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Abs:zract: Instead of diagonalizing the many-body Hamiltonian H, we Invert
E-H, where E 1is a complex energy, eventually real. All the traditional
approximations to diagonalization can be adjusted to inversion. We
specially investigate mean-field methods. This lecture gives a schecze for
the detailed proofs of our arguments, already published, and lists several
gumerically soluble cases where our new method has been sucessfully tested

for the calculation of collision amplitudes.

Introduction

Consider a system of N particles, N finite, large or small, with
kinetic energies t; and two-body interactions Vige An extraordinary zmount
of effort has been dedicated to the diagonalization of the corresponding
Hamiltonian H=T+V. Among the most successful approximations, one may quote
various brands of mean-field methods and their subsequent improvecents:
Hartree-Fock, BCS, shell model, etc. This effort has been able to provide
mary reliable approximations to the spectrum of H, whether N is large or

smell.

Much less effort has been dedicated to the calculation of the Green's
function G=(E-H) !, whether E is real or complex. Such an inversion
proolem, however, 1is as interesting as the diagonalization, fcr the
propagator G occurs as a key element of the theory in many practical
proolems. In pziticular, any collision theory sooner or later introduces G

in the formalism...and the numerics.

This lecture is organized as follows. In Section 1, we show hcw any
dizzonalization  approximation which is introduced according tc the
Ray_eigh-Ritz wvariational principle can be adjusted into an inversion
approximation, according to a Schwinger-like variational principls. In
Seczion 2 we recall the results, already published, of a test ¢ this
approach for a trivially soluble, two-body problem. In Section 3, we r=call

the success also found for this method in the ~ase of an exactly scluble
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1. Inversion versus diagonalization
The well-known Rayleigh-Ritz variational functional reads
F=<d' | (H-E) 19>,

where ¢',$ are infinitely flexible trial functions and E is a Lagrange
multiplier. The stationarity of F with respect to ®' (resp. ®) induces the
Schroedinger equation (H-E)®#=0 (resp. ¢'(H-E)=0 ).

Whenever ¢',$ are not infinitely flexible, one gets an approximation.
For instance, if ¢ and ¢ are products of single-particle orbizzls

¢' and @;, one obtains the Hartree approximation: the N-body Schroedirnger
i
equation is replaced by single-particle (but coupled) diagonalizations such

as

(ti“Ui"ﬂi)(Pi:O. (:1)

where m; and U, are the well-known, self-consistent, Hartree self-energies

and mean fields. (The most familiar form of U, corresponds to the case when

]

v is local, namely U(r)= dr'v(r—r')§2<p"(r')¢ﬁ(r). with the constraints
¢ j=i j
@' =6, .)
k

Naturally, these single-particle diagonalizations mean nothing sut

the conditions &F/&¢'=0. The point is, such single-partic.e,
i
self-consistent diagonalizations can be performed numerically, and givs a

good approxization, while the full N-body diagonalization is impossible in

practice.

be now investigate inversion. How can one calculate a matrix elezz=nt
D=<x'iGix>, where x' and x are arbitrary, square-integrable states? Answsr:

consider the functional



Stationarity of F with respect to ¢' reads $=Gx, without any on-shell
ambiguity if E is complex. Then it is easy to verify that the stationnary
value of F is the number under study, namely D. An identical result occurs

for the stationarity with respect to ¢, with x'G=9'.

Whenever ¢',$ are restricted, the approximaxion generated by F must
be very similar to that generated by ¥, since F and ¥ only differ via the
"source terms" <x'|P>,<P'Ix>.

In particulzr, let us assume that all four functions x',x,d',P are

products of singles particle orbitals x',x;.9’', respectively. Then the
i i

Hartree equations, Eqs.(1.1), are hardly modified: they become

i’

(Tli-ti_Ui )<Pi=Xi» (1'2)

with a non-vanishing right-hand side which comes from the functional
derivative &<P'Iix>/8¢'. One clearly also gets a conjugate variational
i
equation x'=@'(nm;-:,-U;).
i i

As will be stressad over and over again in the following Sections,
variational solutions for F are almost as easy to obtain as variational
solutions for ¥. Approximate methods for diagonalization can be extended to
the calculation of the Green's function. For mors technical details,
including the casz of identical particles, we refer the interested reader

to refs.l),

For the casz of a calculation of a T-matrix azplitude, there is a
slight complication of the theory, because the number under study reads
{x'IV'GVIx> rather than <x'IGlx>. Here x, resp. x', describe the initial,
resp. final chanrnzl, and V, resp. V', describe the corresponding channel
potentials, namely the prior, resp. post interactions. These technicalities
are dealt with in great detail in refs.!’. For the sake of simplicity, they

will be comitted in the present lecture.



calculation of the T-matrix for such separable potential, two-body problems

is trivial.

