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ABSTRACT

We study the fermion-graviton sysﬂml at linearizad
level in a (2+#1)-dimensional space-time with the
¢ravitational Chern-Simons term. In this approximation it is
shown th.at this system presents anona._lcps 'rotation,al p;p;etti a8

and spin, in analogy with the gauge field-matter system.

I - INTRODUCTION

it Lias been recéntly analyzed by several authors the
f2+1)~dizeasional Abelian gauge theories with & topological
(Chern-Simons) term as the action for this field. Because
this special feature, the qa;xqe field is totally specified-
by the matter field, and it is shown that the gauge field-
matter system presents rotational anomaliel‘, and  explicit
fracrionsl sututicsz. In this paper we would 1ike to
analyze thesae phenomena in the system composedby fermions
cauoled with gravitational field havipy the gravitatienal

Chern-5ixons (GCS) term as the action. We shall see¢ thac at '

I ) Sia



linearized level, or weak fieid approximation, the
gravitational fields h = have no indepencent degrees of
freedom, z2nd the fermion-graviton system precsents &
rotational anomaly. The exotic statistic problen is 2150
anglyzed, but unfortunately no cenclusion is preseﬁted-
This paper is organized as follows. In Sec:iﬁn II we
sresent our system and its linear approximation. It 1S
shown that the field h can be expressed by the fermionic
‘enery-momentum tensor T . Because the GCS terz alone is
conformally'inVariant, it can ohly couple to matter With
vanishing T:" 80 we deal with massless fér:-nién:s.' In'SGCt"iOn"
III we obtzin the rotztional anomalies by the explicit
compgtation of the ccmmutator between the éngular momentum
or "~ator and the fermion field Y,, and an anomalous spin for
* , that depend on arbitrary parameter, is also found. This
result give us indication that we have a gravitational anyoh.
In Section IV we present wur ;onclusion-and some discussion
about the consistency of ourmethod of approximation, and the -
statistic problem for the fermion fields, when they &re
redelined by a specific "gauge” transformation, is also

tcouched.

II - FERMION - GRAVITON SIYSTEM

The nassless fe:mion-gravitdn system is defined by

the following Lagrangian:

- P
Ly= Li!g .: 7 (Y‘Du- Dﬂv.’,’ (2.1a)

where the forward and backward covariant derivative are



c3

éafined by

D“?il (3!+ U'“)!; 13 = !(3_;- ';)’ {2.1b)

.

From (2.1) one can derive the Dirac ecuaticn

i v'p v = 0,

(2.2a)
2ad the classical enery-monentum tensor
T, "“‘&Df :::u T ¥l - ig L., (2.2b)

In (2.2b) the notation (uv) means 1/2(uv+ w), and v7~-»"°m7.‘
In the Dirac equation, v*, for a=0,1,2, are civen by

'.8 (03' ial' idz). Y.Yb. u.b_ i‘.uv

¢'
(2.3)
= diag(l, -1, ~1),

<ith s' being the Pauli matrices, and ¥ a two-comporeat spinor

 fThe action for the matter field defired by
S, = /a’xL, , (2.4)

éepends, besides the fermionic fisid ¥, cn the Zdrefixein that

is related with the metric tensor g by the relatica G

) Y B 3 = - 1/2 .
euo“, and e "= g e .e det e . =g (detqw) . %he spin

- - 3 -] [ v
-?nnec,.on v, is given by u,= i/8(v, v ]ew 7u e .

The linear decomposition of the metric ' tensor 'g“ ’
consists to separate into its asymptotic, Minkowski, part v

A ; - ;
plus a deviation hf v v khw, vhere the parameter

Puy _
<! is defined, for our postgrior convenience, as the Newton's

constant., This decompnsition in the Fyv ’ induces an expansiorn

. &
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for thre dreibein &= %u‘ zh!'(+ hicher order cocrrection).

