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ABSTRACT 

A new approximate method to calculate the space-time acoustic wave motion 

generated by an impulsive point source in a horizontally layered 

configuration is presented. The configuration consists of a stack of fluid 

layers between two acoustic half-spaces where the source and the receiver 

are located in the upper half-space. A distorted-wave Born approximation is 

introduced; the important feature of the present method is the assumption of 

the presence of a background medium with vertical varying root-mean-square 

acoustic wave speed. A closed-form expression for the scattered field in 

space and time as a function of the contrast parameters is arrived at. The 

result is in close agreement with synthetic seismograms calculated in a 

rigorous way. In the inverse scheme the wave speed and mass density can be 

reconstructed within a single trace. Results of the inversion scheme applied 

to synthetic data have been shown. 
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1. INTRODUCTION 

The ordinary Born approximation is widely used to simplify both forward and 

inverse problems of wave propagation models for seismic exploration (Cohen 

and Bleistein 1977,1979; Phlnney and Frazer 1978; Raz 1981a,b). Within this 

Born approximation, the solution of the acoustic wave equation is expressed 

as a perturbation about a known solution to the simple equations of a 

homogeneous background medium. The Born approximation is a low-contrast 

approximation in the integral equation governing the total scattering 

mechanism of the acoustic waves in the configuration. In this paper, we 

derive a closed-form expression in the space-time domain. However, the 

inherent use of a constant background medium leads to incorrect arrival 

times. 

In the distorted-wave approximation (Beylkin and Oristaglio 1985) we 

assume a more realistic inhomogeneous background medium. In most cases, the 

field solution of a point source is then difficult to obtain and complicated 

inversion schemes are the results of it (Clayton and Stolt 1981, Foster and 

Carrion 1984, Bleistein and Gray 1985, Weglein, Violette and Keho 1986). 

In the present paper where we deal with a horizontally layered 

configuration, we take an inhomogeneous background medium in such a way that 

a very simple approximate solution to the problem of a point-source in this 

background medium is arrived at. The precise assumption of the structure of 

the background medium is circumvented by deriving a closed-form low-contrast 

approximation of the analytical expression in the Laplace-Fourier transform 

domain of the Cagniard-De Hoop technique (De Hoop I960, Aki and Richards 

1980) with primaries only (Drijkonlngen and Fokkema 1987). It appears that 

we have arrived at a distorted-wave Born approximation with some vertical 

varying root-mean-square acoustic wave speed. Some numerical results of the 
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present forward problem are presented and compared with the results of the 
» 

exact Cagniard-Oe Hoop technique. 

Further, we show that our RMS Horn approximation leads to a very simple 

inversion scheme, where the two constitutive parameters, the mass density 

and the wave speed, or the fluid layers can simultaneously be reconstructed 

within a single trace. We finally present some results of the inversion 

scheme applied to synthetic data of the Cagniard-De Koop technique. 

2. DESCRIPTION OF CONFIGURATION 

The Cartesian coordinates {x-.x-.x-} with respect to the right-handed 

orthogonal Cartesian reference frame {i1fi.,l.} locate a point in space, 

while t represents the time of observation. The vectors and tensors which 

occur are given in subscript representation. Lower-case Latin subscripts are 

used for this purpose; they are assigned the values 1, 2 and 3. The 

summation convention applies to repeated subscripts. Partial differentation 

with respect to x. is denoted by 3.; the symbol 3 denotes the partial 

derivative with respect to time. SI units are used throughout. 

We consider a horizontally stratified linear acoustic medium in the 

vertical x ,-direction. The acoustic properties of the configuration are 
j 

characterized by its volume density of mass p and its compressibility K. 

Both p and < are functions of x~. They are independent of the horizontal 

coordinates x., x„, and the time coordinate t. The functions p - p(x_) and 

< - <(x,) are taken piecewise constant (Fig.1). The related acoustic wave 

speed is given by 

c - (px)"172 > 0. (2.1) 
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(S) An impulsive point source a t ( 0 , 0 . x , } generates the acous t ic waves. This 

* (R) f R ) f R) 

source starts to act at t - 0. A receiver is located at lx* ,x^ ,x* ). We 

consider the case that both source and receiver are located in the upper 

homogeneous half-space with p - p , K « *_ and c - c (Fig.1). The latter 

model is of extreme importance in land and marine seismics. 

