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I. INTRODUCTION

Many experiments in physics are running in order to indcntify a peak in a

multichannel spectrum. However, it is not rare that these experiments give negative

results: the sought after peak is not dearly observed. This fact can occur when the peak is

hidden in the statistical flutuation or in the uncertainty of the background or also hidden

due to its own statistical flutuation. In some cases, the peak position is known with a non

negligible standard deviation and we simple do not know exactly where search for it. In

short, the peak can be lost in a statistical jingle. In these cases we can only determine the

upper limit of the peak area with a chosen confidence level.

Extraction of the upper limit of a signal in the presence of a background, where both

signal and background obey Poisson distributions, waí already discuííod in a previous

paper (1). In this reference it was shown that wheu the background B is known with a

negligible error. C events are observed in a bin of the multichannel spectrum, and a is

the (unknown) intensity of the searched signal in the same bin, then the posterior

probability density function of a is given by:

C!

where X is a normalization constant such that:

0̂

g(a)da = 1 . (2)

If C » B. that is. the peak is clearly seen, then g^aj is peaked at a value a = C-B with a

corresponding standard deviation equate to VC . However, there are many experiments



where B ? C . In this case, an upper limit A for a can be defined [1] by

= f g(a)da , (3)

where 1-a is the confidence level (C.L.). It can be shown [2,3] that eq. (3) is equivalent

to

E B B /n!
n=0

There are three points that were not considered in ref. [1]: the shape of the peak in

the multichannel spectrum, and the nonvanishing errors in the background (that were just

considered in the limit B > 1 and C> 1) and in the expected position of the searched

peak.

Recently Avignone [4] has also discussed this problem using a maximum likelihood

procedure and including the shape of the peak. However, his results were restricted to a

normal approximation of the Poisson distribution and statistical uncertainty of the

background was not taken into account. Also ref. [4] does not consider the existence of a

possible standard deviation in the position of the searched peak.

In this paper we will extend the results of ref. [1] in order to take into account the

three points mentioned above. The results will include the case of small number of events.



II. ANALYSIS

a) NOD vanishing background error

As stated in ref. [l], when B is not exactly known but obeys a probability density

function f(B'), equation (1) must be rewritten as

L C!
f(B') dB' , (5)

where X' is the normalization constant. It will be supposed in this paper that the

knowledge of the background has a Gaussian shape with mean value B and standard

deviation a_ ,

f(B') ~ e (6)

Using f(B') above in eq. (5) and using eq. (5) in eq. (3) we can determine A . Figure 1

shows A A as function of B for some C values, for ao = 0 and for <r_ = yT5.
O D D

Figure (1) must be read as follows: if C events are observed in a multichannel

region where the mean background is B with standard deviation a~ , then A is the

upper limit of the signal in the region with C.L. \-a. As can be seen from figure (1) A

is always positive also if C < B. If C > B that is, if the signal is actually observed, the

upper limit A is compatible to the signal intensity C - B . We can also observe that

for fixed B and C, when <ro increases, AA increases.
D O



b) Finite resolution

If we arc searching for a peak in a multichannel spectrum we must consider the

finite resolution of the detector system. If the searched peak has a Gaussian shape centered

at ZQ and with resolution (FWHM) 2.35 a j t then the expected number of events in a bin

Ax around JQ •*

,xo+Ax/2<rx -(x-xo)2/2<4
P = Po I dx (7)

fit 9t «

where P o is the total peak area. Thus, if Aft is the upper limit of the number of counts

in the Ax region, the upper limit of the total peak area is

Pn = — - • (8)

As can be seen from figure (1), AQ increases if both B and C increase. Since B

and C increase with Ax then A also increases with Ax. On the other hand, the ratio

P/P o increases asymptotically with Ax. Thus. Pa has a minimum value as function of

Ax. We will discuss below how to determine this optimum Ar bin in order to obtain the

«mallest P f t for a given C.L..

c) Uncertainty in the expected position of the searched peak

If z0 is not exactly known and we know only an experimental result x * o- , this

lack of information must be taken into account in the determination of the upper limit of

the peak area. Adopting the Bayesion approach and supposing that the posterior



probability density function of % is a Gaussian one with the parameters x and a- we

can rewrite equation (?) as

• '-Í / dx

z-Ai/2ez

dx0 . (9)

In this equation the inner integral takes into account the fraction of the peak area in the

Ax bin around x if the true position of the peak is x0 ; the outer integral takes into

account the probability that r0 is the true rositioo of the peak.

