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ABSTRACT

A new approximate method to calculate the space-time acoustic wave motion
generated by an impulsive point source in a horizontally layered
configuration is presented. The configuration consists of a stack of fluicd
layers between two acoustic half-spaces where the source and the receiver
are located in the upper half-space. A distorted-wave Born approximation is
introduced; the important feature of the present method is the assumption of
the presence of a background medium with vertical varying root-mean-square
écoustlc wave speed. A closed-form expression for the scattered field in
space and time as a function of the contrast parameters is arrived at. The
result is in close'agreement with synthetic seismograms calculated in a
rigorous way. In the inverse scheme the wave speed and mass density can be
reconstructed within a single trace. Results of the inversion scheme applied

to synthetic data have been shown.
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1. INTRODUCTION

The ordinary Born approximation is widely used to simplify both forward and
inverse problems of wave propagation models for seismic exploration (Cohen
and Bleistein 1977,1979; Phinney and Frazer 1978; Raz 1981a,b). Within this
Born approximation, the solution of the acoustic wave equation is expressed
as a perturbation about a known solution to the simple equations of a
homogeneous background medium. The Born approximation is a low-contrast
approximation in the integral equation governing the total scattering
mechanism of the acoustic waves in the configuration. In this paper, we
derive a closed-form expression in the space-time domain. However, the
inherent use of a constant background medium leads to incorrect arrival
times.

In the distorted-wave approximation (Beylkin and Oristaglio 1985) we
assume a more realistic inhomogeneous background medium. In most cases, the
field solution of a point source is then difficult to obtain and complicated
inversion schemes are the results of it (Clayton and Stolt 1981, Foster and
Carrion 1984, Bleistein and Gray 1985, Weglein, Vjolette and Keho 1986).

In the present paper where we deal with a horizontally layered
configuration, we take an inhomogeneous background medium in such a way that
a very simple approximate solution to the problem of a point-source in this
background medium is arrived at. The precise aésumption of the structure of
the background medium {s circumvented by deriving a closed-form low-contrast
approximation of the analytical expression in the Laplace-~Fourier transform
domain of the Cagniard-De Hoop technique (De Hoop 1960, Aki and Richards
1980) with primaries only (Drijkoningen and Fokkema 1987). It appears that
we have arrived at a distorted-wave Born approximation with some vertical

varying root-mean-square acoustic wave speced. Some numerical results of the
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present forward problem are presented and compared with the results of the
exact Cagg}ard—ve Houp technique.

Further, we show that our RMS Born approximation leads to a very simple
inversion scheme, where the two constitutive parameters, the mass density
and the wave speed, of the fluid layers can simultaneously be reconstructed
within a single tbace. We finally present some results of the inversion

scheme applied to synthetic data of the Cagniard-De Hoop technique.

2. DESCRIPTION OF CONFIGURATION

The Cartesian coordinates (x1.x2.x3) with respect to the right-handed
orthogonal Cartesian reference frame (11.52,13) locate a point in space,
while t represents the time of observation. The vectors and tensors wh.ch
accur are given in subscript representation. Lower-case Latin subscripts are
used for this purpose; they are assigned the values 1, 2 and 3. The

summat ion convention applies to repeated subscripts. Partial differentation
with respect to xk”is denoted by ak; the symbol at denotes the partial
derivative with respect to time. SI units are used throughout.

We consider a ﬁorizontally stratified linear acoustic medium in the
vertical xj-direchion. The acoustic properties of the configuration are
characterized by its volume density of mass p and its compressibility «x.
Both p and x are functions of x3. They are independent of the horjzontal
coordinates X0 X5 and the time coordinate t. The functions p = p(x.) and

3
XK = x(x3) are taken piecewise constant (Fig.1). The related acoustic wave

speed is given by

Cc = (pnc)-”2 > 0. (2.1)
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An impulsive point source at {0.0.xgs)} gencrates the accustic waves. This
source starts to act at t = 0. A receiver is located at lxgﬂ).xén).xgn)l. We

~onsider the case that both source and receiver are located in the upper
homogeneous half-space with p = °0' K = o and ¢ = c0 (Fig.1). The latter

model is of extreme importance in land and marine seismics.