In particular, it is easy to calculate exactly the diagonal matrix

element D = <{xlvix> + <xlvGvix>, with the following choice for x,

B’ B’
x(q, .q,.k) = m3gb exp[ iy (oll-k)zJ exp[ e (a,+k)? . (2.1)

Here x describes particle 1 with momentum q, in a wave packet with average
momentum k, and particle 2 with momentum g, in a wave packet with average
momentum =-k. The parameter 8§ 1is obviously a width parameter. This wave
packet representation for collisions is very convenient, for it allows
calculations with square integrable states, without loss of generality or
physical insight. This representation is again used systematically in the

next Sections.

With this choice of x, it is easy to find that the exact calculation
of I reduces to Gaussian integrations and a numerical integration for a
spectral function for S-waves. Then, for the variational approximation of
D, we choose the simplest possible ansatz: the trial functions ¢,$'
introduced inside the functional F (or rather the modified functional which
accounts for vGv instead of G alone) are also Gaussian wave packets. Namely

we set
®(q,.q,) = x(qa;.q,.K),

according to Eq.(2.1). The only variational parameter is this average
momerzum K, and the functional becomes a function F(k,K), according to the

respective parameters of x and ¢.

It is then trivial to choose K in order to cancel the derivative
OF/6K, calculate the wvariational approximation to ), and compare with the
exact result. Wwe have investigated many numerical ranges for all the

paraceters A, v, @, ImE, etc.

While the exact result is unique, the variational approximation is



In conclusion for this Section, the variational functional F is able,
for a simple two-body soluble case, to provide a satisfactory G- {(or T-)
matrix element with just one variational parameter. It is not even
necessary to use a full single-particle orbital as a variational tool, and
the use of Egs.{1.2) can be spared for more elaborate cases. Such cases are

the subject of Sections 3 and 4.

3. A three-body soluble example

We briefly recall here the results of ref.3). Our model is an
extension of the model of Section 2. With three particles, there are now

three separable potentials vij(qij.q' ), analogous to the potential v used
ii

in Section 2. The channel wave packet x 1is the simplest possible
generalization of Eq.(2.1), namely a product of three single-particle
Gaussians, boosted by kl.kz.k3 respectively, with the constraint

k, +k, +k;=0.

The exact matrix element D=<xiGIx> is obtained as D=<{xI¥>, with ¥=Gx,
hence  (E-T-v,,-v,;-v,)¥=x, then  W=Gox+¥ ~U,+¥,, with Gy=(E-H,)™ !,
43=G0v23w, ¢2=Gov13w, @3=Gov124u As wusual in manipulations leading to
Faddeev-type equations, this leads to three coupled equations for 4&.4@.43.
These can be easily solved numerically, for the separability of v induces
separability for each component ¥, of ¥. Nunerical results are shown on
Fig.2, for one of the many sets of parameters we have investigated. More

details are available in ref.3).

The mean field approximation is obtained by brute force solution of
Egs.{1.2). The separability of v makes the Hartree mean field very simple.
The corresponding estimate for <{xIGlx> is shown on Fig.3 for the same set
of parazeters as for Fig.2. There is 1little need to comment on the good
agreement between the exact and the approximate amplitudes. Notice however

the wrong sign of ReD for large, negative A.



4. A four-body soluble example

4)

In ref. the potential v is now taken as "super separable", namely,

in momentum representation,

<a'q'lvglq;qy2>= A fla')f(q')f(q;)f(g;),
i i J
where f is any suitable form factor (actually a Lorentzian in our numerical
application). This differs from the potential of Sections 2 and 3, where v

was a function of just the relative momenta, such as qij=(qi-qj)/2.

We are again interested in the diagonal matrix element D=<xIGix>,

where x is now a product of four boosted wave packets,
X(qlv---qu) = r(ql_k) r(qz-k) r(q3+k) r(q4+k)'

With this choice for x, many symmetries between thz four particles are
transparent and greatly help the solubility of the model. The
single-particle wave-packets I' are chosen as one-dimensional and

Lorentzian, hence many integrations reduce to contour integrations.

The algebraic manipulations which convert the exzct inversion problem
T=Gx into a soluble set of coupled integrodifferential equations for the
various components of ¥ cannot be detailed here. They zre obviously greatly
simplified by the "super separability"” of v. All details can be found in
ref.*). Here we rather indicate how the mean-field squations are easy to

solve:

The main simplification comes from the mean-field potential. Because of the
syometries between all four particles and the scalar nature of v, it does

not depend on the label i and reads

<q'IUlg> = =3 » f£(q') f(q) o n°!, with a=<fle,> and n=<@, o, >.



in terms of three parameters only, m, @ and n,
@, (a) = (a-q®)"! [ T(a-k) - 3 x a3 n! f(q) I.