(The gravitaticnal field h, has, in this decomposition,
112 ,

dimencicn of (nass)
The app= roxiration that we want to obtain to (2.1),
consists to co an expansion in the parezmeter =, ard retain
only terms lireer in this parameter. As we shall see this
approximation simplify enormously our cslculation when we
try to express the gravitational field h,, bY the matter field.‘

~ So, .wehave for L - and-equations {2.22,D), the follovwing expressicne-
L = i8 [n"“ Y- (33 0v) - i:h:ﬁy"(aun_(zu?)v"!l. (2.52)

vhere e = 1 + -Jixh, h = Trhw,

4
igy -%‘hwlT"(’o"?) + Yp%) =0, | (2.331}
and
T -il - (2 i')'f v)] ~ —-(vr(a n..(z?)'t"'v!. (2.3¢)
gy 2 (u v) (u o 0

One can see in (2.5) that, in the linear approximation we cicd
not distinguish vorld and tangent space indices, and that the
1'“ is one order less, in the parameter «, than Lr as it

should be by the definition §5,= 2/a’x 8g”'7,,. One can also

see that L is conserved and traceless, until 0(x) , if the
Dirac equation is obeyed, so a“ ,= 0lx) and 1.‘"- 0(x). We
shall use this approximation in our calculation, and .wc‘
shall verify later that the error in our equation wi.u'b'c of
order x* . - ! ' | '

The GCS term that we shall use as the action. M

the gravitational field expressed by




1 uvk ., a2 S, €. B, j

s"‘--:u—t: ¢ Ja X(Rw“ “wor 3 Yo, P e b {z.62]
.

presents as basic dynanical variable the dreibéin e; . The

ad

spin connection w e and the curvature tensor R » are

uvad

3 -
expressed in terms of c; . The dimeansionless parameter u«*
in (2.6) will be assumed to be of order smaller than one, in
order the perturbation theory makes sense in our analyze.

The linearized GCS term, Eq. (2.6a), is given by

= X 3, iV ,Y da 3
S" 1, €y /a7 xh7 3700 3, h™ - th?... _ (2.6k)

(V'rhis tara could appear in ou'rb Qy#tem :lndt.xc‘ehd. by .a.gr'avii:on-”
fermion interaction after we have integreted out the fermicnic
degrees of frcmdomb ; it is worth while to mention that this
inducec term comes from the second order correction of ;he
gravi<cn-ferzion coupling given in (2.5a)).

The Cot:ion tensor C  , defined by the variation of
S.., unéer the chaging in the met:ic_: tensor is identicalljr

tracelass, symmetric and conserved. At linearized level we

have

. = i \ Sa _ a '
C.o > €ay? (?vaéh - dh,). {(2.7)
Considering now the total system defined by

S = S, *S.., s given in (2.5a) and (2.6b) we get by the variation
of $; under 6"

R S A
Tvv B ¢‘“‘,3(3w3‘h -th)" (2.8)

where 'IW is given by (2.5¢c).
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Irn crder %3 chtsi;: the physical content of this theory
mest clzarly, it is convenient to study the componerts T
ansd T", wsincg the feollewiny deccmpositicn for the

cravitational field huv .

. Py i ¢ )
. %= n, M=, Bt , . {2.92)

where i,j=1,2. Gavge fixing the potential h!_v ¢ and

considering cnly the transverse part of h"", we can cfloose’,
¢ FEC ) » .

Csing this gauge and (2.8) we can ouLtzin only two

irdecendents diflerential eguations

S
T = S, TR (2.102)
z = Lovtae -t *n-gwv. (2.10b)
0f K 11 Zux i1 i ° ‘ . ‘

These eguztions above have in principal three
variables (N,W,V). However the field equaticn 'rw+cw- o,
has just two degzees of freedom. In the purely topolcgical
‘theory, without sr,w and i = VIN— OV vanish, and V is
undetermined, being & (Weyl) gauge variable’. dere, we
certainly have W and ) different from zero, however, v
is still undeterrined, so, let us choose V=0 and solve
(2.10), obtaining for the (2+1)-dimensional space~time the

mectric tensor defined by

as’ = (1+ cN(x)) (3x°) + 2¢ :Uu‘u(xndxodx‘- @x'1?,  (2.11a)

with



Kix) = sc/id’x'Glx = x")T, (x'), (2.11%3)
and

» -~

Mix) = 2uec™ra’x'G(x- <) (3] 7,(x")), (2.1ic)
wheze G(x) is defined by the eguation
v Geix) = 87, (2.12a)

which has sclucion

G =X tnx® + E"- x2, (2.12B)
. ] M _ -

for 2=y arbi:;:ary'co::s:ant "c”. 'Frém '('2.1'2"'.:.)" we caa sae that
v2G(X) = D(X) ={1/4jtax? +{L/2r)(L+c), that is well known
solucicn of -2~ . ).

