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This paper reports the procedure to extract an upper limit of a peak area in a
mutichannel spectrum. "> % procedure takes into account the finite shape of the pezk and

the uncertanties bothi ' 2"ackground and in the expecied position of the peak.
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I. INTRODUCTION

Many experiinents in physics are running in order to indentify a peak in a
multichannel spectrum. However, it is not rare that these experiments give pegative
results: the sought after peak is not clearly observed. Tuis fact can occur when the peak is
hidden in the statistical flutuation or in the uncertainty of the background or also hid-den
due to its own statistical flutuation. In some cases, the peak position is known with a non
negligible standard deviation and we simple do not know exactly where search for it. In
short. the peak can be lost in a statistical jungle. In these cases we can only detcrmioe the
upper limit of the peak area with a chosen confidence level.

Extraction of the upper limit of a signal in the presex;ce of a background, where both
signal and background obey Poisson distributions, was already discussod in a previous
paper (1). In this reference it was shown that wheu the background B is known with a
negligible error. C events are observed in a bin of the multichannel spectrum, and a s
the (unknown) intensity of the searched signal in the same bin, then the posterior

probability density function of a is given by:
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where ¥ is a normalization constant such that:

If C> B.that is. the peak is clearly scen. then gia; is peaked at a value 3 = C—-B witha

corresponding standard deviation equais 10 yC . However. there are many experiments
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where B C. In this case, an upper limit A for a can be defined [1] by

a= f g(a)da , (3)
A

a

where 1—a is the confidence level (C.L.). It can be shown [2,3] that eq. (3) is equivalent

to
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There are three points that were not considered in ref. [1]: the shape of the peak in
the multichannel spectrum, and the nonvanishing errors in the background (that were just
considered in the limit B>1 and C Y1) and in the expected position of the searched
peak.

Recently Avignone [4) has also discussed this problem using a maximum likelihood
procedure and including the shape of the peak. However, his results were restricted to a
normal approximation of the Poisson distribution and statistical uncertainty of the
background was not taken into account. Also ref. {4] does not consider the existence of a
possible standard deviation in the position of the searched peak.

In this paper we will extend the results of ref. {1} in order to take into account the

three points mentioned above. The results will include the case of small number of events.



11. ANALYSIS

a) Non vanishing background error
As stated in ref. [1], when B is not exactiv known but obeys a probabiiity density

function f(B'), equation (1) must be rewritten as

* -(a4B’) nC
g(a) = & f e C'@B’ f(B') dB' , 5)
A '

where A4” is the normalization constant. It will be supposed in this paper that the
knowledge of the background has a Gaussian shape with mean value B and standard
deviation og »

-(B'-B)*/203

f(B') ~ e (6)

Using f(B') above in eq. (5) and using eq. (5) in eq. (3) we can determine A o Figure 1
shows A o as function of B for some C values, for o5 =0 and for 0g = vB.

Figure (1) must be read as follows: if C events are observed in a multichannel
region where the mean background is B with standard deviation I+ then A a is the
upper limit of the signal in the regio:; with C.L. 1—a. As can be seen from figure (1) A,
is always positive also if C < B. If C» B that is, if the signal is actually observed, the
upper limit A a is compatible to the signal intensity C ~B. We can also observe that

for fixed B and C, when g increases, A a increases.
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b) Finite resolution

If we arc searching for a peak in a multichannel spectrum we must consider the
finite resolution of the detector system. If the searched peak has a Gaussian shape centered
3 2z, and with resolution (FWHM) 2.35 ¢, then u;e expected number of events in a bin

Az around g is

1,+4z/20, -(rro)’IZa:
P =P, f ¢ ds (M
ﬂ;ﬂz .

1Az /20,

where P, is the total peak area. Thus,if A a is the upper limit of the number of counts
in the Az region, the upper limit of the total peak area is

A
P = a | 8

As can be seen from figure (1), A a increases if both B and C increase. Since B
and C increase with Az then A o Aso increases with Az. On the other hand. the ratio
P/P, increases asymptotically with Ar. Thus. Pa has a minimum value as function of
Az. We will discuss below how to determine this optimum Ar bin in order to obtain the

smallest P, for a given C.L..

¢) Uncertainty in the expected position of the scarched peak
If zy is not exactly known and we know only an experimental result 7 s 95 this
lack of information must be taken into account in the determination of the upper limit of

the peak area. Adopting the Bayesion approach and supposing that the posterior



probability density function of z, is a Gaussian one with the parameters % and 05 we

can rewrite equation (7) as

x( . 1+Ar/20, c-(r—zo)’/'Za; e—(r-%)’/?a':;
P =P, ds dr, . 9)
Vit o Iz o,
= 1-Az /20, o ’

In this equation the inner integral takes into account the fraction of the peak area in the
Az bin around 7 if the true position of the peak is 1, : the outer integral takes into
account the probabiiity that 1z, is the true position of the peak.