All practical calculations amount to the search for the self-consistency of
n, @ and n. The results of ref.*) are illustrated by Fig.4, where the
agreement between exact and mean-field amplitudes, for at least several

ranges of parameters, is striking.

We have thus found a four-body case where a mean-field estimate of

the Green's function is a good approximation.

5. The kinetic energy model

N
While the diagonalization of T=Z t; is trivial, the calculation of a

i=1
matrix element <xI(E-T) !(x> still requires an intractable multiple
dimension integral when N is large. Hence our "mean-field" approach

deserves investigation. We recall now the results of ref.?).

Set x as a product x(ql,...qN)=F(q1—k1)...F(qN-kN), with a rotation
and/or parity degeneracy between the boosts k,. For obvious symmetry

reasons, it is then sufficient to solve only one among Egs.{1.2), for

instance

, - o Itlp>
(m-a°) @, (a} = I'(g-k;), with n=E~(N-1)6 and 8z ————.
<o, 1@ >

Hence in momentum representation o1=(n-t)'1F1 is known, except for the

self-consistency of v (or 0).

As shown in ref.?), this self-consistency condition can be framed
into the cancellation of a polynomial, which makes the model highly
analytical. A careful analysis of the solutions shows an ex:iremely
interesting resull: when E is real, there exists a pair of solutions w,m’

with finite imaginary parts (even though ImE=0). One of these solutions



numerical cases investigated, this approximation is reliable in a wide

range of energies.

6. The case of a semi-realistic potential

The confidence grown from the soluble examples described in Sections
2-5 justifies solving Eqs.(l1.2) in a case where there is no exact solution
for comparison. Only the consistency of the approximate results will be

available for a criticism of the method.

Fig.6 is taken from ref.ﬁ), which is a brute force, Hartree
calculation of elastic proton-triton scattering. The nuclear interaction is
taken as semi-realistic, namely a local, two-body Gaussian. Particle label
1 refer to projectile-like orbitals, labels 2-4 refer to target-like
orbitals. There is complete symmetry between orbitals 2-4, hence labels 3

and 4 are omitted.

The Figure corresponds to final momentum at 90° (along y) away from
initial momentum (along z). The plots are momentum density plots of the
variational orbitals ¢,@' (which make the trial functions ¢,$') in the

reaction plane (z y).

Not surprisingly, target orbitals ¢,,¢', which carry less momentum
2
than the projectile orbitals ¢, ,¢', are more centered and less deformed. It
1

is also satisfactory that the density center of ¢, lies "forward", while

the density center of ¢' lies in the "tranverse" direction. In so far as
1
¢,d' represent intermediate states of the collision, the Figure gives a

picture of the reaction mechanism.

This Figure is only part of a whole atlas, corresponding to various
energies, scattering angles, etc. At present, the numerical evidence favors
a smooth behavior of the vzriational solution as a function of its control

parameters.

To conclude this Section, we seem to have a semi-realistic case where



The guess of good trial functions has been for decades at the core of
the theory of nuclear, atomic and molecular spectra. An exactly similar
approach 1is available for the theory of propagators. One just has to

slightly change the variational principle which underlies the theory.

Naturally, many auxilliary, but important questions must be
investigated while solving our "extended" Hartree(-Fock, -Bogoliubov,
-etc.) equations. In particular one should understand the multiplicity of
solutions, their stability, the réle of boundary conditions. This program
will 1likely request some empiricism before all the problems are fully
understood. But the same difficulty was met for a complete justification of
the shell model. Our approach to propagators is not just formal, but

generates numbers which can be compared with experimental data.

It is a pleasure to thank the organizers of this conference for their

invitation and the opportunity of this lecture.
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Figs. 2 and 3: Three-body case, separable potential. Good agreement between
the exact amplitude (Fig.2, top) and it: mean~field approximation (Fig.3,

bottom), except for Re D with large, negative coupling constants.

Fig. 4: Four-body case, super-separable potential. Agreement between the

exact and the mean-field amplitudes, as functions of the coupling constant.

Fig. 5: Kinetic energy model. Agreement between the exact (Ex) and the
mean-field (Ap) matrix elements of the free Green's function, as functions

of the real part of the energy.

Fig.6: Momentum density patterns of the trial orbitals ¢,@' for an elastic
p-t scattering at 90°. Notice how ¢, concentrates in the forward,

z~-direction, while ¢@' concentrates in the tranverse, y-direction. Notice
1
also how both orbitals show a "horn" at 45°, which is essential for a

non-vanishing overlap between these orbitals.
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Fig.2 Exact multistep amplitude as a function of the strength. Compare with fig. 3
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3 Real and imaginary parts of the mean-ficld, multistep amplitude D as a function of the intcraction
strength V.
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