“n tne weak field approximation it is assumed that
for r~= , ths: field hwo 0, so, if we arz 1nclinzc o make

an izcegration by parts in (2.11lc) we ge:
M(x) = 2u<eta fE*x'CIX-H') T, (%), (2.13)

Firally we would like ta conclude :his section nsczing
that tha szatial part of the metric tensor in (2.112) i3
Binkswezxi, -ans because hoz" %,.we have a.rcetation ia the

metric-zpace that comes from the parity odd GCS term.

III ~ ROTATIONAL ANOMALTY

Let us now discuss about rotational features in our
model, Under & rotatiocn around the missing z-axis,the sginor

field changas by
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£z, = 13, 7). (3.1)

The tctzl zngular pomentunm ogperatar in a (2+1)-dimensicnal

¢rSiirary metric sgeca-~tine is
1, [
3= cradx xi'rm(x)-g . (3.2)

The tern Taj(x)/g_ is to be regarded in generzl as the spatial
censity of the momentum® .
The commurater gi-ren in (3.1) can ke chtairec via the

bzzic anti-commutator reiatio

2]

wnich the terminns field must

7,0z}, 7 (y)alx,~ yg) = &(x-y)§,,, for a,b=1,2.

In the linear approximation, we can write fcr cur svstem

)

M 2 o - -+ ->
g x) = L+ uete™s rEPXIGIX" = X)T XYY, (3.3)

V2 {g 0f order ux?, 8o, this:

and see that the ccrrection ta g
rasult is in acreement with our initial assurpticn aktout our
approximation.

Eecause the explicit dependence of the metric tensor
¢ the fermion field, via Ty in (3.3)., the ccmmutator (J,9,]
#ill present, besides the usual terms, an extra contridbutica
ceming Izom the commucatcr of ¥, with. g”z. This. extra

eontribution we name ancm:ly. Now let us write down the full

result of [J, 1.].
{J,2 (x)) = ¢”’d’x'x'['r (<", v.(x)] m(x') +
. ’ 3 é i Gj X ’ al’ 'q
13,43 11 1/, ,
¢’/d’x x"ro,(x')lq {x), !‘(XH.

where
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- i » - - <°‘ B N A P ﬂ.‘._.,. - .
Ty™ 31 B0 - (318 == 70 0~ 1570070 e,

®ow. -all that we have to do is to calculase the cosmutator

-

» -
i, 2> =~ . RO T Y 'Y o
(Tgy(x, ¥, (x)] = - 7“ (x - X9 Q¢ (x) - (-;s (X=-%7) v ix")

s RNy (x* Ny} .

CR-FQY x) (0],

After some steps we get

- 12 2 , - o 12
lJ,!.(x)] =i -ﬁv’(x))q {x) - % lYa !(x))‘q {x) -% f.(X)x(Vg {

Viixn- twele ¢rax" 1) T (202G R -2, 8, (xD

1 > >
- "'(Ya!(x) ), x. (th

JRCL IS U TN ) . fE 32, G
+16'r Jaix'x (T (x )-gnlx x' "ty f(xn.+

%‘—j(l+c) ratx x i x ) (v, ‘ (3.4)
At this point let us make some comments about the regult
above. Pirst of all, besides the usual ltems to § 7,(x)
comming from the total angular moment of the tield itself,
thers are contributions coming from angular momentum of the
gravitation.field; secondly, the last three terms cone £rom the
ext.a commutator btetwecen the matter ficld and the sguare
root of the metrinr’'s determinant: finally ws can ohgezve
that unless for a particular value for the parameter c,
i.e, ¢#~1, there exist an extra (anomalous) spin for the

spinor field
2
S (1+0)a ,
3 0

where Jo' ctraix "1705"" is , up to the factor qm, that is
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not relevant in our approximatiern T Thls anoxalous sgin,
the angular momentum overator. Becazuse there is no ultizate
way to define a v-alur to "c” in (2.12b), this extre spin can