Integration in z, is readily done and equation (9) can be rewriten as

Azf20 e_ug/.z

P = Po du (lo)

2z
-Arf20

where o is given by

d=/a§+o§ . (11)

L 3

This last equation shows that both the peak standard deviatioa. 9., and the uncertainty

in the peak position, o . have the same rule in the statistical problem.

I11. OPTIMUM ENERGY BIN As

As stated above there is an optimum Az bin to be analysed in order to obtain the

smallest upper limit P . This optimum bin can be determined experimentally for every



case. However, as we are dealing with an hidden peak, we are able t0 generally determine
Az supposing that
B=C=kob (12)

where b is the background rate (in counts per channel),

Az = k-0 (13)
is the analysed bin, and
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B = k—w-a'b (14)

is the standard deviation of B. o, is the standard deviationof b .

Using B and C from equation (12) and % from equation (14) to obtain A a
from figure (1) and Az from equation (13) to obtain P/P,, we are able to obtain P @
from equation (8) as a function of k. Figure 2 shows bow P o depends on k inan
example where b = 5 counts per channel, o,/yb = 0.5, o =2 chaonels and B=C. As
can be seen from this example there is an optimum k value {(and thus an optimum Az
bin) to be used.

Figure (3) shows K, the optimum k value, as function of o, b and o,/vb
calculated for a= 0.05 and supposing B = C. Some care must be taken in the use of
figure (3) since when dealing with multichannel spectra we are limited to use integer Az
bins. So, k values from figure 3 are approximated values that must be rounded—off in
order to obtain integer k-a values. The assymptotic value of k, when o, =0 and
0=, is 2.8 whatevgr b is. The dependenceof % on a is very weak (only few percents
if a goes from 0.7 t0 0.01); thus, k from figure (3) can be used for a values that are not

very far {rom 0.05.



IV. GAUSSIAN APPROXIMATION

In the foliowing section we wiil show bow to generally use the present results in the
analysis of a hidden peak in a multichannel spectrum. Before this, we will show the
Gaussian approximations valid in the case of not small number of events.

If b»1 the posterior probability density function of a from equation (3) can be

written as
‘(‘) - Ill e-(a-l)7[2di (ls)
where ¥~ - is a normalization constant
i§=C-B (16)
and
o=C+(koo) . (13)
In tl\ecaseofahidden‘peak. B2C%kbo and 3%0. Aa is given by
A, = ,\0/2 /Fbﬁ(ﬁ oy 0)° (18)
where
[ ] I 2 '
§=.J' cy/du. (19)
0/2

The first term in the square root of equation (18) corresponds to the statistical flutuation
of the number of events in the analysed Az bin and the second term corresponds to the
standard deviation of the mean value of the background. It is interesting to observe that

-

both terms have the same rule in the determination of A o



Whes b is well known, ¢}>b, E=23. Ia this case P/P, can be readilly
determined from equation (10) and thus, from equation (3), we bave

Py =201, ol + (20)

where the dependence of ¢ oa ’ and s from equation (11) was explicited.
In the appendix we compare the present result with that from ref {4].

V. HHOW TO PROCEED

"Suppose we are searching for a Gaussiin peak in a multichannel spectrum at
Iro,. Suppose that the system resolution (F\WHM) is 2.35 o, The following steps

must be performed in order to determine the upper limit of the peak area-

a) Determine the background b, in counts per channel, and its standard deviation o, ;

b) Determine o from equation (11) and use figure 3 to determine the best Arx Ko
region t0 be analysed. Az must be rounded—off to an integer;

¢) Determine B =Az-b and oy = Az1-0;,. Determine also C. the number of counts
inthe bin Ar around ¥;

d) Read from figure 1 the upper limit A o

¢) Determine P/P, from equation (10) using error function tables and use equation (S) to
determine the upper limit of the peak area P,

As a pratical example, we can analyse the data from the 0% 2% 76Ge
neutrinoless double beta decay study of the Milano group [5]. This experiment consists in
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the observation of a very low background Ge detector spectrum accumulated during 1.76y
of running. The signature of the ™Ge 0% <~ 2% transition is a peak at Qy;—E,, where
Qyq is the m2 s difference between "Ge and ™Se (204144 0.5 keV [6}) and E_ is the
emergy of the first 2% level of ™Se (539,11 4 0.05 keV [7]), with ¢ 323 chanoels. The
fiducial volume of tke detector is 133 em? [5]. From figure 14 of ref. 5] it was possible to
evaluate the background from a 20 ke\ bin as 11.24 2 0.46 counts per channel.