3. BASIC ACOUSTIC WAVE EQUATIONS

The equations that govern the linearized acoustic wave motion in a fluid are

the equation of motion
3.p*pav =r (3.1)
K Ltk k® :

and the deformation equation

i
3kvk + x 3tp =q . (3.2)

In these equations'p is the acoustic pressure, v, is the particle velocity,

k
e

K is the volume source density of force, and qi is the injection rate. We

consider a point source located at 10.0.x§8)} with vertical force strength

F(t) and injection rate strength Q(t). Hence,

i _.(S)
£, =0, f2 = 0, r3 = F(t) 6(x1.x2.x3 x3 ), (3.3)

i _(8)
q = Q(t) 6(x1,x X37X3 ), (3.4)

2'

where the source-strength {F(t),Q(t)} is understood to be zero when t < 0.
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In the analysis of the solution of Eqs. (3.1) - (3.4), we take advantage of

the invarftance of the configuration with respect to time and with respect to

the horizontal coordinates.

N. TRANSFORMED WAVE EQUATIONS

Using the one-sided Laplace transform with respect to time

;(xl.xz.x3.s) - [ r(x‘.xz.x3.t) exp(-st) dt, Re(s) > 0, (4.1)

0

and subsequently a Fourier transform with respect to the horizontal

coordinates
- - V.ﬂ
f(al'cz'x3'3) = I_-dx2 [-.f(xl.xz.x3,s) exp[is(a‘xl+n2x2)] dx1 (4.2)

with the inverse Fourier transform

f(xl.xz.x3.s) - (%;)2 I_.da2 I_.f(n1,az,x3.s) exp[-is(a‘xl+czx2)] da‘,

(4.3)

lead to the transformed acoustic wave equations for the fundamental acoustic

quantities p and v

3
3;*393-;1. (4.4)
3 3 3
? ; + 8 Y29-1 ; - qi. (4.5)
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in which Y = 7(13) is the vertical slowness given as

2 2 2

Y =f{c© a, * uz)llz >

o, (8.6)

and ¢ = c(x3) is the acoustic wave speed. In our transformed equations, the

source distributions are the "force"

i 2 _.(8)
r3 - F3(s) 6(x3 x3 ). (8.7)

and the "volume injection”

-1 7 _.(8)
q = Q(s) 6(x3 X3 ). (4.8)

In the next sections we consider some approximate methods to solve our

transformed acoustic wave equations in the layered configuration at hand.

5. CONTRAST SOURCES IN A BACKGROUND MEDIUM
We first observe that the total field lD.V3] can be written as the sum of

two field constituents:
- It - i s
p=PpP *+*+p, V3 b V3 + V3, (5-1)

where {pi,v;] are the transformed quantities of the incident field in the
(i n)homogeneous background medium with pB(x3). xB(x3), and where {ps,vgl
denote the transformed quantities of the scattered field. The incident field

satislies Lhe equations
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33p : S pg vy " f3. i {5.2)
i 2 -1 7}

where Y, = 18(13) is the vertical slowness in the background medium, given
as

-2 2 2)1/2

Y, = (¢, + a, *a >0, (5.4)

and c, = cB(x3) is the wave speed in the background medium is. When the

total field satisfies Eqs. (4.8) - (4.5), the scattered fjeld satisfies the

equations
“s ~s
339 - 38 pB v3 - -3! - (5-5)
33v§ + 3 Y§°;1 p° = qs. (5.6)

in which the scattered field is understcod to be excited in the background

medium by the contrast sowece jiistributions

s - - .
r3 - =~3 (p pB) V3 (5.7)

-1 2 -1, -
¢ =-s (" - Yopg') P. (5.8)

Note that in the expressions for the contrast source distributions of Egs.
(5.7) and (5.8) the total field quantities p ard v, occur. From Eqs. (5.5)

and (5.6), the scattered acoustic pressure is obtained as
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o5 - - pe [} I (] [ N N s [} q * . N
p (133 [-. r (x3) ] (x3.x3) dx3 I_. q (13) p (13.13) dx3. (5.9)