3. BASIC ACOUSTIC HAVE EQUATIONS 

The equations that govern the linearized acoustic wave motion in a fluid are 

the equation of motion 

V » \\'rt- o-" 

and the deformation equation 

Vk * K 8 t P " qÍ* (3,2) 

In these equations p is the acoustic pressure, v is the particle velocity, 

f* is the volume source density of force, and q is the injection rate. We 

(S) 
consider a point source located at {0,0,xl } with vertical force strength 

F(t) and injection rate strength Q(t). Hence, 

fj - 0, f2 - 0, f^ - Fit) 6(xrx2,x3-x^
S)), (3-3) 

q* - Q(t) ó(x1,x2,x3-x^
S);, (3.1») 

where the source-strength iF(t),Q(t)} is understood to be zero when t < 0. 
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In the analysis of the solution of Eqs. (3.1) - (3.1), we take advantage of 

the invariance or the configuration with respect to tine and with respect to 

the horizontal coordinates. 

*. TRANSFORMED WAVE EQUATIONS 

Using the one-sided Laplace transform with respect to time 

f(xrx2,x3,s) - I r(x1,x2,x3,t) exp(-st) dt, Re(s) > 0, (1.1) 

and subsequently a Fourier transform with respect to the horizontal 

coordinates 

fic^.ctg.x-.s) - I dx2 I f ( x l t x 2 , x 3 , s ) e x p U s U j X j + a ^ ) ] dXj (1.2) 

with the inverse Fourier transform 

2 f" f" " 
f (x l t x 2 , x ,s) - [-^} I do2 I f ia^Og.x-.s) e x p C - i s í a ^ + a ^ ) ] do1t 

(1.3) 

lead to the transformed acoustic wave equations for the fundamental acoustic 

quantities p and v_ 

33P* • s p v3 - f*. (1.1) 

33v3 • s Y V 1 p - q1, (1.5) 
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in which Y - Y(x^) is the vertical slowness given as 

-2 2 2 1/2 
Y - (c £ • a, • a^)'/<: > 0, (4.6) 

and c - c(x.) is the acoustic wave speed. In our transformed equations, the 

source distributions are the Torce" 

f* - F3(s) 6U 3-x^
S )). (4.7) 

and the "volume injection" 

q1 - Q(s) « U - x * S ) ) . (4.8) 

In the next sections we consider some approximate methods to solve our 

transformed acoustic wave equations in the layered configuration at hand. 

5. CONTRAST SOURCES IN A BACKGROUND MEDIUM 

We first observe that the total field lp,v_) can be written as the sum of 

two field constituents: 

p - p • p , v3 " v3 v3« ( 5 , 1 ) 

where (p ,v_} are the transformed quantities of the incident field In the 

(in)homogeneous background medium with p_(x_), K (x_), and where (p9,víh 
o 5 o 3 i 

denote the transformed quantities of the scattered field. The incident field 

{satisfies Lhü equations 
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3 3 p I * 5 PB v3 - f3* <5*2) 

33v* • s TfBp~ p1 - q . (5.3) 

where T - Y B * X 3 *
 i s t h e v e r t i c a l slowness in the background «ediua, given 

as 

YB " ( CB 2 * af * ° 2 ) 1 / 2 > °« (5-',) 

and c_ - cBi
xo) i s t n e w a v e speed in the background medium is. When the 

total field satisfies Eqs. (4.*) - (4.5). the scattered field satisfies the 

equations 

33P
S - s pB v* - . (5.5) 

jy3 • s ̂ p"1 p3 - iS, (5.6) 

in which the scattered field is understood to be excited in the background 

medium by the contrast source Jistributions 

f* - - s (p - pB) v3. (5.7) 

q3 - -s ( Y V 1 - YgPg1) p". (5.8) 

Note that in the expressions for the contrast source distributions of Eqs. 