There is an important point to be discussed about % there are some different
nuclear reactions linking ™*Ge to *Se allowing different experimental Qﬁ,’ values for
the 0% -2% transition [6]. However, those ones with smaller standard deviations give
imcompatible values, suggesticg that probably systematic errors are present in the
experiments. A constrained last square fit of the *Ge — "%Se mass difference quoted by
{6} gives a reduced chi—square value of about 12, suggesting that 0.5 keV is probably an
understimation of oy- Thus, we will adopt here o= 1.6 keV .

Using the above values. performiag steps a) to e} and supposing as 50% the
probability that deexcitation gamma-ray escapes from the detector. we obtain the
following balf-life limits to the 0% = 2% ™Ge decay:

L 0% -2%) > 09110% (maM4CL)
> 0.7610%y (9% C.L.) . (1)

In the case of 90% C'.L. this result if about 1.7 times lower than the limit quoted by [5].



VI. DISCUSSION

The reason to adopt the Bayesian statistical approach, in this work, is not
doctrinaire but practical. The Bayesian approach allows direct and easy answers to the
problem of the diffetence between twc Poissonian numbers without the necessity of
approximations, as happens to the Classical approach [8]. The inclusion of non vanisking
uncertainties both in the background and in the expected position of the searched peak is
also direct. We als0 observe that in the case of experiments with small number of events
the Bayesian approach seems to be closer to the expectation in experimental physics than
the classical approach [9].

Considering qualitative aspects of the present procodure we can observe that:

a) The standard deviations of the background has the same rule of its statistical
flutuation in the peak region (as can be clearly seen from equation (18)) in the
determination of the upper limit of the number of counts in the analysed bin;

b) The standard deviation of the expected position of the searched peak has the same rule
of the detector resolution;

¢) The present approach can be used also if a peak —or a bump —is observed in the
analysed region. In this case the upper limit of the peak area is compatible to the
estimated peak area;

d) In any case the upper limit is negative or zero, even if there is a (statistical) depression
in the analysed region.

e) The results can be applied in the case of small number of events.
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CNPq and FAPESP.
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APPENDIX

In ref. [4] the maximum likelihood technique was used in order to determine the
upper limit of a Gaussian peak in a multichannel spectrum. That result can be compared
with the result shown in this paper after the conection of a mistake in ref. [4] and some

Equation (6) of ref. [4] is better written as

daf, d ~(5-5) /202 ] w(2;-2)* /207
-}-a—'\a{'—=—!——— - A e(‘i‘o)/ p e(‘.‘o)/ . (A1)
A% a; ¥Z% o, o, VZr

where o, at the denominator of the first term in the right hand side of this equation was

omitted in ref.[4]. Equation (9) and (10) of this reference must be rewritten respectivelly

as
n A w2 0’2
o=l e(zi R)'/207, (A3)
"';maz i=1
and ’
~(zi-30)*/207
b = 1 z e(zi 5)°/ P (A1)

= —
21’0’,0;

The meaning of the symbols of equations (A1) — (A3) are explained in [4].
As the peak is not seen, a30. If o, is sufficiently lasger than 1 and if the

number of channels used in the analysis, n, includes all the peak region then

o e-(‘i"o)zﬂ’;

ne
—

(A3)
i=1 T 9z
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Using this approximation the upper limit P a from the approach of ref. 4] can be written

as

P, = ,\athJi b-o, (A6)

where the meaning of b, o, and A o/ are explained in the text.
The result from ref. [4] can be compared with the result from this paper using the
above equation (A3) and equation (20) with ¢; =0. The numerical difference between

both equations are about 6%.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Upper limit A o 3 a function of B for different C values for (a) 95% C.L.
and (b) 90% C.L.. In both cases A o Wes determined for op =0 and

B
aB=JB.

P g’ @= 0.05, as a function of k for a hidden peak with o =2 chaunels.
The optimum k value is about 2.2 which corresponds to Ar=44
channels. Approximating this values to Az=5 or Az=4 has not a very
important consequence. However, if a bad Az region is choosen then the
upper limit of the total peak area will be significantly greater than the better

one.

k values are shown for different values of b, ¢ and ¢,/yb. The asymptotic

limits of k for b-w® are shown in small symbols at the right side of the

values for b = 100,
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