-~

s - -s v -r L ] 1 ] ® -3 [ ] -q ] ]
v3(x3) = [-. r3(x3) v3(x3.x3) dx3 . [.. q (x3) v3(x3,x3) dx*, (5.10)

where (pr,vgl is the acoustic wave field excited by a unit force in the x3-
direction at x3 - xi and lpq.vgl is the acoustic wave field excited by a
unit volume injection source at x3 - xé. These unit source fields satisfy

the equations

33;r *'s py ;; - 6(x3-x§). (5.11)

33;; +s ng;‘ o -0, (5.12)
and

23,09 + 3 5y v -0, (5.13)

33;3 + s 15951 ;q - 6(x3-x§). (5.14)

So far we deal with a rigorous analysis. AsS soon as the unit source
solutions {;1.;;} of Eqs. (5.2) -~ (5.3), (;r.;gl of Eqs. (5.1%) - (5.12),
and (;q,;q} of Eqs. (5.13) - (5.14) are calculated, we can take the total
rield in Egs. (5.7) - (5.8) to be the incident field and calculate the

scattered field from Eqs. (5.9) - (5.10). fhis procedure is known as the

Born approximation.
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6. FIRST BORN APPROXIMATION

In the First Born approximation we take the background medium to be

the homogeneous medium, i.e.
'B - 'o' cB - co’ (6.‘)

The incident field lpl.v;l in this homogeneous background medium is obtained

3

;i(x3) - (270)—'[Y0F . aOQ] exp[-sYo(x3-x;S))]. (6.2)

viixy) = (g/eg) pixy), (6.3)

x(S).

'3

when x

and the unxt-source solutions lpr.v } and lpq.vg] with source locatjion at x

v - (R)
- x3 and observer location at x3 x3

3

p (xg“’. xy) = - (172) explsy (xgn)-x )3, (6.4)

i xy - - e B g, (6.5)

;q(xgn),xi) - (90/270) exp[sYo(x;R)-xi)], (6.6)

Vg xg) = - (vg/g) @ pfx{® xy), (6.7)
when xgn) < xi.
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Subsequently, we take In the contrast source gistributions of Egqs. .5.7) -

(5.8) the.total field to be equal to the incicent field. This approximation

is valid for small values of p - po and c_z- <:-2

0 only. We then have

-s, (R), > [° - - 'g";l"'z’-l’o
p (x3 ) = : j (0) (YOPOpOQ) 72 exp[—svoz)] dx®, (6.8)
3 0
®), ° I' 1= g’gl”‘2°-"o
'3(‘3 ) = (0) (Yop FOQ) . exp[-svoz)] dx3. (6.9)
*3 1]

in which Yo - (c;20 c20 c2)1/2 and the vertical travel distance z = z(x')

1 2 3
between receiver and source via the reflection point xé is given by
(R) (s)
zZ =2x! - x -x."". 6.10
37* T (6.10)
Note that the integrals start at xgo), since the actual medium is identical
to the background medium for values of x3 less than ng).

7. SPACE-TIME DOMAIN RESULTS FOR A VOLUME INJECTION SOURCE

In the following, we only consider the point sowrce of the volume injection
type, i.e. F = 0, Q = 0. This type of source is of importance in marine
seismics. We then measwre the presswe p only. We therefore continue our
analysis with Eq. (6.8). For our configuration at hand (Fig. 1), the
integral of Eq. (6.8) can be calculated analytically. We then obtain

(R)

()% $%(ayu0x 5080 = 5y 5% QL) Glayua,at)s), (7.1
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in which the spectral representation of Green's function G = G(c‘.az,xgn).s)
is given by contributions of the interfaces 13 = ‘gn). n=0,1,2,...,N, as

n
Yz] ; . (1.2)
o 0

- 1 B exp(-sY z ]
'] O'n
6o 5 hg Iy
2 N

uwith ’

(n) {n) _ _(R) _ _(S)
3 ) 213 13 13 . (7.3)

z = z(x
n

while An and Bn are gliven by

~1 -1 -1 -1 Prer ~ Pp
An = .(Pn.lﬂo PoPnn) .(Pnﬂo PoPn ) = ;—-——Tp— (7.%)
n+1 n
and
-2 _ -2, -1 2 _ -2, - 2 _ -2
Bn - (cn N )popn (c:ml - )’0’n0l =c -c - (7.5)