(5.7) and (5.8) the total field quantities p arid v occur. From Eqs. (5.5) 

and (5.6), the scattered acoustic pressure is obtained as 
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P^Xj) - J r'(x') pf(x3.x^) dx^ • j qs(x^) pq(x3.x«) dx'. (5.9) 

s 
¥3 

U 3 } " J f3 ( x3 ) ̂ V * ^ d x3 * J <»S(*3> »5(x3'x3} dx3« (5-10) 

where (p ,v I is the acoustic wave field excited by a unit force in the x -

direction at x_ - x* and lp ,vq) is the acoustic wave field excited by a 

unit volume injection source at x, - x*. These unit source fields satisfy 

the equations 

33p
f • s pB vj - 6(x3-x3). (5.11) 

3 ^ * s Y^p"1 pf - 0. (5.12) 

and 

33p
q • s pB v^ - 0, (5.13) 

3 ^ • s Yjjp"1 pq - ô(x3-x|). (5.11) 

So far we deal with a rigorous analysis. As soon as the unit source 

solutions Ip1,^} of Eqs. (5.2) - (5.3). tp'.Vj} of Eqs. (5.11) - (5.12), 

and (pq,vq) of Eqs. (5.13) - (5.14) are calculated, we can take the total 

Held in Eqs. (5.7) - (5.8) to be the incident field and calculate the 

scattered field from Eqs. (5.9) - (5.10). This procedure is known as the 

Born approximation. 
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6. FIRST BORN APPtOXIHATIOÜ 

In the First Born approximation we take the background aediun to be 

the homogeneous aediua, i.e. 

PB " V CB - V (6.1) 

The incident field (p ,v } in this homogeneous background medium is obtained 

•»s 

p" 1^) - (2T0)
_1[Y0F • p0Q] expC-sT0(x3-x^

S})]. (6.2) 

v*(x3) - ( V
p 0 } PÍ(x3}» (6.3) 

(S) 
when x_ > x^ , 

and the unit-source solutions (p ,v ) and lpq,v^} with source location at x 

(R) 
• x' and observer location at x, • x. as 

if(x^R),x3) - - (1/2) exp[sTf0(x^
R)-xp]. (6.H) 

v^(x^R),x3) - - (70/p0) p
T(x3

:R),x3), (6.5) 

iq(x^R)
fx3) - (P0/2YQ) expCsyx^-x})], (6.6) 

v^(x^R),x3) -'- (Y0/p0) i
f(x^R),x3), (6.7) 

(D) 

when x* ' < x'. 
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Subsequently. we take In the contrast source distributions of Eqs. .5.T) -

(5.8) the-total field to be equal to the incic«.nt field. This approximation 

-2 -2 
is valid for saall values of p - p and c - eQ only. He then have 

s • - * 2 _ 1 - Y 2 - 1 

* S ( *3 R > ) " 7 Í (o) (V*«\>5) °P° " 2 ' P° «p[-»v ) ] tor (6-8) 

*3 T0 

- s ÍR1 s f - i - - V o p~* p po 

*3U3 } • : J (o) ( V„ F * Q ) — « p t - » v ) ] d xr <6-9) 

*3 Y0 

—2 2 2 1/2 
in which T - (c • o • a ) and the vertical travel distance z - z(x') 

between receiver and source via the reflection point x' is given by 

z - 2x'3 - x*R) - x*S). (6.10) 

(0) 
Note that the integrals start at x, , since the actual medium is identical 

to the background medium for values of x. less than x, . 

