looks as follows

,1/2



The vertical scale is the number L of spin \ tensorized representations. Numbers

on the diagram are spins of representations outo which pf,2 decomposes, while
their multiplicity is the number of paths from j to the origin. For qp = ±1 it

turns out that the diagram truncated to exclude all j > ̂ - still gives the type II

representations onto which the space decomposes together with their multiplicity.

If q = e'*/4 for instance one has

0

Remarkably, the mapping a = 2j + 1 transforms allowed spins into heights
on the Ap—i diagram, while ii*- is also the number of states in the RSOS space

with boundary conditions such that the height is 1 on the top row and 2j +1 on

the bottom oneî66'8!.

Having elucidated the representation theory for the symmetry algebra of our

model we can consider the spectrum of (1.7). The set of eigenstates belonging to

type II representations can be shown to have a natural basis built as follows'8^.

We couple the spins in such away that for any n the first n spins of a state belong

to some spin jn representation (for q generic). Hence we get states \JiJ2—JL,™)

with ji = |, —ji < m < j£. To obtain the action of e matrices on these states we

use the fact that e,- is identical to the projector PO on 0-spin representation when
combining the itH and (t + 1)'* spin. Knowledge of 67 coefficients^8'24'

gives



When qP = ±1, due to (2j + 1), = 0 for j = £fi, the set of states with all

j's satisfying 0 < j < 2^- is stable by e's. Their number is the same than the

number of eigenstates belonging to type II representations, and in fact the two

corresponding subspaces are identical.

Hence the vertex space can be restricted to type II representations of Ugsl(2)

using the BBS characterization (1.17). Up to multiplicities inside representations,

this subspace is isomorphic to the configuration space of the RSOS model, the

change of basis being given by the above procedure. Inside this subspace, the action

of vertex and RSOS transfer matrices are identical. For instance the partition

function of the RSOS model with boundary conditions such that heights = 1 on

top row and heights = 1 + 2j on bottom row is related to the partition function

of the vertex model restricted to type II spin representations by

Various other cases and generalizations to D,E models are described i

The vertex — > RSOS restriction procedure is very similar to the free field

— v minimal model restriction as formulated in'16'. Though there is an essential

difference since

whilel26'

[Q\Q+] + [Q3,Q-]^0 (1-22)

Whether there is a quantum group structure hidden in Feigin Fuchs construction

is an open question.

II. Use of Uqsl(2) to obtain conformai weights

We discussed so far results for the finite lattice case. To complete the identifi-

cation with conformai theories we need to know also the scaling behaviour of levels

in the continuum limit'27' . This can be solved using Bethe ansatz calculations. One

finds in particular, restricting to p' = p — 1 for simplicity

while the ground state of spin Sz sector scales li

*|)2-1
(2'2)

A result like (2.2) can be obtained without calculation using some quantum group

arguments. First we notice that H(q) is equivalent to — H(— q~l) so two values

q = eiv/P and q = -e~'K/p = e'*<p~lVp should in fact be associated to some -4p_i



RSOS model. Then because of the left right dissymmetry in the coproduct (1.11)
(non cocommutativity of Ug) it is not equivalent to combine pjt ®pj2 or pj2 ® /»,-,.
The two possible Clebsch Gordan are related by the identity'24'

3i 32 j \
m' m> m)

*• *

rn-i m\ m0
(2.3)

where 7i is the universal "K, matrix'13'. If we suppose that in the continuum limit

is associated to PJ a field <f>j with dimension hj, the analog of (2.3)

is the relation

(2.4)

due to

depending on the choice of q we find

(2.5)

(2.6)

(2.7)

or

The first hj is not relevant in our problem (it would correspond to hamiltonian
H = — X) e t) while the second is indeed (2.2). Similar arguments were given in'34'.
In this reference the (—y>+•'»"•' was not taken into account to calculate fe's, giving
values of the WZW model.



The RSOS partition function in the isotropic (u = %) case is

(2-8)

in the continuum limit. On the other hand, due tothe above vertex model analysis,
the associated states form an irreducible representation of the Ugsl(2) commutant,

known as the Temperley lieb algebra'12'

I*' . (2-9)

Since the Virasoro algebra commutes with the screening operators, it is indeed
natural that its lattice analog may appear in the commutant of Ugsl(2).

