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Abstract: Instead of diagonalizing the many-body Hamiltonian H, we invert

E-H, where E is a complex energy, eventually real. All the traditional

approximations to diagonalization can be adjusted to inversion. We

specially investigate mean-field methods. This lecture gives a scheme for

the detailed proofs of our arguments, already published, and lists several

numerically soluble cases where our new method has been sucessfully tested

for the calculation of collision amplitudes.

Introduction

Consider a system of N particles, N finite, large or small, with

kinetic energies ti and two-body interactions v^ . An extraordinary amount

of effort has been dedicated to the diagonalization of the corresponding

Hamiltonian H=T+V. Among the most successful approximations, one may quote

various brands of mean-field methods and their subsequent improvements:

Hartree-Fock, BCS, shell model, etc. This effort has been able to provide

many reliable approximations to the spectrum of H, whether N is large or

small.

Much less effort has been dedicated to the calculation of the Green's

function G=(E-H)"1, whether E is real or complex. Such an inversion

problem, however, is as interesting as the diagonalization, fcr the

propagator G occurs as a key element of the theory in many practical

problems. In particular, any collision theory sooner or later introduces G

in the formalism...and the numerics.

This lecture is organized as follows. In Section 1, we show hew any

diagonalization approximation which is introduced according tc the

Rayleigh-Ritz variational principle can be adjusted into an inversion

approximation, according to a Schwinger-like variational principle. In

Section 2 we recall the results, already published, of a test of this

approach for a trivially soluble, two-body problem. In Section 3. we recall

the success also found for this method in the case of an exactly scluble



1. Inversion versus diagonalization

The well-known Rayleigh-Ritz variational functional reads

where 4>' ,<P are infinitely flexible trial functions and E is a Lagrange

multiplier. The stationarity of 7 with respect to <t>* (resp. <}>) induces thé

Schroedinger équation (H-E)«t»=0 (resp. <t>'(H-E)=0 ).

Whenever 4>* ,4" are not infinitely flexible, one gets an approximation.

For instance, if 4>' and 4> are products of single-particle orbirals

<p" and <PJ , one obtains the Hartree approximation: the N-body Schroedir.ger
i

equation is replaced by single-particle (but coupled) diagonalizations such

as

(t.+U.-T,.)^^, (1.1)

where r\i and Uj are the well-known, self-consistent, Hartree self-energies

and mean fields. (The most familiar form of Uj corresponds to the case when

v is local, namely U(r)= dr'v(r-r' ) ̂  (p'* (r1 )<pj (r) , with the constraints

Naturally, these single-particle diagonalizations mean nothing but

the conditions &&/&<?' =0. The point is, such single-particle,
i

self-consistent diagonalizations can be performed numerically, and give a

good approximation, while the full N-body diagonalization is impossible in

practice.

U'e now investigate inversion. How can one calculate a matrix elezent

D=<x'IGlx>, where x' and X are arbitrary, square-integrable states? Answer:

consider the functional



Stationarity of F with respect to <f>' reads <f>=Gx, without any on-shell

ambiguity if E is complex. Then it is easy to verify chat the stationnary

value of F is the number under study, namely D. An identical result occurs

for the Stationarity with respect to <t>, with x'Ĝ '-

Whenever 41' .$> are restricted, the approximaxion generated by F must

be very similar to that generated by W, since F and 7 only differ via the

"source terms" <x' I4»>, <4>' lx> •

In particular, let us assume that all four functions x'tX.*1^ are

products of single particle orbitals x' .Xi .<P' »<Pi t respectively. Then the
i i

Hartree equations, Eqs.(l.l), are hardly modified: they become

dl.-t.-U.Jcp^Xi, (1.2)

with a non-vanishing right-hand side which comes from the functional

derivative &<<t>' lx>/&<p' . One clearly also gets a conjugate variational
i

equation x' =<P* (̂ i -tt -U£ ) .
i i

As will be stressed over and over again in the following Sections,

variational solutions for F are almost as easy to obtain as variational

solutions for 7. Approximate methods for diagonalization can be extended to

the calculation of the Green's function. For more technical details,

including the case of identical particles, we refer the interested reader

to refs.1'.

For the case of a calculation of a T-matrix amplitude, there is a

slight complication of the theory, because the number under study reads

<X*IV'GVIx> rather than <x'IGIx>- Here x. resp. x'. describe the initial,

resp. final channel, and V, resp. V, describe the corresponding channel

potentials, namely the prior, resp. post interactions. These technicalities

are dealt with in rreat detail in refs.1'. For the sake of simplicity, they

will be omitted in the present lecture.



calculation of the T-matrix for such separable potential, two-body problems

is trivial.