7. SPACE-TIME DOMAIN RESULTS FOR A VOLUME INJECTION SOURCE 

In the following, we only consider the point source of the volume injection 

type, i.e. F • 0, Q « 0. This type of source is of importance in marine 

seismics. We then measure the pressure p only. We therefore continue our 

analysis with Eq. (6.8). For our configuration at hand (Fig. 1), the 

integral of Eq. (6.8) can be calculated analytically. We then obtain 

(f;)2 íS(0l.a2,x^
R),s) - pQ s

2 Q(S) Gio, ,a2,x^
R),s), (7.1) 
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(H) 

in which the spectral representation or Green's function G - Gta- .a - .x* ,s) 

i s given by contributions of the interfaces x - xY1 , n-0,1.2 N, as 

a,2'»-0 » «£ 

with 

z n - z ( x < n ) ) - 2 x < n ) - x < R ) - x < S ) . (7.3) 

while A and B are given by 

. m - 1 - 1 > »,# "1 -1\ Pn*1 p n , , fcA 

* n - ' , ( p n * 1 p 0 " V w l ' - ^ V O " V n l " p • p " ' ^ 
rn*1 n 

and 

# "2 - 2 , -1 , -2 -2» -1 -2 -2 , _ c . 
Bn - ( c n " c 0 V n " (cn*1 " c 0 V n * 1 " c n " V r ( 7 * 5 > 

The approxinations nade i n Eqs. (7 .4 ) and (7 .5 ) are consistent with the low-

contrast approximations of the Born approximation. Note that the tern A • 

-2 
B (27. ) in Eq. (7 .2 ) i s the low-contrast approximation of the re f lec t ion 

n o 

factor of an acoustic wave In our transform domain. This re f lec t ion factor 

with respect to an interface at x* is given by 

f , V n ' - V l ' n j l (7_6) 

Vn * VlVl 

in which 
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r72 „-2 -2 -2 
-2 2 2 J / 2 c_ c„ . .„ c c. 

(7.7) 

Y 2Y 
0 O 

In the l a s t expression of Eq. ( 7 . 7 ) , we have used a low-contrast 

approximation. Using t h i s approximation in the expression for the r e f l e c t i o n 

fac to r , we obta in the low-contrast approximation for the r e f l e c t i o n factor 

as 

-2 -2 
p , - p c - c , B 

r n+1 K n n n+1 n ,_ RN 
n p n + 1 + p n i » ^ n ^l 

From Eqs. (7.2) and (7 .8 ) , we observe the well-known fea ture that the f i r s t 

Born approximation takes in to account the primary r e f l e c t i o n s only. Fur ther , 

we remark tha t the approximation of ths r e f l e c t i o n fac tor given by Eq. (7.8) 

i s only val id when Y L. i s a regular function of a and 0. This excludes the 
n+1 

poss ib i l i t y of head-wave occurence. The l a t t e r waves only occur for large 

o f f se t s , r e s t r i c t i n g the admissible values of r . This i s again consis tent 

with the Born approximation. 

Under these r e s t r i c t i o n s , so lu t ions in the time-space domain are d i r e c t l y 

obtained with the aid of Cagniard-De Hoop technique (De Hoop 1960, Aki and 

Richards 1980, p . 221). Applying t h i s technique, we have 

,» r" expt-sY z ] 
do_ e x p C - i s i a ^ + c ^ x )3 da. 

J-o. J -» 2ir Y„ 

exp(-st) 
d t , (7.9) 

Vc0 R n 
and 
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f - . exp [ -sY 0 z n ] 
da2 r expL-isia^+OgX ) ] da1 
D -co 2v yQ 

Í
» z t exp(-st) 
R . 772 2. 2,3/2 dt' (7-10) 
R /c„ It - r /c_J 

in which the horizontal offset r between receiver and source is defined as 

r « [ ( x ; R ) ) 2
 + (x^)

2] 1 / 2>0 (7.11) 

and the travel distance R between receiver and source via the reflection 
n 

, . (n) point x- as 

Rn " Cr2 + z n ] 1 / 2 > °* (7,12) 

The time-domain representation of the scattered field p is then recognized 

as 

pS(r,x<R),t) - pQ 3
2(Q(t) » G(r,x<R).t)), (7.13) 

in which * denotes the convolution and the space-time Green's function G 
(R) G(r,x^ ,t) denotes the impulse response of the system and i s given by 