The approximations made in Eqs. (7.%) and (7.5) are consistent with the low-
contrast approximaticns of the Born approxisation. Note that the term ‘n +
Bn(zvo)'z in Eq. (7.2) is the low-contrast approximation of the reflection

factor of an acoustic wave in ow transform domain. This reflection factor

(n)

with respect to an interface at x3

is given by

-l —l
Y p -9 P
roe L2 el '_‘;', (7.6)

nn * ynﬂpnﬂ

in which
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=2
Yn B ‘cn

In the last expression of Eq. (7.7), we have used a low-contrast
approximation. Using this approximation in the expression for the reflection

factor, we obtain the low-contrast approximation for the reflection factor

as

. (7.8)

From Eqs. (7.2) and (7.8), we observe the well-known feature that the first
Born approximation takes into account the primary reflections only. Further,
we remark that the approximation of thz reflection factor given by Eq. (7.8)
is only valid when Yn+1 is a regular function of a and B. This excludes the
possibility of head-wave occurence. The latter waves only occur for large
offsets, restricting the admissible values of r, This is again consistent
with ﬁhe Born approximation.

Under these restrictions, solutions in the time~space domain are directly
obtained with the aid of Cagniard-De Hoop technique (De Hoop 1960, Aki and

Richards 1980, p. 224). Applying this technique, we have

» w expl-sv .z ]
I duz I on

- 2n Yo

exp[-is(a1x1+azx2)] da,

© exp(-st)
- J dt, (7.9)

Rn/c0 Rn

and
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] - exp[-sYozn]
I da,, I e exp[-is(u1x1+u2x2)] da,
= -o an Y
0
[- z, t exp(-st)
= dt. (7-10)
2_ 2, 2,372
R /¢, (¢~ r /co)

in which the horizontal offset r between receiver and source is defined as

r= [(xgm)2 + (xga))2]1/2 >0 (7.11)

and the travel distance Rn between receiver and source via the refliection

(n) as

int
point xg

2 2,172
Rn = [r° + zn] > 0. (7.12)

The time-domain representation of the scattered field ps is then recognized

as

(R) (R)

p2(raxg")0) = g af(q(t) * orxgt ), (7.13)

in which * denotes the convolution and the space~time Green's function G =

G(r.x;R),t) denotes the impulse response of the system and is given by

G-l——zN [-A—r-l-i' ann
W n=0 u” 'l(t,2 - r2/05)3/2

- A}
] H(t Rn/co)' (701“1

where H i{s the unit step function defined by

=1, t >0,

H(t) ' (7.15)
=0, t<O,
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Now, we shall present some numerical results for the nine-layer
configura;ion of Table 1. For this configuration, Drijkonigen and Fokkema
(1987) have computed the Green's function of Eq. (7.14) by using the exact
Cagniard-De Hoop technique with only ~imary reflections. We shall compare
our approximate results with the ones obtaiped from this Cagniard-De Hoop
technique. In Fig. 2, we present the results of the First Born approximatjon
for two different values of the offset r. The dashed lines represent the
exact results of the Cagniard-De Hoop technique with primaries only. We
observe that the results of the Born approximation do not fit the arrival

times very well.

8. RMS BORN APPROXIMATION

In order to improve the Born approximation, we should use a more realistic
background medium. The disadvantage of using a more realistic background
medjum is the complication of the field solution, Therefore, we avoid the
precise assumption of a realistic background medium. As starting point, we
have the solution ot the Cagniard-De Hoop technique with primary reflections

only. The Green's function is obtained as (Drijkonigen and Fokkema 1987)

n
exp(-s [ Y h ]
m=0_m m (8.1)