In particular, it is easy to calculate exactly the diagonal matrix

element 2) = <xlvlx> + <xlvGv!x>, with the following choice for Xt

[ Q2 ] \
- y (qj-k)2 expexp - (2.1)

Here x describes particle 1 with momentum qj in a wave packet with average

momentum k, and particle 2 with momentum q2 in a wave packet with average

momentum -k. The parameter p is obviously a width parameter. This wave

packet representation for collisions is very convenient, for it allows

calculations with square integrable states, without loss of generality or

physical insight. This representation is again used systematically in the

next Sections.

With this choice of x. it is easy to find that the exact calculation

of D reduces to Gaussian integrations and a numerical integration for a

spectral function for S-waves. Then, for the variational approximation of

H, we choose the simplest possible ansatz: the trial functions <£,<£'

introduced inside the functional F (or rather the modified functional which

accounts for vGv instead of G alone) are also Gaussian wave packets. Namely

we set

according to Eq.(2.1). The only variational parameter is this average

momentum K, and the functional becomes a function F(k,K) , according to the

respective parameters of x

It is then trivial to choose K in order to cancel the derivative

3F/5K. calculate the variational approximation to D, and compare with the

exact result. We have investigated many numerical ranges for all the

paraceters A, v, p, ImE, etc.

While the exact result is unique, the variational approximation is



réf.2)

In conclusion for this Section, the variational functional F is able,

for a simple two-body soluble case, to provide a satisfactory G- (or T-)

matrix element with just one variational parameter. It is not even

necessary to use a full single-particle orbital as a variational tool, and

the use of Eqs.(1.2) can be spared for more elaborate cases. Such cases are

the subject of Sections 3 and 4.

3- A three-body soluble example

We briefly recall here the results of réf. 3'. Our model is an

extension of the model of Section 2. With three particles, there are now

three separable potentials v.^q^.q' ), analogous to the potential v used
ij

in Section 2. The channel wave packet x is the simplest possible

generalization of Eq.(2.1), namely a product of three single-particle

Gaussians, boosted by k^,k,k respectively, with the constraint

The exact matrix element D=<xlGlx> is obtained as D=<xK'>, with >I'=GXt

hence (E-T-Vj 2-Vj 3-v23 J^x, then ty=G0x+<l\ +*2+^ , with G0 = (E-H0)'
1,

'I'j =GQv2,
lI', «P^GgVj 'I», «I1, =GQv1 2$. As usual in manipulations leading to

Faddeev-type equations, this leads to three coupled equations for «I'j , 'J', , «J», .

These can be easily solved numerically, for the separability of v induces

separability for each component 'P. of 4'. Numerical results are shown on

Fig. 2, for one of the many sets of parameters we have investigated. More

details are available in réf.3'.

The mean field approximation is obtained by brute force solution of

Eqs.(1.2). The separability of v nakes the Hartree mean field very simple.

The corresponding estimate for <xlGlx> is shown on Fig. 3 for the saze set

of parameters as for Fig. 2. There is little need to comment on the good

agreement between the exact and the approximate amplitudes. Notice however

the wrong sign of ReD for large, negative A.



4. A four-body soluble example

In ref, ' the potential v is now taken as "super separable", namely,

in momentum representation,

<q1q'!vijlq1qj>= -A f(q')f(q
1)f(q.)f(Qj),

i j i j

where f is any suitable form factor (actually a Lorentzian in our numerical

application). This differs from the potential of Sections 2 and 3. where v

was a function of just the relative momenta, such as q: , = (qi-q,)/2.

We are again interested in the diagonal matrix element D=<xlGlx>.

where x is now a product of four boosted wave packets,

x(qt qA) = r(qt-k) r(q2-k) r(q3+k) r(qA+k).

With this choice for x. many symmetries between the four particles are

transparent and greatly help the solubility of the model. The

single-particle wave-packets F are chosen as one-dimensional and

Lorentzian, hence many integrations reduce to contour integrations.

The algebraic manipulations which convert the exact inversion problem

'I'=Gx into a soluble set of coupled integrodifferential equations for the

various components of "V cannot be detailed here. They are obviously greatly

simplified by the "super separability" of v. All derails can be found in

réf.4'. Here we rather indicate how the mean-field equations are easy to

solve :

The main simplification comes from the mean-field potential. Because of the

sy-metries between all four particles and the scalar nature of v, it does

not depend on the label i and reads

<q'IUIq> = -3 A f(q') f(q) a2 n"! , with a=<fl<p,> and n=<<p|l<p1>.



in terms of three parameters only, TJ, a and n,

<Pt(q) = (n-q
2)'1 [ r(q-k) - 3 X ̂  n i f(q) ].