1 A B z n t 

11, n ' ° U 'l(t2 - r 2 / c 2 ) 3 / 2 n ° 
11 0 

where H is the unit step function defined by 

- 1, t > 0, 
H( t ) ' (7.15) 

- 0, t < 0. 
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Now, we shall present some numerical results for the nine-layer 

configuration of Table 1. For this configuration, Drijkonigen and Fokkema 

(1987) have computed the Green's function of Eq. (7.14) by using the exact 

Cagniard-De Hoop technique with only ~imary reflections. We shall compare 

our approximate results with the ones obtained from this Cagniard-De Hoop 

technique. In Fig. 2, we present the results of the First Born approximation 

for two different values of the offset r. The dashed lines represent the 

exact results of the Cagniard-De Hoop technique with primaries only. We 

observe that the results of the Born approximation do not fit the arrival 

times very well. 

8. RMS BORN APPROXIMATION 

In order to improve the Born approximation, we should use a more realistic 

background medium.'The disadvantage of using a more realistic background 

medium is the complication of the field solution. Therefore, we avoid the 

precise assumption of a realistic background medium. As starting point, we 

have the solution of the Cagniard-De Hoop technique with primary reflections 

only. The Green's function Is obtained as (Drijkonigen and Fokkema 1987) 

. expC-s r" n Y h ] 
O . J L f f r m^jnjn f ( 8 l ) 

8n2 n"° n yn 

in which the reflection factor ?n Is given by Eq. (7.6) and where hm denotes 

the vertical wave path that the acoustic wave has traversed in the layer 

with wave speed c . Note that in Eq. (8.1), we have taken the transmission 
m 

factors of all interfaces equal to 1. This approximation is consistent with 
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the low-contrast approximations. The total vertical geometric path i s given 
« 

by 

n m«o m 

where 

h - 2 x ( 0 ) - xiR) - x ( S ) 
n0 "x3 3 3 ' 

hm - 2(x^m) - x 3
( m " ° ) , m - 1 , 2 , 3 (8.3) 

Further, we have an upper bound and a lower bound for the vertical wave 

propagation term E.JL,h • For real o1 and a-, we are able to write (Van den 

Berg and Fokkema 1987) 

n 1 2 n m-0 m m n i 2' n 

where c' is the root-mean square wave speed defined as 

° ; - u ; n °m
 h J 1 / 2 ' ( £ oc™1 h J 1 / 2 (8-5) 

n x m«0 m m m-0 m m' 

and c" is the root-mean square wave speed defined as 

c" - U" o " ) U 2 I U" n °"2 h ) 1 / 2 . (8.6) 
n v m-0 nr v m-0 m m' 

Note that only the f irst definition of Eq. (8.5) for the root-mean-square 

wave speed is commonly used in seismics (Cf. Helbig 1981, p. 159) to replace 

ii stack of layers by a single layer with some replacement velocity. From 
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(8.1) it is obvious that a very good approximation for the vertical wave 
9 

propagation i s given by 

- n - i. ~rms ,„ _% [ . K h « 1 z , (8.7) ra-0 m m n n* V ' ' 

with 

,rms i, rmSv-2 2 2\\f2 .„ „. 
rn " í ( c n ) a1 + aJ (8-8) 

and 

C s - <«; VU2- (••»> 

Using the result of Eq. (8.7) in our expression of the Green's function of 

Eq. ( 8 . 1 ) , we obtain 

1 M exp[-s Y™ 3 z ] 
G " - ? í o rn S L " <8'10> 

Q 2 n«0 n v 
8* YQ 

At the interface at x. , in the same way as in Eq. ( 7 . 7 ) , we write 

-2_ ( c rm 3 ) -2 
, -2 A 2 A 2,1/2 vnns i. x j i lcn ; 11/2 

Y - (c • a, • a„) - Y 11 • . . . . . . 1 
n n 1 2 n v , rms.2 ' 

n ' 

