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ABSTRACT 

The Princeton Beta Experiment-Modified (PBX-M) has a close-fitting, 
conducting, passive plate, stabilizing shell which nearly surrounds highly 
indented, bean-shaped plasmas. The proximity of this electrically isolated shell to 
a large fraction of the plasma surface allows measurements similar to previous 
work on other tokamaks using floating probes and limiters. Measurements were 
performed to characterize the plasma-induced voltages on the PBX-M passive 
plate stabilizing shell during high-p" plasmas. Voltage differences were measured 
between the respective passive plate toroidal and poloidal gaps, the respective 
passive plates and the vessel, and an outer poloidal graphite limiter and its 
passive plate. The calibration and qualification testing procedures are discussed. 
The initial measurements found that the largest voltages were observed at 
plasma start-up and at the plasma current disruption and exhibited characteristics 
depending on operating conditions. The highest voltages observed have been at 
disruption and were less than 2 kV 
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shows a partial schematic diagram of the passive plate system which is 
composed of five pairs of electrically isolated plates positioned above and below 
the magnetic axis. The outer two pairs of plates (labeled 1 and 2 in Fig. 2(a) 
perform stabilization of the n=1 kink modes. The$e plates are connected together 
electrically at 11 locations as shown in Fig. 2(b). The three inner pairs of plates 
(labeled 3, 4, and 5 in Fig. 2(a)] perform stabilization of the n=0 vertical modes 
and are connected electrically as shown in Fig. 2(c). Each plate has a toroidal OH 
gap. The plates consist of 2.5 cm thick aluminium with an explosively bonded 
layer of 0.32 cm thick stainless steel facing the plasma. The individual plate 
elements are supported from the vacuum vessel wall and electrically isolated 
using mica and alumina insulators. Wires from each of the five passive plate 
elements are connected to the vacuum vessel through 500 £2 bleed resistors 
which are external to the vessel. At 10 toroidal locations, an array of 2 cm high, 
electrically isolated, poloidal graphite limiters surrounds the plasma. Typically, 
the plasmas at start-up are near-circular in shape and are positioned on the outer 
limiters. Later in the discharge, highly indented bean-shaped plasmas are 
achieved and positioned for minimal contact with the poloidal limiters. 

III. EXPERIMENTAL PROCEDURE 

Initial measurement surveys were performed using two high voltage 
probes with peak voltage ratings of 40 kV and signal attenuations of 10 4 The 
outputs of each probe were connected to two amplifiers to permit variable 
attenuations of the detected signals over a range from 1 to 103 for simultaneous 
surveys over wide voltage ranges. The resultant output signals were connected to 
10 V differential digitizers with adjustable digitization rates (40 to 100 kHz). Some 
scans were performed with the probe outputs connected to 3.5 MHz, latching 
peak detectors whose outputs were then digitized. These probes were connected 
sequentially between components expected to experience the highest voltage 
differences. No peak voltages higher than 2 kV were observed during these 
surveys. Typically the voltage durations were of order 300-400 msec. These 40 
kV probe surveys provided an initial characterization of the passive plate voltage 
regime and demonstrated the utility of expanding the measurement system to 
assure complete coverage of voltage distributions arising from different disruption 
modes. 
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Using the results of the initial measurement surveys, an expanded voltage 
measuring system was implemented. This expanded voltage measurement 
system used teflon covered, twisted pairs of wires from the five passive plate 
elements, their respective toroidal gaps, the inter-element gaps, and an outer 
poloidal limiter. These wire pairs were brought outside the vessel and connected 
to an array of sixteen, 100 kQ, compensated voitage dividers which provided 
output signals reduced by 10-3 and an output impedance of 100 £1 for direct 
connection to the differential digitizers. The system was referenced to ground via 
a connection at the digitizers to building stee!. Each voltage divider was 
fabricated using, non-inductive 10 k£J resistors in series. Each resistor was in 
parallel with a 100 pf capacitor. The compensated voltage dividers were adjusted 
to give attenuation ratios of 1:1000 to within an accuracy of + 0.1%. In addition to 
direct voltage measurements, for some experiments, two peak detectors with a 
frequency response of 3.5 MHz were connected between the voltage divider 
outputs and the digitizers to survey for fast voltages as described above, 

A principal instrumental concern was the validity and correct interpretation 
of the voltage measurements derived from signals originating from both low and 
high impedance sources in the PBX-M tokamak environment and transported 
through regions of possibly high electromagnetic interference. During normal 
operations, this environment included the presence of large voltages and 
currents, a high power neutral beam injection heating system, an IBW plasma 
current profile modification system, edge plasma effects, rotating machinery, and 
other noise sources. During plasma current disruptions higher than normal 
contributions were expected from some of these noise sources. Hence, an 
extensive series of tests, calibrations, and consistency checks were pursued to 
qualify the results and to understand possible limitations of the measurement 
system. 