HI. Use of Temperley lieb algebra to build a lattice Virasoro algebra

Besides (2.8) the identification can be pushed further in the easy C = \ case .̂
There we have to deal with the AS Bratteli diagram, with e matrices (1.20) reading

) (3.1)

From corner transfer matrices analysis'6" 20\ an express - _ ' known

£o!a) = £7k+2-««||a} (3.2)
i>i

which corresponds to

i0 = Wi+!)(!-e2l-+2) (3.3)
i>o ^ '

The ground state is a path (1.2,1,2,..., 1) (for L odd) with h = 0. It is known that

TrarL° inside the set of paths with both extremities in a = 1 is Xo(z)- Similarly
TrzL° for paths with aj = 1, ai = 3 is Xi/zfa) for L —K co.

Using the relation

d + ei-H - eje.'+i - e,-+1ej - - = 0 (3.4)



satisfied by (3.1) one can build all the over L'ns. For instance

L-i = i e2i(2e2i+i - l)e2i+2

LI = / ,i e2l-+2(2e2,-+1 — I)e2, (3.5)

with the following action on paths

(3.6)

1<
1>

-^2(263-1X1-64)

- l)(2e2i+2 - l)(2e2,+3 - l)e2i+4

- l)(2e2,-+2 -

(3.7)

and acting on | 0 > we check graphically L2L-2 \ 0 >= \ \ 0 >, thus C —\.

IV. Toroïdal geometry - Modular invariance for finite systems

We can address the same question of restricting the vertex model to the RSOS

model in toroidal geometry'29]. In such a case, due to the left right dissymmetry

of (1.8), the XXZ hamiltonian does not commute with Uqsl(2). It is however

possible to draw a commutative diagram. Introducing CL which acts in the tensor

product of the Lth and first spin | representations as

We notice that e.i obeys also relations (2.9) with

hamiltonian is

,-1

t=l



with SL+I = S\. In the following we restrict to

with fe integer or half integer, in which case, denoting H
the subspace of pffe having Sz = k' by Hv,k< k'

(4.2)

V = 92fe) = Hk and

Hk

He

He

(4.2)

is commutative. For q a root of unity - let us restrict to q = tf*lp here - we thus

have

JJ*

L / ^

s*'
. (5+)-,

H"

t 1 J f ^

w... .. .. . TI
(4.3)

which involves only two hamiltonians. For l<k + k'<p— 1 the sequence

is exact except for Hk- Restricting there to Ker (5+)*'~*/Im (S+)p'k>+k with
1 <k' — k <p— 1 we obtain irreducible representations of the periodic Temperley

lieb algebra (4.1)

pab, a = k' + k, b = k'-k, l<a,b<p-l (4.4)

involving in this toroidal case two indices instead of one in the fixed boundary

case.

ADE lattice models provide on the other hand representations'30^ of TL alge-
bra (4.1) by a formula analogous to (1.13)

_
acd&abd — ,n^ a(2), va

where abed are points on a Dynkin diagram of incidence matrix C and

(4.5)

(4.6)

In the unitary case in particular q = etrt^H where H is the Coxeter number.



It is shown in'9' that representations /JADE of (4.1) furnished by (4.5) are
reducible, and decompose as

/DE = £ 7a4pa6 (4.7)

o,6=l

where the j's are the same integers than the ones of the corresponding modular
invariant131'

0,6=1 \r=l /

Hence the coefficients in (4.8) have a natural interpretation as branching coeffi-
cients in Temperley lieb algebra representation theory.

Moreover one can show that in the isotropic case (u = ^ in 1.12) the restricted
traces

(4-9)

have the same modular properties than their continuum Emit in (4.8)

p-2

XroXr6 (4.10)

T=l

in the transformation T — » — 1/r. Hence the modular invariance program can as
well be accomplished for finite lattice systems.

V. Other characters

We see from (1.17), (2.8) and (4.10) that the consideration of simple systems
gives a lattice meaning to the right index of the Kac labels only or in other words
to the "lower" SU (2) in the coset construction'3*1 of theories (2.1)

or to the "right" quantum group in braiding analysis'33'.
A few steps towards identification of the missing degrees of freedom are ac-

complished in'66'. For instance, turning to fixed boundary conditions as in part.l it
turns out that the RSOS partition function with heights 6, c = 6 ± 1 on the upper
row and a = 1 + 2j on the lower one is

(5-2)

In the vertex model, we have for instance associated to (5.2)

(5-3)
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