-2 . ( o m 8 , - 2 

< 1 + J ! S 5 7 — ) Í8'11) 
2(Y rmV n 

and in the same way we write Y . as 
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c"2 - (c"" 3 )" 2 

n 

Hence, the low-contrast approximation of the re f lec t ion factor i 3 obtained 

as 

2 2 
0 . - 0 C - C . B 

P n+1 *n ^ n n*1 . n , 0 , , . 
n n 

For the validity of Eq. (8.13) and the following analysis» we refer to the 

remarks made below Eq. (7.8). With Y - r at the interface x* and the 

low-contrast result of Eq. (8.13). the low-contrast approximation of the 

Green's function of Eq. (8.10) is arrived at 

G " — Z n £An + ?£hr?J " " . (8.11) 
•» "-n-0 n „,vrms«2 „rms 

8T 1(V ) Y 
n n 

Using the results of Eqs. (7.9) and (7.10), with 7Q replaced by If™3, the 

space-time Green's function Js obtained as 

G - - - £ n CAjl • P
B " 2 ^ - 3 " ^ 7 p 3 HCt-R / c ™ ) . (8.15) 

4. n"° Rn l ( t 2 - ( r / c ™ 3 ) 2 ) 3 / 2 n n 

Note that the travel time 

n n n 
(8.16) 
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i s our approximation of the exact travel time. Further, in the denominator 

or the second term in Kq. (8 .11 ) , we may replace c""8 by c . This i s 

consistent with our approximations already made. We f ina l ly end up with 

1 A 1 

G(t) r _ [— • -B z w(t ) ] H(t-T. ) . (8.17) 
1|, " w R 1 

n 

where 

An " ( V l ~ pn ) ' ( V l + "n} * 8 ' l 8 ) 

ana 

B n - c n 2 " V r t8'1*) 

w(t) - t / ( t 2 - r 2 / c 2 ) 3 / 2 . (8.20) 

If , In the expression of the travel times of Eq.(8.16) , we enforce c r m s to 

be equal to c , we obtain the space-time Green's function of the First Born 

approximation with the homogeneous background of Section 7. The result of 

Eq. (8.17) can be interpreted as some distorted-wave Born approximation 

using some background medium with our chosen vert ical varying root-mean-

square acoustic wave speed. 

We subsequently present some numerical resul ts for our nine-layer 

configuration of Table 1. We compare our approximate re su l t s with the ones 

obtained from the Cagniard-De Hoop technique. In Fig. 3 , the dashed l ines 

represent the exact resul ts of the Cagniard-De Hoop technique with primaries 

only. We observe that the results of our simple expression of the RMS Born 

approximation are in good agreement with the much more complicated Cagniard-

De Hoop technique for primaries only. 
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9. VELOCITY INVERSION 

We first consider the simplified case that there is no contrast in mass 

density, i.e. p - pQ, for all n. In order to obtain the Creen's function 

G(t), the inversion procedure consists of a deconvolution of the data with 

the known source signature. For t > r/cQ> we divide the obtained values by 

w(t). Then, we determine the location of the jumps ' .1 the curve G(t)/w(t). 

These time instants are the arrival times T , n-0,1,2,...,N-1. The last time 

instant considered In the data is defined as T . 

With the results of Eq. (8.17) and A - 0, for all n, the values of the 

wave speed are obtained from 

cn*1 " c~n " Bn' n - 0, 1, .... M-1. (9.1) 

where B is obtained from the recurrence relations n 

I6ir rT 
B, zn - = r- " G(t)/w(t) dt - I""' Bm z . (9.2) 
n n T -T J m»0 m m n 

K ' iRf ~ r 2 ) 1 / 2 . (9.3) 
n n 

«n " 'n C 3 ' «»•<> 

The time integral of Eq. (9.2) is computed numerically by a simple 

rectangular integration rule over the discrete time samples. The RMS-

velocity is determined recursively as 

c-— - (c c") 1 , (9.5) 
n v n n' 



H & U j f í C INVERSION tit A RMS BURN APPROXIMATION 21 

with 

n m»u n n m-1 m«u • m m— l ' 

and 

«: - (Co « v w ) ' «Co v « W i » • «»•" 

in which 

T_j - r/cQ. (9.8) 

Note that these definitions of c' and c" differ fro» Eqs. (8.3) and (8.6), 
n n 

rms but it has been verified numerically that the final results for c do net n 

differ significantly. The present definitions are sore advantageous in the 

inverse scheme, since we only can determine the arrival times from the data. 