assume any value,

IV - CONCLUSION AND DISCUSSION

We have studied the linearized fcmioh-gnviton system
in a three dimensional space-time with the gravitational Chern-
Simons term as the action for the gravitational field ‘h‘w.' . Our
linear approximaticnconsists in keeping terms until order « in
the expansion of the total actionS, = S, + S..,» afterwe have
assumed the weak field approximation: 9uv'"u'v+ _-:hw. For § . v
have considered only quadratic term in the h~fielé ané this
contribution is of 0(l) in <. If we had considered 0(x) :n
S.,» as we did for .sr' we would have t:i-linear»:ontributf‘.on
in the h-field; this «h’-term sould modify our Einitcin
equation 'rw+ cwso, and in this case we may ix_tfer by
inspection that two solutions for the h-field will appear,
one of 0(ux) and another 0(:"). Because wg are in the weak
field approximation, the fermionic action, given by
S,= S, +xS , accepts only solutions of order u« in the
perturbative Tegime, and for this _.’.algtLon‘ we can write
s = s + u:'g, that is an acccptabh cxﬁ:cnion for the ,.
fernionic action. The solution given in Sect. II for thc
h-field is in agreement with the considozat:lon above.

As we have seen in Sect. II, only two 1ndap¢nden:
degrees of freedom are left for the h-!icld: bv (2 loa).Ji"“

By, is defined in a unigue way, bouvc: by (2 IOM, , only


http://ir.omer.tua

the variable x-v'u-[j V is defined.Choosing the "gauge”

V=0, we get h,,, and h  , defined as well. In this gauce,

1)
V=0, we have shown thav. the comsutator (J, !.l presents ax

anoxzalous contri'butions coming from the commutator [h“.!‘l;
and an anomalous spin for the fermion appear. Because this
extra spin can assume any value, and contributes additively
to the "bare” spin, 1/2, of the fermionic field, there
appear a particle with arbitraxry spin that we identifyase
gravitational anyon.

Another interesting point to study in t“xis systen is
the cxoti.c stutistic probl.en. 'rhc total hq:anq.tm of our
systen. l. -I. +I vith L, lnd L. gi.mby (2 Sa) md

(2.2b) :espectivcly, after some si.wutications. reads
L T 05.9) = (3. T)r)- L ch® (Fr0.v)- (5.F) 1Y) -
L= 3 (7V03,7) - (3 )] A UAAY ,(;,z)val

%th; (;75(3“!) - (3’.!)70 ¢} + surface terms. o (4.1)
As for a gauge theory (s?e Ref. (1) )Vﬁcz’i'éh( mtter field
can be redefined by a specific gauge transformation. {n oxder
the to~al lagrangian is described by frci fields with explicit
fractional statistic, we are tmptcd to try “ai similar
orocedure in (4.1). Under a space-time Wn&ﬁt Lorentz
rotation on the tetrad, given by e o"'- A'o., the spinoc
field transforms as 7+¥'=LY, wbcn L h ﬂlo hpncc-ti-
dependent) spinor represeatation of a utud rontion, and
L'vy'L= A, sy 6 80, let us try & spcctuc (inlmusiml)
"gauge” rotation with L-l-u/dkc h"l" in thc spim thl.d
Y, Eq..(4.1) reduces to
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g_i;—l.u ] - bvrd o __'i_- ngi - _'.l.
L=3 (er™(a ¥') - (2 ¥ )y77'] 2 ch (#'7°13,7%) - (3,79 ?']. (4.2)

From (4.2) we can see that only h was eliminated
from (\4.1), by inspection one can see that is nct pessible
to eliminate h:ﬁand h from (4.1) at the same time. Now,
trying to analyze what (anti-)commutation relation the

| fermions field Y.cbey, we got to no conclusion about the
evidence of exotic statistic in (4.2).

Another point that cculd be analyzed is incluéing -
the .Einstein . .action in. our .model. . . In...t.'ni:s. .c#sa some
modification can, immediately, be observed: (i) the fermions may
be massive now,and (i) the variable V is now 2ifferent from
zero. After we have finished our calculation we receives a
Faper by Dese:7, where a ;tructureless massive particle

couples with topoloqically nassive qravity, . r.here

was aiso fourd the appearence of gravi ntional anyons.
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