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ABSTRACT

An analytic method is described to allow one to calculate the

stopping power of an ion travailing through matter. This method

accounts for the electronic structure of the target as well as

that of the ion. This has been shown to be important for a good

prediction of channeling in crystals.

The electronic shells are introduced and the concept of the

effective charge is viewed under the light of these shells.
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1 - INTRODUCTION

In this work we outline an analytic method that expresses t.i»e
electronic energy loss of an ion travelling through matter by
means of the energy transfer to each electron of the medium.
This procedure allows us to distinguish among the electrons of
the target according to their position in space. This approach
is important to account for the energy loss of an ion when the
electronic part is important and when the electronic target
distribution affect the results. This is the case of axial
channeling in a crystal where the electronic loss is very
decisive and very different whether the ion travels close to the
axis (where the electron density is lowest) or away from it. The
most significative parameter is thus the impact parameter (b)
between the ion and the electron in question. The formalism
accounts for the possible electronic distribution of the ion.

Vfe work in a region of not too high energy to avoid plasmon
excitation. This requirement can be easily
removed and the formalism extended to include plasmon response
from the medium.

In section 2.1 we develop the theory and give the most important
formulas for the energy loss as a function of the impact
parameter b, and the local electronic density. In section 2.2,
and 2.3 we outline the method when the target electron
distribution is described by a Thomas-Fermi distribution and also
by a Shell Quantum Dynamic like that of Hartree-Fock. Thus the
affect of the shell structure of the target on the
electronic-energy loss of the ion may be studied. Finally in
section 2.4 of the theoretical part we address the problem of
Effective Charge.

In part 3 called. Results and Discussions, we present the Energy
Loss per Electron and an integral form of that energy suitable to
be compared with more classical gross approaches like those of
Firsov, Lindhard and Oen and Robinson. We also present in
section 3 the effective charge of an ion described by a shell
structure obtained from Hartree-Fock calculations.
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The method we describe here allows us to write the stopping power
as a function of the impact parameter. To correctly describe
channelling we have found [l] that the stopping power at low
incident energies must take into account the electron density
distribution of the target as the ion travels through the
channel. This means that the impact parameter must be used -.n
the treatment of channelling in the low keV energy range.

The energy transferred from an ion to one electron in a gas may
be written as

AE = e " v. E{t) at,
— CO

where v is the velocity imposed on the electron by the electric
field E(t) generated by the ion at the electron position, v is
proportional to the polarization. The ion has a velocity vQ in
the laboratory system and collides with the electron witn an
impact parameter b as illustrated in Fig. 1.

The electron field has components E and E along the x and y
axis and the electron is located at a distance r(t) from the ion.
Thus r and E are in the same direction.

The Fourier components of B and r are given by

E(t) = - L f E(w) e--' do>,
y2:i J

— 00

00

rlt) = -^ f r(w) e-'-1 do .

Since E(t) and r(t) are real E* (w) = E(-w) and r* (w) = r(-w).
From the electromagnetic wave equations.

Ex(k,a>) = -4nikx-^
«(/»', w) k?

e{k, to)

© • • '
ion Vf

;

r

L.

Y

b

Fig. 1. Schematic of an
ion with velocity vQ
approaching an electron
in the medium with impact
parameter b
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The velocity of the electron is given by

r = r(t) = T=- I r(w> i-"0) c—'dw
— CO

and
CO CO CO

A£ = Rcfc- f f f
— Otf —CO —C

5 f"-"-11*-*»'—>•
A E = Re {e / dw(-iw) r(to). E*{<o)}

— CO

= 2 Re {e Fdwi-iw) r(w) • £*(«)} .
o

The last equality is due to the fact that the integrand is its
own complex conjugate for w<0, and therefore the real part for
w<0 is equal to the real part for (-w).

The polarization P is given by

P = .Ve r(w) = ~ [«(«) - 1] E(w),

where N is the number of electrons per unit volume. Thus

CD

AE = ̂ y R e J (-«») c(w) B(«). E*{(,)) dot.
0

The vectors A(w) and B(w) are defined as

-1(w) = e{(o) J?(<u) it r = (0, b, 0 ) ,

B{m) = E*(to) at r = (0, b, 0).