Integration in x0 is readily done and equation (9) can be rewriten as

,-u2 /2

where a is given by

This last equation shows that both the peak standard deviation, a , and the uncertainty

in the peak position, o- , have the same rule in the statistical problem.

III. OPTIMUM ENERGY BIN Ax

As stated above there is an optimum Ax bin to be analysed in order to obtain the

smallest upper limit PQ. This optimum bin can be determined experimentally for every



case. However, as we are dealing with an hidden peak, we are able to generally determine

Ax supposing that

B = C = ;k<rb (12)

where b is the background rate (in counts per channel).

Ax = k<r (13)

is the analysed bin, and

<rn = k<r<r. (14)

is the standard deviation of B. ^ is the standard deviation of b .

Using B and C from equation (12) and <rR from equation (14) to obtain A

from figure (1) and Ax from equation (13) to obtain P/P o , we are able to obtain P

from equation (8) as a function of k. Figure 2 shows bow P depends on k in an

example where b = 5 counts per channel, ^b/V^ = 0.5, <r = 2 channels and B = C. As

can be seen from this example there is an optimum k value (and thus an optimum Ax

bin) to be used.

Figure (3) shows k", the optimum k value, as function of <r, b and oJJS

calculated for a = 0.05 and supposing B = C . Some care must be taken in the use of

figure (3) since when dealing with multichannel spectra we are limited to use integer A ;

bins. So, K values from figure 3 are approximated values that must be rounded-off in

order to obtain integer k • a values. The assymptotic value of £ , when <r. = 0 and

o — » , is 2.8 whatever b is. The dependence of & on a is very weak (only few percents

if a goes from 0.7 to 0.01); thus, K from figure (3) can be used for o values that are not

very far from 0.05.



IV. GAUSSIAN APPROXIMATION

Iu the following section we wiil show bow to generally use the present resulta in the

analysis of a hidden peak in a multichannel spectrum. Before this, w* will show the

Giuisian approximations valid in the case of not small number of events.

If b > 1 the posterior probability density function of a from equation (5) can be

written as

g(a) = r-e-l»-**1/** (15)

where / " is a normalization constant

4 = C - B (16)

and

*J = C + (E*<7b)J . (17)

In thecaseofahidden^peak, BSC$Eb<r and ã S O . AQ is given by

o ah a+(t(rba)* (18)

where

- r
The first term in the square root of equation (18) corresponds to the statistical flutuation

of the number of events in the analysed Ax bin and the second term corresponds to the

standard deviation of the mean value of the background. It is interesting to observe that

both terms have the same rule in the determination of A .



b is «dl known, #; > b . E = 2.3. l a t b i s c s e P/P, can be rcaiiUy

determined from equation (10) and thus, from equation (S), we have

20 V, * *•* + •? • w

where the dependence of # on # x and # } üom equation (11) was expttcitcd.

IB the appendix we compare the present result with that from ref.(4).

V. HOW TO PROCEED

Suppose we are searching for a Gaussian peak in a multichannel spectrum at

* * * x - Suppose that tbe system resolution (FWHM) is 2.35 * x- The following steps

must be performed in order to determine tbe upper limit of tbe peak area:

a) Determine the background b , in counts per channel, and its standard deviation ? k ;

b) Determine o from equation (11) and use figure 3 to determine the best A x i t *

region to be analysed. Ax must be rounded-ofT to an integer,

c) Determine B = Ax-b and * B = Ax-*b . Determine also C . the number of counts

in the bin Ax around r,

d) Read from figure 1 tbe upper limit A ;

e) Determine P/Po from equation (10) using error function tables and use equation (S) to

determine tbe upper limit of the peak area P o -

As a praticai example, we can analyse the data from the 0 + - 2 + 7CCe

neutrinoicss double beta decay study of the Milano group [5]. This experiment consists in



10

the observation of a very fa* background Ge detector spectrum accumulated during l.TGy

of rawing. The signature of the ™ C e O + - 2 + transition n a peak at Q J J - E , where

Q ^ b d * ma ̂ t iBerem between "Ge and "Se(2041.4*0.5keV [G|)and E ? istbe

energy of the first 2 + level of «Se (S59.11 * 0.05 keV [7|), with ^ J U channels. The

fiducial volume of the detector is 133 cm* [5|. From figure 14 of ref. [5] it «a* possible to

evaluate the background from a 20 keV bin as 11.24 * 0.46 count; per channel.