Yo

ot 1 N
C=-— Zn-o L

8u2

in which the reflection factor rn is given by Eq. (7.6) and where hm denotes
the vertical wave path that the acoustic wave has traversed in the layer
with wave speed e Note that in Eq. (8.1), we have taken the transmission

factors of all interfaces equal to 1. This approximation is consistent with
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the low-contrast approximations. The total vertical geometric path is given

by

z = Zm-o hmf (8.2)
where

(0)_ _(R) (s)
h0 = 2x3 x3 - x3 R

'Im - Z(X(m) - X (ﬂl“))' m= 1. ?-l 3-'0' . (8'3)

3 3

Further, we have an upper bound and a lower bound for the vertical wave
propagation term thmhm. For real a, and Gy we are able to write (van den

Berg and Fokkema 1987)

-2 2 2,1/2 w2, 2. 2y1/2
(c! “+aj+ay) z § zm 0 Yohn § (e “+al+as) i (8.4)
where ch is the root-mean square wave speed defined as
. 172 n -1 1/2
'-
c U:m--O m hm) / (zm-o m hm) (8.5)
and cg is the root-mean square wave speed defined as
1/2 n 1/2
"
et = (22 o0 )/ (22 e h) (8.6)

Note that only the first definition of Eq. (8.5) for the root-mean-square
wave speed is commonly used in seismics (Cf. Helbig 1981, p. 159) to replace

a stack of layers by a single layer with some replacement velocity. From
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(8.4) it is obvious that a very good approximation for the vertical wave

propagation is given by
L Yh =Y z_, (8.7)

with

° : + o) (8.8)
1
and
™ - (et c;;)”z. (8.9)

Using the result of Eq. (8.7) in our expression of the Green's function of

Eq. (B8.1), we obtain

_ 1 exp[-s Y:ms zn]
5 Lnao rn - (8.10)
0

At the interface at xgn), in the same way as in Eq. (7.7), we write

-2 rms,-2

e "= (c )
-2 2 2,172 rms n n 1/2
Yn - (c * 4 * “z) - Yn (1 * rms,?2
(Yn )
-2 rms,~2

e " =(c™)

rms n n
- Y (1 + ——) (8:11)
n Z(Y;ms)z

and in the same way we write Yn+1 as
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=2 rms =2
¢ - (c ) .
rms n+! n
Y - (W« ). (8.12)
n*l' n Z(ans)z

Hence, the low-contrast approximation of the reflection factor is obtained

as

- c2 - cz B
- Pae1 T P .| n+l A e — D (8.13)
noPhe TP u(7:'3)2 n (27:"")2

For the validity of Eq. (8.13) and the following analysis, we refer to the

remarks made below Eq. (7.8). With YO - Y:'s at the interface x;")

low-contrast result of Eq. (8.13), the low-contrast approximation of the

and the

Green's function of Eq. (8.10) is arrived at

- 1 B expl-s Y3 23
N n n n
=== Zn-o (A, —al ms " (8.1%)
8» B( Yn ) Yn

Using the results of Eqs. (7.9) and (7.10), with Yo replaced by Y:"S. the

space~-time Green's function js obtained as

! ZN A By 2n b rms
Cs ~ [— + 5 J H(t-R _/c "7), (8.15)
Uy n=0 R, “(tZ-(r/czms)2)3/2 nn

Note that the travel time

rms :
T, =R, /¢ (8.16)
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is our approximation of the exact travel time. Further, in the denominator

of the second term in Eq. (8.11), we may replace c:ms by co. This is

consistent with our approximations already made. We finally end up with

1 A 1
‘N n
G(t) = - L0 [;- + ;Bn z, w(t)] H(t-T ), (8.17)
n
where
An - (pn" - pn) / (°n+l + pn) (8.18)
anda
-2 -2
Bn “Ch T Cher (8.19)
wit) =t / (t2 - rzlcg)?’lz. (8.20)

S

Ir, in the expression of the travel times of Eq.(8.16), we enforce c:m to

be equal to c¢_, we obtain the space-time Green's function of the First Born

0
approximation with the homogeneous background of Section 7. The result of
Eq. (8.17) can be interpreted as some distorted-wave Born approximation
using some background medium with our chosen vertical varying root-mean-
square acoustic wave speed.