Thus the energy transferred to each oscillator is given by

m

CO
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2.1 Example 1: Point charge

The density (>(r,t) for a point charge is

Therefore

The vectors A and B are calculated as follows

d*

2iZ,«ú

where

0,(0), b) —

and similarly with the other components of A and B.

Carrying out the integration in k first and later in k , a
becomes - z y

where Kg is the modified Bessel function. Similarly

2ÍCD (0)b

where again K^ is a modified Bessel function. In the calculation
of B and B we must incorporate an expression for the dielectric
constant,e(K,w). In the Random Phase Approximation (RPA)[2,3]the
dielectric constant may be written ase =ei+ie2' where

Mfl-iA
vjk* 12 T 4*

KI -
ft; 4 - ^ -

2mI

Pvf+ \1 - ,3^-

- \*'-F/ 'í*-

,„ w-AcK)-//A
3/-'«|JJ'

lor 10 c *•(•«• .

4

0
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Since A.B must be pure imaginary and A is real while A is pure
imaginary, we just need the imaginary pcx't of B and ythe real
part of B . Thus

dtt d/:, cos L\
I,., (6,)= ..._.

dt, Jt, in k;b lie (-Ü

Since Pe(l/e*) is symmetric with respect to k the second term
is zero. In region (1) where Z <1, *

where
(5 = l/rtD , -/ = l /«&rB ,

a_ the Bohr radius, and vr. the Bohr velocity. Let us introduce
2 2 2cylindrical coordinates so dk dk =k'dk'd^ and k1 = k +k and

2 2 2 2 Y z 2 " z

k = k1 + w /v_. In Im(l/e*) terms with w may be neglected

even in the case where k1—*-0 since for v?—**0 and k'-^0,

Im(l/e*J »-0(w) independently of terms containing w .

Thus

= 0 k'>2k,.

We may now wr i t e
Im (bt) = ioKiyfaky, b),

where *i,« -,
i f l r

Pi = - J <>*' ( ã » " + l ^ J d ^ e o s ( * ' * c o s

0

' m i l

. 63 f _Jrf?L_ dx

W h e r e « = - >'Á-FÍ)/.T: nnd A = a!» and x = fc'6.

Similarly

Now

j cos rp c-'M'""* (\,F =• r Cos tp cos (k'b cos ,p) ,\,p -

It

í co» tp sin {k'b cos tp) drp ,

u
it

D
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From symmetry considerations the first term is zero. So we are
left with the secoad term and consequently we must use the
imaginary part of (1/e*) again.

By integrating by parts
nit »« '

/ costf sin (k'b cos tp) dtp = k'b f sin* <p cos (k'b cos ?) d y ,
then • • /

where

2.2 Example 2: Cloud Charge

Assume a cloud of electrons around the Nucleus Z. with a density
distribution

This distribution corresponds to a hydrogen Is type of electron
wave function where Z_ is an effective charge that may be
determined by some minimization procedure as in the variational
method explained by Schiff,[4j or as in the paper of Ferrei and
Ritchie[5]. N, stands for the number of electrons in the cloud,
h i f f

[]
The Fourier transform of Q (r,t) is

oil- o,\-
.J)1 .-1

As in the example 1 we must calculate the vectors A and B which
we separate into two parts

A = Av + At,

A and B were derived in the example 1 since they are due to the
point charge Zj or nuclear part. We now proceed to calculate A
and Bc due to the cloud distribution of the N-, bound electrons.
The total charge density may be, of course, written as

e = e, + Qc =

and the total loss is

00

.-p̂ - He f
00

(.1 . ff)(-í<0)<
I

0
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In this, part we are just going to calculate A and B
They result in:

M ) - ~4:t l i f * ***** d t - 3 i l i AW f t ^ - ^ - Z ^

• : - («e)«.

where

where again

Similarly

_ 4.Tt S.Y.fZJ

where
(ac)r

2.3 Quantum Mechanics Description for the Projectile-Electron Cloud

The Fourier transform of the projectile density p(k,w) can be
analytically determined from the Hartree-Fock P (r). According to
Clementi and Roetti [6] , the electron wave function may be written

ilm
E X . C .n nlm iln

*} - Rnl ( r )

Here, the index i refers to the ith orbital; the subscript n
refers to the nth basis function of magnetic quantum number m and
angular momentum _1. R . represents the radical part/ of the wave
functions and Y,_ the spnerical harmonics.