The continuity and polarity convention of the cabling from the passive 
plates to the data acquisition system were confirmed by placing a battery across 
the respective passive plate gaps in the vessel and measuring the system output 
voltage at the input and output of the data acquisition system. The Common Mode 
Rejection Ratio of the system was measured to be 2000:1 at 100 Hz and 1000:1 
at 10 kHz. The passive plate toroidal gaps were low impedance voltage sources 
and the passive plate poloidal gaps were high impedance voltage sources. In 
order to check for possible voltage source impedance effects, tests were 
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performed in which each voltage source was measured simultaneously with 
voltage divider ratios differing by a factor of 10 (i.e., with total attenuations of 10 2 

and 10-3, respectively). In all cases, the spectra were identical except for the factor 
of 10 difference. Magnetic field-only tests in the absence of plasma were 
performed daily to monitor the PBX-M control and diagnostic systems. These tests 
provided a check on the high voltage monitoring system. It was found that there 
were no induced signals aside from the small voltages induced at the start and 
finish of a constant applied field and that the signals were comparable to those 
induced in the flux loops. Reversing the direction of the applied field reversed the 
direction of the observed effects. Similar tests were made with each of the 7 
shaping field systems of PBX-M, and with various combinations of these fields. 
The system voltage offsets were measured automatically before the beginning of 
each plasma pulse and used to correct the spectra measured during the plasma 
pulse. 

IV. RESULTS 

Figure 3 shows typical voltage waveforms over the 500 msec, 400 kA, 
plasma pulse for (a) passive plate No. 5, toroidal gap, (b) the passive plate No, 2-
No. 3, poloidal gap and (c) an outer poloidal limiter relative to passive plate No. 1. 
Plasma-induced voltages were seen at start-up and disruption. During the 
plasma pulse, the voltage differences were near zero except during small 
interactions of the edge plasma with the passive plates. This effect was most 
pronounced for the poloidal interplate gaps [e.g., Fig. 3(b)]. Figure 4 shows the 
first 50 ms of these waveforms at start-up. All of the passive plate toroidal gaps 
[e.g., Fig. 4(a)] exhibited a small induced voltage as the OH current ramp-up 
started. The passive plate poloidal gaps [e.g., Fig.4(b)] exhibited a voltage 
difference on the order of several hundred volts which may to be related in part to 
run away electron effects and plasma motion as was also seen on the outer 
poloidal limiter [e.g., Fig.4(c)]. The voltages on the outer poloidal limiter at 
breakdown were similar to those measured on other tokamak limiters at 
breakdown (100-800 V) and have been related in part to runaway electrons, 
arcing, and plasma motion [5-8]. Figure 5 shows the behavior of the same 
waveforms at disruption. The gap voltages appeared after the plasma interacted 
with the edge. This can be seen in Fig.5(e), which shows a central soft X-ray 
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detector signal exhibit a growing mode which began to collapse at 472.2 ms 
followed by a final collapse. Passive plate voltages appeared as the outer soft X-
ray detector signals saturated [e.g., Fig.5(f)] and the plasma started moving 
vertically as indicated by the segmented flux loop difference signal [Fig. 5(d)]. The 
toroidal and poloidai gap voltage polarities changed as the plasma disruption 
motion changed. The plasma current (Ip) began to rise and then decay after the 
appearance of the voltages. The highest voltages observed have been at 
disruption and were less than 2 kV. 
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FIGURE CAPTIONS 

•Fig. 1 Partial schematic cross section view of PBX-M showing the passive plate 
system and total flux contours for a discharge with p,=6.8% and an indentation of 
28%. 

Fig. 2 Partial schematic view of the PBX-M passive plate system. 

Fig. 3 Typical passive plate voltage waveforms for a 400 kA discharge. Shown 
are waveforms for (a) passive plate No. 5 toroidal gap, (b) passive plate No.2-
No.3, poloidal gap, (c) an outer poloidal limiter relative to passive plate No.1, and 
(d) the plasma current (lp). 

Fig. 4 Typical passive plate voltage waveforms at start-up for a 400 kA discharge. 
Shown are waveforms for (a) passive plate No. 5 toroidal gap, (b) passive plate 
No.2-No.3, poloidal gap, i[c) an outer poloidal limiter relative to passive plate 
No.1, (d) the ohmic current, and (e) the plasma current (lp). 

Fig. 5 Typical passive plate voltage waveforms at disruption for a 400 kA 
discharge. Shown are waveforms for (a) passive plate No. 5 toroidal gap, (b) 
passive plate No.2-No.3, poloidal gap, (c) an outer poloidal limiter relative to 
passive plate No.1, (d) a segmented flux loop difference, (e) a central soft X-ray 
detector (SXR), (f) an outer soft X-ray detector, and (g) the plasma current (lp). 
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(a) Schematic view of PBX-M Passive Stabilizer 

(b) Circuit for upper 
and lower plates 
No. 1 and 2 

(c) Circuit for plates 
No. 3 - 5 
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