There is an important point to be discussed about 0f: there are some different

nuclear reactions Unking nGe to T*Se allowing different experimental Q J J values for

the 0 + - 2 + transitioo (6|. However, those ones with smaller standard deviations give

imcompatible values, suggesticg that probably systematic errors are present in the

experiments. A constrained last square fit of the 7cGe - 7*Se mass difference quoted by

f6| gives a reduced chi-square value of about 12, suggesting that 0.5 keV is probably an

understinution of * f . Thus, we will adopt here # } * 1.6 keV.

Using the above values, performing steps a) to e) and supposing as 50% the

probability that deexcitatM» gamma-ray escapes from the detector, we obtain the

following half-life limits to the 0 + - 2* "Ge decay:

T i /2 ( 0 + - 2 + ) > 0.9110°y (at 9TÁ C.L.)

> 0.76 IO22/ ( a 95% C.L.) . (21)

In the case of 90% C.L. this result if about 1.7 times lower than the limit quoted by (5).
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VI. DISCUSSION

The reason to adopt the Bayesian statistical approach, in this work, is not

doctrinaire but practical. The Bayesian approach allows direct and easy answers to the

problem of the difference between twc Poissonian numbers without the necessity of

approximations, as happens to the Classical approach [8]. The inclusion of non vanishing

uncertainties both in the background and in the expected position of the searched peak is

also direct. We also observe that in the case of experiments with small number of events

the Bayesian approach seems to be closer to the expectation in experimental physics than

the classical approach [9].

Considering qualitative aspects of the present procedure we can observe that:

a) The standard deviations of the background has the same rule of its statistical

flutuation in the peak region (as can be clearly seen from equation (18)) in the

determination of the upper limit of the number of counts in the analysed bin;

b) The standard deviation of the expected position of the searched peak has the same rule

of the detector resolution;

c) The present approach can be used also if a peak - or a bump - is observed in the

analysed region. In this case the upper limit of the peak area is compatible to the

estimated peak area;

d) In any case the upper limit is negative or zero, even if there is a (statistical) depression

in the analysed region.

e) The results can be applied in the case of small number of events.
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APPENDIX

In ref. [4] the maximum likelihood technique was used in order to determine the

upper limit of a Gaussian peak in a multichannel spectrum. That result can be compared

with the result shown in this paper after the conection of a mistake in ref. [4] and some

approximations.

Equation (6) of ref. [4] is better written as

where az at the denominator of the first term in the right hand side of this equation was

omitted in ref.[4]. Equation (9) and (10) of this reference must be rewritten respectiveUy

i=l

and

The meaning of the symbols of equations (Al) - (A3) are explained in [4].

As the peak is not seen, a 2 0 . If a is sufficiently larger than 1 and if lhe

number of channels used in the analysis, n, includes all the peak region then

(A5)
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Using this approximation the upper limit P from the approach of ref. [4] can be written

as

o
Po = \a/jj2jibox (A6)

where the meaning of b, ax and A , are explained in the text.

The result from ref. [4] can be compared with the result from this paper using the

above equation (Aõ) and equation (20) with a~=0. The numerical difference between

both equations are about 6%.
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FIGURE CAPTIONS

Figurei. Upper limit A^ as a function of B for different C values for (a) 95% C.L.

and (b) 90% C.L.. In both cases A was determined for <7 = 0 and

Figure 2. P f f , a - 0.05, as a function of k for a hidden peak with a = 2 channels.

The optimum k value is about 2.2 which corresponds to Ax = 4.4

channels. Approximating this values to Ax = 5 or Ax = 4 has not a very

important consequence. However, if a bad Ax region is choosen then the

upper limit of the total peak area will be significantly greater than the better

one.

Figure 3. E values are shown for different values of b, o and <rJJ5. The asymptotic

limits of 1c for b - » are shown in small symbols at the right side of the

values for b = 100.
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