We subsequently present some numerical results for our nine-layer
configuration of Table 1, We compare our approximate results with the ones
obtaired from the Cagniard-~De Hoop technique. In Fig. 3. the dashed lines
represent the exact‘results of the Cagniard-~De Hoop technique with primaries
only. We observe that the results of our simple expression of the RMS Born

approximation are in good agreement with the much more complicated Cagniard-

De Hoop technique for primaries only,
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9. VELOCITY INVERSION

We first consider the simplified case that there is no contrast in mass
densijty, i.e. Pn = Por for all n. In order to obtain the GCreen's functjon
G(t), the inversion procedure consists of a deconvolution of the data with
the known source signature. For t > r/co, we divide the obtained values by
w(t). Then, we determine the location of the jumps ‘. the curve G(t)/w(t).
These time instants are the arrival times Tn' n=0,1,2,...,N-1, The last time‘

instant considered in the data is defined as TN'

With the results of Eq. (8.17) and An = 0, for all n, the values of the
wave speed are obtéined from
nm= 0, 1, seey N-1, (901)

where Bn is obtained from the recurrence relations

n+1

G(t)/w(t) dt - z;“ B z, (9.2)

B Zn "7~ =0 m m

n'n T -T
‘n

16mn IT
n+1

Tn

2

z = (R 1/2.
n n

- r9) (9.3)

R =1 o™, | (9.4)

The time integral of Eq. (9.2) is computed numerically by a simple
rectangular integration rule over the discrete time samples. The RMS-

velocity is determined recursively as

rms
-
n

c [ca 03]1/2, | (9.5)
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with
v o (D - 172 no -1, 172
cr (In-o e (T Tm-l)) / (tn-o ey (T, Tm—l)) (9.6)
and
n . n - 1/2 n _'-2 - 1/2
in which '
Ty =r/c- (9.8)

-Note that these definitions of ca and cn differ from Eqs. (8.5) and (8.6),
but it has been verified numerically that the final results for c;'s do nct
differ significantly. The present definitions are more advantageous in the
inverse scheme, since we only can determine the arrival times from the data.
As soon we have determined c;ms. the orecise locations of zn (and hence hn)
are obtained as a result. In this way a very simple inversion scheme is
arrived at.

In Fig. 4, we present the synthetic data of the Cagniard-De Hoop method
(with primaries only) of the Green's function for the confj-uration of Table
1, provided there is no mass-density contrast. In the same Tigure, we also
present the results of the function G(t)/w(t), when t > r/co. Using these
data, the reconstructed wave speeds are presented in Fig. 5. A very close
agreement with the exact results (&ashed line) is observed. In view of the
simplicity of the inversion procedure, we have arrived at a very elegant

single-pass seismic inversion scheme.
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10. COMPLETE INVERSION

We now consider the complete inversion scheme. We observe that the
expression of G(t) of Eq. (8.17) consists of two constituents, where the
first one contairs mass-density information and the second one contains
velocity information. When there is mass-density contrast we have to modify
our inversion schemse as follows. We first determine the jumps in the curve
of G(t). These time instants are the arrival timses Tn' n=0,1,2,...,N-1. The
last time interval considered in the data is defined as T“. In each time
interval Tn*l <t <« Tn' n=0,1,2,...,N-1, we then perform a simple least-
square-error fit of the riéht-hand side of Eq. (8.17) to the data. Then, the
_values of I:_o An/Rn and Z:_o %B z_ are determined from the minimization

an
procedure of the quantities

T
n+1 n PR N 2
Ir jus c(;) = Lo ARy~ Upng 5870 W) Tat.
n

The values of the mass density and the wave speed are then obtained as

Ppet = Pp (1*A)/C1-A ), ' (10.1)
c;fl - 0;2 - B, (10.2)

where An and Bn are obtained from the recurrence relations

3320 = 3105 gn-1

2
1 322 7 %

An/Rn - U4y =0 Am/Rm. (10.3)
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1% 7 212%
Bn zn.- 16 ———-—--a-_::,— = a0 B. l-- (10.h)
1222 T %22
in which
T
a,, - ] Nl g, (10.5)
T
n
T
a, = [ n*Tou(t) de, {10.6)
Tn
T
a_ = ] n*l 20 dt, (10.7)
22
T
n
T .
b, [ 1 G de, (10.8)
T
n
T
b, = I "1 G(t) w(t) dt. (10.9)
2 g
n

The integrals of Eqs. (10.8) and (10.9) have to be calculated numerically,
using e.g. a rectangular integration rule over the time samples. The
jntegrals of Egs. (10.5) - (10.7) can be calculated analytically. However,
it is more consistent to evaluate this integrals numerically in the same
manner as the other ones.