As soon we have determined c , the precise locations of z (and hence h ) 
n * n n 

are obtained as a result. In this way a very simple inversion scheme is 

arrived at. 

In Fig. 4, we present the synthetic data of the Cagniard-De Hoop method 

(with primaries only) of the Green's function for the configuration of Table 

1, provided there is no mass-density contrast. In the same figure, we also 

present the results of the function G(t)/w(t), when t > r/c_. Using these 

data, the reconstructed wave speeds are presented in Fig. 5. A very close 

agreement with the exact results (dashed line) is observed. In view of the 

simplicity of the inversion procedure, we have arrived at a very elegant 

single-pass seismic Inversion scheme. 
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10. COMPLETE INVERSION 

He now consider the complete inversion scheme. He observe that the 

expression or C(t) of Eq. (8.17) consists of two constituents, where the 

first one contains Mass-density information and the second one contains 

velocity information. When there is mass-density contrast we have to modify 

our inversion scheae as follows. He first determine the jumps in the curve 

of C(t). These time instants are the arrival times T , n-0,1,2,.-.,N-l. The 

n 

last time interval considered in the data i s defined as TN. In each time 

interval T . < t < T , n-0 ,1 ,2 , . . . ,N-1 , we then perform a simple least-

square-error f i t or the right-hand side of Eq. (8.17) to the data. Then, the 
values of y" _ A /R and I" n -rB z ar» determined from the minimization 

TÍ»0 m m TB-0 1mm 

procedure of the quantities 

The values of the mass density and the wave speed are then obtained as 

V l - »n ( 1 + An ) / ( 1 -V ' ( 1 0- , ) 

c~2 - c"2 - B . (10.2) 
n*1 n n 

where A and B are obtained from the recurrence relations n n 

A /R . ,„ *J£IUJÍ£ . j|*-i A ,„ (io.3) 
n n a a a' o»"0 m m 

a11 a22 " a22 
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B * - 16, - U ^ - ~ **? ! - ln~\ B z . ( IO.H) 

n n. 2 t«-0 a m \ •«•••# 
*1ia22 ~ a22 

in which 

a, t - I d t , (10.5) 
r 
n 

fVi 
a, , - | w(t) d t . <10.6) 

fVl 
'T 

n 

a22 • I " ' w2(k> d t « (10.7) 

7 

b - I n + 1 G(t) d t , (10.8) 

n 

T 

b - f n+1 G(t) w(t) dt. (10.9) 

n 

The integrals of Eqs. (10.8) and (10.9) have to be calculated numerically, 

using e.g. a rectangular integration rule over the tine samples. The 

integrals of Eqs. (10.5) - (10.7) can be calculated analyt ical ly . However, 

i t i s more consistent to evaluate th i s integrals numerically in the same 

manner as the other ones. 

Without any changes, the values of z , R and c follow from Eqs. (9.3) 

- (9.8) of the previous section. This concludes our complete inversion 

scheme. In contrast to Raz (1981a), we are able to reconstruct within our 

approximations both the density and the velocity prof i le . The only a priori 

information we have used is the knowledge that the horizontally s t ra t i f ied 
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aediua consists or a stack or homogeneous layers. This assumption complies 

with the presence of juaps in the data corresponding to the arrival tiaes T 

of the reflected waves fro» the interfaces. 

In Fig. 6, the reconstructed «ass-density profile and the wave speed 

profile are shown. As starting point, we have taken the synthetic data of 

Fig. 3, when the offset between source and receiver i s equal to 50 a. In 

Fig. 6, the exact profiles are presented as the dashed l ines . The 

reconstructed «ass-density profile i s in close agreeaert with the exact one. 