Ira
In the Hartree-Fock calculation Clementi et al., in agreement
with Roobhaan et al.[7j, used the following form:

Rnl ( r ) E. a.
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The radical density (electrons per unit volume) is

where K , is the number of electrons in the (n,l)th shell.
Naturally, the integral of (Mr) over the whole space is N, the
total number of electrons in the atom.

It is customary to use a shell density Ç ,(r) such that

N = Znl Joenl
(r> dr •

Thus, e n l(D =N n lr
2R n l(r).

The product (rRnl) is sometimes indicated by f>nl .

In general (e.g., for deformed shells), Q will depend on the
angular coordinates. However, in this work the time-dependent
part of Q is obtained by assuming a rigid motion of the whole
cloud system, with 9 a function only of the radial coordinate.

Therefore,

P(r) • e (r-Vĵ t) ,

where v, is the velocity of the ion with nuclear charge Z, and r
is now the vector position. The Fourier transform of e (r-v,t) is

Pd, . . . _ 1 P i(k-r-wt)
e ( k ' w ) ~ zrwrr J © e<r-Vlt> dr dt .

Using the change of variable u=r - v^t , we obtain

p ( k , w ) = J ( 2 n ) tf(k-v»-w) D ( k ) , where?

w e i k U
 P ( a ) du .

Hence, the time-dependent part of appears only in the delta
function. (Now we revert to the usage k=|kl, r = I r I.)

According to the previous description of (r), its radial part
(or average over angle) is for each shell of the form.

The Fourier transform of this function is

1 r y s R 1 <K <l+Gv>/2 ,
D<k> = E a. (l+(!.) * + ->/>v E

 > (-1)1,
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2.4 Concept of Effective Charge

Almost all formalisms (including ours) yield a stopping power

S = f (Vl,Z2,b),

in which the function f does not involve the charge Z.. It is found
experimentally that the ratio between the stopping power S for the Z.
ion and S for a proton is nearly independent of the quantum structure
of the ^arqet element. Specifically, we may define an effective

Z*2fp(Vl,z2,b),

charge Z- by

S =

*
with Z almost independent of the detailed shell structure of the
target. This observed independence is closely related to one of the
conclusions of the present work, namely that only the valence
electrons are relevant to the value of Z..

It is worth noting that we do not address here the relation between
the actual charge of an ion inside the material and the charge
measured outside. In transmission experiments it is possible to
analyze the ion and determine its charge, but the relation between the
charge inside the material and outside it is difficult to determine.
It touches upon quantum mechanical problems of the variation of the
Hamiltonian of an ion as it goes from the bulk towaçd the surface and
out of the target material. We will simply regard Z. as being defined
by the previous equation.

Inasmuch as the results which follow are (as in Ref. 8) for boron in
silicon, we will now refer specifically to boron as the ion and
silicon as the target. As the boron atom moves through the silicon
target material (fig. 2) it may excite an electron at position b.
This electron belongs to the silicon, whose local electron density is
p(r), r_ being the distance between the silicon nucleus and the
electron. The local density determines the response function of the
medium for the target electron, which sess an effective Coulomb field
from the ion which is lower than the field due to the point charge Z.
(5, for boron).

Fig. 2. The boron atom at a
distance R from the silicon atom.
An electron e of the silicon cloud
is at a distance £ from the silicon
nucleus.