Without any changes, the values of 2

v R and c:“s follow from Eqs. (9.3)

- (9.8) of the previous section. This concludes our complete inversion
scheme. In contrast to Raz (1981a), we are able to reconstruct within our
approximations both the density and the velocity profile. The only a priori

information we have used 18 the knowledge that the horizontally stratified
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medium consists of a stack of homogeneous layers. This assumption complies
with the ﬁ;esence of jumps in the data corresponding to the arrival times Tn
of the reflected waves from the interfaces.

In Fig. 6, the reconstructed mass-density profile and the wave speed
profile are shown. As starting point, we have taken the synthetic data of
Fig. 3, when the offset becween source and receiver is equal to 50 m. In
Fig. 6, the exact profiles are presented as the dashed lines. The
reconstructed mass-density profile is in close agreemert with the exact one.
The reconstructed wave speed profile differs more from the exact one. The
reason is that the second term of Eq. (8.17) with the velocity contrast is
substantially less than the first term vwith the density contrast. Hence,
small errors in the reconstructed mass density has a great influence on the
reconstructed wave speeds. To illustrate this effect, we apply our complete
inversion scheme to the synthetic data of Fig. 4. These are the data of the
configuration without any contrast in mass density. The reconstructed
profiles are shown in Fig. 7. The inverted mass density indeed approximates
the constant mass density Py " 1000 very well. But the small discrepancies
in this curve are sufficient to yield an 1nverted wave speed profile
deviating more from the exact result than the one of Fig. 5. In Fig. 5, we

have used the a priori information that there is no density contrast.

11. CONCLUSIONS

We have derived a simple closed-form expression for the space~time domain
scattered field in a layered structure. The results of the forward modeling
are in good agreement with the synthetic data of the Cagniard-De Hoop
technique for primaries only. Our closed-form expression consists of two

constituents; in the first one only the mass-density contrast occurs, while
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in the second one only the velocity contrast is present. Using a single
trace, both the mass densities and the wave speeds of the layered structure
can be reconstructed from synthetic data. The inversion operator based on
our RMS Born approximation is a local operator. The inversion is performed
while marching on in time. The inversion process is of the order of a fevw
seconds on a IBM Personal Caomputer AT. Future research will be concentrated

on applying the RMS Born inverse operator to real data. Then, multiple

offsets of source and receiver are needed to cope with noisy data.
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Table 1. The location of the interfaces, mass density and wave speed

of the layers for the nine-layer configuration.

n xgn) Py ¢,
(m) (kg/m3) (m/s)
] 70 1000 1500
1 100 1010 1600
2 135 1200 1700
3 175 1200 1800
y 210 1250 1700
5 260 1150 1600
6 340 1200 - 1900
T 15 1300 2000

8 - 1500 2200
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Fig. 2. The First Born approximation of the space-time Green's function

for the nine-layer configuration of Table 1; ng) » xgﬂ)- 7.5mandr =
y

100 m and r =« 50 m, respectively.
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Fig. 3. The RMS Born approximation of the space-time Green’s function

for the nine-layer configuration of Table 1; x;S) - x;ﬁ)_ T7.5mand r =

100 m and r = 50 m, respectively.
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Fig. 4. The results of the space-time Creen's function G and G/w for

the nine-layer configuration of Table 1, provided Pn ™ Por all n, while

(5 (R)

3 3-7.5mandr-50m.
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Fig. 5. Recon;tructed wave speed cn from the data of Fig. U.
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Fig. 6. Reconstructed mass density Pn and wave speed cn from the

data of Fig. 3, when r = S0 m,
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Fig. 7. Reconstructed mass density Pn and wave speed cn from the data

of Fig. 4.