All practical calculations amount to the search for the self-consistency of

•H, a and n. The results of ref.4) are illustrated by Fig.4, where the

agreement between exact and mean-field amplitudes, for at least several

ranges of parameters, is striking.

We have thus found a four-body case where a mean-field estimate of

the Green's function is a good approximation.

5. The kinetic energy model

N
While the diagonalization of T= 7, tt is trivial, the calculation of a

i=l
matrix element <xl (E-T)'1lx> still requires an intractable multiple

dimension integral when N is large. Hence our "mean-field" approach

deserves investigation. We recall now the results of ref.5).

Set x as a product x(qj.••-qN)
=r(qj-kj)..,r(qN-kK), with a rotation

and/or parity degeneracy between the boosts kf. For obvious symmetry

reasons, it is then sufficient to solve only one among Eqs.(1.2), for

instance

<<PÎ I t ! < » > ! >
(n-q2) <(>i (q) = Hq-kJ, with -n=E-(N-l)e and 9= .

<<P* I < P I >

Hence in momentum representation <pl = (-r\-t)~
lri is known, except for the

self-consistency of ti (or 6).

As shown in ref.^, this self-consistency condition can be framed

into the cancellation of a polynomial, which makes the model highly

analytical. A careful analysis of the solutions shows an exrremely

interesting result: when E is real, there exists a pair of solutions t\,t\'

with finite imaginary parts (even though ImE=0). One of these solutions



numerical cases investigated, this approximation is reliable in a wide

range of energies.

6. The case of a semi-realistic potential

The confidence grown from the soluble examples described in Sections

2-5 justifies solving Eqs.(1.2) in a case where there is no exact solution

for comparison. Only the consistency of the approximate results will be

available for a criticism of the method.

Fig.6 is taken from ref. ', which is a brute force, Hartree

calculation of elastic proton-triton scattering. The nuclear interaction is

taken as semi-realistic, namely a local, two-body Gaussian. Particle label

1 refer to projectile-like orbitals, labels 2-4 refer to target-like

orbitals. There is complete symmetry between orbitals 2-4, hence labels 3

and 4 are omitted.

The Figure corresponds to final momentum at 90° (along y) away from

initial momentum (along z). The plots are momentum density plots of the

variational orbitals <p,cp' (which make the trial functions .̂«t*1 ) in the

reaction plane (z y).

Not surprisingly, target orbitals <p2 ,<p' , which carry less momentum
2

than the projectile orbitals <PJ ,<p' , are more centered and less deformed. It

is also satisfactory that the density center of <pj lies "forward", while

the density center of <p' lies in the "tranverse" direction. In so far as
1

•t',4'1 represent intermediate states of the collision, the Figure gives a

picture of the reaction mechanism.

This Figure is only part of a whole atlas, corresponding to various

energies, scattering angles, etc. At present, the numerical evidence favors

a smooth behavior of the variational solution as a function of its control

parameters.

To conclude this Section, we seem to have a semi-realistic case where



The guess of good trial functions has been for decades at the core of

the theory of nuclear, atomic and molecular spectra. An exactly similar

approach is available for the theory of propagators. One just has to

slightly change the variational principle which underlies the theory.

Naturally, many auxilliary, but important questions must be

investigated while solving our "extended" Hartree(-Fock, -Bogoliubov,

-etc.) equations. In particular one should understand the multiplicity of

solutions, their stability, the rôle of boundary conditions. This program

will likely request some empiricism before all the problems are fully

understood. But the same difficulty was met for a complete justification of

the shell model. Our approach to propagators is not just formal, but

generates numbers which can be compared with experimental data.

It is a pleasure to thank the organizers of this conference for their

invitation and the opportunity of this lecture.



iong-aasnea line represents a linear superposition 01 "i" ana •• <L-.

Figs. 2 and 3: Three-body case, separable potential. Good agreement between

the exact amplitude (Fig.2, top) and it: mean-field approximation (Fig.3,

bottom), except for Re D with large, negative coupling constants.

Fig. 4: Four-body case, super-separable potential. Agreement between the

exact and the mean-field amplitudes, as functions of the coupling constant.

Fig. 5: Kinetic energy model. Agreement between the exact (Ex) and the

mean-field (Ap) matrix elements of the free Green's function, as functions

of the real part of the energy.

Fig.6: Momentum density patterns of the trial orbitals <p,<p' for an elastic

p-t scattering at 90°. Notice how <pj concentrates in the forward,

z-direction, while <p' concentrates in the tranverse, y-direction. Notice
1

also how both orbitals show a "horn" at 45°, which is essential for a

non-vanishing overlap between these orbitals.
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Fig. 2 Exacl nniliistep amplitude as a function of the strength. Compare with fig. 3
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