The difference is due to the electron charge of the boron ion, which
is inside a sphere of radius b. The boron atom, which is assumed to
have been singly ionized, has two shells, (ls)_ and (2s) ~, each v/ith
two electrons. If the target electron is outside the "outer (2s)2
shell (the . .field between the ion and this electron is dve to
5 '+4'~ -1' ' unit of charge. However, if the target electron .is
inside the second shell the field at b will be due mainly to 31 '
charges.
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This simple picture, which is originally due to Brandt and co-workers
(see for instance Ref. 9) is used in this paper. We work in the
energy regime where the assumption that the boron atom retains 2
electrons in the (Is) shell and 2 in the (2s) shell is plausible.
Also, we use a response function (dielectric constant) derived form
electron-hole excitation without plasmor. excitation.

The effective charge ratio calculated in this work is defined by

(Z*/Zx) = S(R) Sp(R)

where S(R) is the totrl (cloud plus point) stopping power of boron
completely dressed with its 4 electrons, and 3 (R) is for boron
treated as a point charge with 5 protons. p

3. Results and Conclusions

3.1 Point Charge Case

Except where noted, atomic units are used:
and distances in Bohr radius.

that is, energy in H?rtree

In Fig. 3 we show AE, energy loss per electron, as function of the
impact parameter b. The upper curve responds to the bare ion (in this
case for boron Z-=5) and the other to the ion with an electron cloud
of 3,3.5 and 4 electrons. The target was Si v».\th ar average electron
cloud corresponding to the one electron radius, r =0.1047 nm. This
value corresponds to the average electron density In [llOjchannel of
the Si crystal. All curves show a systematic oscillation with a
wavelength of the order of 0.1 nm.

Fig. 3. Energy loss/electron as a
function of impact parameter for
boron incident on a silicon target
with r =0.1047nm. Results are
plotted sfor the boron ion modeled
as a point charge ( ) and with
and electron cloud of 3.0 (- - -) ,
3.5 (-.-),and 4.0 (....) electrons.
The incident velocity is 0.06v ,
where v_ is the Bohr velocity. Tne
impact parameter is given in terms
of a_, the Bohr radius; energy is
given in terms of EB=27.2eV.c i t

impact fsramtto (s! li.-i'jj

These oscillations are of quantum origin and arise form the assumption
of a zero temperature Fermi gas for the target electron gas. As the
temperature rises the oscillations are damped, [üj
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3.2 Cloud Charge Case

We have found that the energy loss (AE) per electron is very dependent
upon the electronic structure oi" the light ion ,-B . However, the
internal Si structure is practically irrelevant—only the four valence
electrons (3s) _ and (3p)_ are important. This is because the high
density of its innur core generates high Fermi momenta, and so the
imaginary part of the response function c and also Im(l/e ) are very
small.

It is apparent from our calculations that the maximum energy transfer
is experienced by those target electrons close to the boron nucleus,
where the coulomb field generated by the ion is greatest. When boron
is approximated by a single (Is), shell, as in our preceding paper[8]
and in the one of Brandt et il[9], Kte see that ^E^Q».^ is increased by
as much as a factor of 4 with respect to the standard case: (ls)_,
(2s)2.

 z

Shown in Fig. 4 as a function of the nuclear impact parameter R is the
stopping power £>, calculated by

S(R) = p(r) dr

where &E(r,R) is the energy loss per electron at the position £. Also
shown in Fig. 4 is the point stepping power S (R) corresponding to a
âEgenerated exclusively by the boron point charge (5 protons). S is
always smaller than S , due to the screening effect of the boron
electron cloud. The "range of R (but not of £) used in these
calculations is of course much broader than would be realistic for an
actual boron in silicon case.

Pig. 4. Stopping power as a
function of R, minimum distance
between the silicon and boron
nuclei. S is due on̂ ly to the
boron nucleus (charge 5 ), while S
is the net when the 4-electron
bcron cloud is included. (Boron
energy = 1 kev.)

In Fig. 5 the effective charge ratio Z /Z. is presented for the 1-kev
case; i i i j i
For. large .
5' ' + 4*~'

g p
this ratio varies from «1.0 when jf« 0 to «0.2 when R is large.

R a U % the silicon atoms will see the boron atom as
1' point charge. For smaller R we easily can find

silicon valence electrons that see the boron screened only by its (Is)
electrons; the contributions of such target electrons cause the
effective charge ratio always to be strictly less than 1 and greater
than 0.2.