The reconstructed wave speed profile differs aore froa the exact one. The 

reason i s that the second ten» of Eq. (8.17) with the velocity contrast i s 

substantially less than the f irs t term with the density contrast. Hence, 

saall errors in the reconstructed aass density has a great influence on the 

reconstructed wave speeds. To i l lustrate this effect, we apply our coaplete 

inversion scheae to the synthetic data of Fig. 4. These are the data of the 

configuration without any contrast in mass density. The reconstructed 

profiles are shown in Fig. 7. The inverted aass density indeed approxlaates 

the constant aass density pQ • 1000 very well. But the saall discrepancies 

in this curve are sufficient to yield an Inverted wave speed profile 

deviating aore froa the exact result than the one of Fig. 5. In Fig. 5, we 

have used the a priori information that there i s no density contrast. 

1 1 . CONCLUSIONS 

We have derived a simple closed-form expression for the space-tine domain 

scattered field in a layered structure. The results of the forward modeling 

are in good agreement with the synthetic data of the CagnJard-De Hoop 

technique for primaries only. Our closed-form expression consists of two 

constituents; in the f irst one only the mass-density contrast occurs, while 
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in the second one only the velocity contrast i s present. Using a single 

trace, both the aass densities and the wave speeds of the layered structure 

can be reconstructed froa synthetic data. The inversion operator based on 

our RMS Born approximation i s a local operator. The inversion is performed 

while aarching on in t iae . The inversion process i s of the order of a few 

seconds on a IBM Personal Computer AT. Future research will be concentrated 

on applying the RMS Born inverse operator to real data. Then, aultiple 

offsets of source and receiver are needed to cope with noisy data. 
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Fig. 1. Description of the configuration. 
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Table 1. The location of the interfaces , mass density and wave speed 

of the layers for the nine-layer configuration. 

(m) (kg/m3) (m/s) 

0 

1 

2 

3 

M 

5 

6 

7 

8 

70 

100 

135 

175 

210 

260 

310 

115 

-

1000 

1010 

1200 

1200 

1250 

1150 

1200 

1300 

1500 

1500 

1600 

1700 

1800 

1700 

1600 

1900 

2000 

2200 



tkoUSkc INVASION tii H HMS liOUN APPROXIMATION 'Jl 

G (in iO"5 •"*) 

0.2 0.4 0.6 0.8 

+~ t (in s) 

Fig. 2. The First Born approximation of the space-tlroe Green's function 

(S) (R) 
for the níne-.layer configuration of Table 1; x_ - x» - 7.5 m and r -

V s 

100 m and r - 50 m, respectively. 
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G (in i<r5 r 1) 
i 
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- . 0.2 0.4 0.6 0.8 
G Ü n i 0 - 5 í i ) p ^ t , i n s , 

Offset * 50 m 

0.2 0.4 0.6 0.3 

-* - t (ins) 

Fig. 3. The RMS Born approximation of the space-time Green's function 

(S) (R) for the nine-layer configuration of Table 1; xl - xl - 7.5 m and r 

100 m and r • 50 n, respectively. 
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G lin 10"5 i" 1 ) 

3 r -

2 -

i -

0.2 

G/w (in NT6 i ^ l 

4 3 r 

2 -

1 -

0.2 

Cagniard-De Hoop 

0.4 

0.4 

0.6 0.8 

• t (in s) 

0.6 O.B 

+~ t (in si 

Fig. 1. The results of the space-time Green*s function C and G/w for 

the nine-layer configuration of Table 1, provided p - p., all n, while 

x*S> - x*R)- 7.5 in and r - 50 m. 
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wave speed 
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— 1 
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Fig. 5. Reconstructed wave speed c from the data of Fig. t . 
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A 1600 
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1200 
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1 2400 r— 

2100 — 
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1500 

qi 

200 400 

exact 

- * • x 3 (in •) 

200 400 

-+~ x3 (in •) 

600 

600 

Fig. 6. Reconstructed mass density p and wave speed cn from the 

data of Fig. 3» when r - 50 m. 
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Fig. 7. Reconstructed mass density p and wave speed c from the data 
n n 

of Fig. H. 