C/Z
1

i
2 3
RMlHMf)

Fig. 5. Effective charge ratio for
1-kev boron on silicon as a
function of R, minimum distance
between the silicon and boron
nuclei. At 10 kev this ratio is
almost unchanged.
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In addition to these 1-kev calculations we have done some with
EQ*10 kev. Since AK is proportional to V_, the calculated values ofAE
increased by the factor VI0. However, the effective charge ratio was
virtually unchanged.

3.3 Comparison with Experiment and Other Work

It is very difficult to have a direct comparison of this work with
experimental results. We must somewhat average the energy loss AE
per electron over target-projectile configurations in order to jbtain
values which can result from experimental measurements.

As the averages are done the impact parameters b disappear from the
function f of section 2.4 and the new analytic expression may show a
2. dependency different from that of expression S for the stopping
power. Thus, when we perform the comparison of our average stopping
power with the formulas given by Firsov or Oen and Robinson or
Lindhard this implicit Z. and Z, dependency must be kept in mind.

Fig. 6 provides a comparison with our average «topping power with
these given by Firsov [lj| and Oen and Robinson [12 J*

Fig. 6. Stopping power S calculated
in this work, compared with the
predictions of Firsov (F) and of
Oen and Robinson(O-R)(exponential).
R is the minimum distance between
the silicon and boron nuclei.
(Boron energy = 1 kev.)

The Firsov predictions were derived from the formula

S(R) <t.3 1Õ8 V,

( 1 + 0.31 T7T R )'

in ev/A, where V. is in cm/sec and R in A. His predictions are seen
to exceed our S(Rj by a factor of two (at a typical distance of 2.5
at.units) or more. Oen and Robinson's exponential result also exceeds
ours, but only by roughly 65%, uniformly over the entire range.

In addition, Lindhard's prediction of average stopping power is given
by the formula t/á

Z» ' Bn H a» 2tZK a V,
rT"S73—T-S73-7

S

in energy/unit length, where p is the atomic density of the tnrgct
(5*10 /cc for silicon), Vj the ion velocity and aR the Hohr radius.
For En= 1 kcv the Lindhard formula gives an average S of
0.041 at.units, which corresponds to our calculated S at
R«2.4 at.units. This value of R is, as it ought to be, lvac than the
average interatomic distance in silicon, which is about 3 at.unite.
It ia also large enough that thu correyponding deflection ol !ho boron
ion, based on calculation with a Molieru potential, is only about
2° for 1 kev, and the dominant stopping mechanism is electronic.
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Our stopping power calculations for boron in silicon are highly
dependent upon the boron shell structure; however, they appear
consistent with Lindhard's prediction. When the stopping power is
expressed as a function of the nuclear impact parameter R, our
predictions, as well as those of Oen and Robinson, fall below those of
Firsov by about a factor of two.

There is, unfortunately, no experimental data available at low
energies from which to infer effective charge. ̂  The work of Brandt and
Kitagawa [9]would predict a value of 0.3 for Z../Z, when the boron ion
is assumed to have 4 electrons in its cloud. This value agrees with
what we calculate (for a nuclear impact parameter of 2.5 at.units)
when we concentrate all 4 electrons in the boron (Is) shell. We
previously, like Brandt and Kitagawa, have employed a single shell
whose exponential function was obtained by a minimization procedure,
so it is not surprising to get the same result.

As we include the (2s) shell (that is, when the 4 boron electrons are
split between the (Is) and (2s) shells) we obtain the higher value of
0.6 for ZÍ./Z, (when R=2.5). This is due to the fact that the
screening effect is less pronounced; electrons fr;;m the target may see
just the two electrons of the boron (Is) shell. In order to get a
value of Z-i/Z, a s small as 0.3 the majority of the target electrons
must see tire ion dressed with 4 electrons, which requires an R of
6 at.units or greater {unphysically large for boron in silicon).

We have shown here that the quantum shell structure of boron has a
strong effect on its stopping power as it moves through a silicon
target. Our continuation of these calculations to other ion-target
combinations is expected also to show strong shell effects.
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