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The shell model (and its underlying mean field) is probably the

most elegant and useful approximation used for both atomic and nuclear

physics. The mean field is usually first introduced as time independent,

and time dependence is later considered for the description of excitations

and collisions. In this lecture, we will use three kinds of shell models,

namely i) the traditionnal (static) shell model, which may be either

spherical or deformed, ii) the boosted shell model, which differs from the

latter by just boost operations, and iii) a completely new shell model,

which accounts for intermediate states during transitions.

Even though we are dealing with collisions, we will use only time

independent fields and orbitals. Consider a collision A(a,b)B, and the

corresponding center-of-mass coordinates RA,Ra,Rb.RB . We describe the

spectroscopic structures of these nuclei by static shell model wave

functions XA.Xa.Xb.XB. respectively, and the initial and final channels by

the boosted shell model products

X = exp(iKRa)xa exp(-iKRA)xA, X* = exp(iK'Rb)xb exp(-iK'RB)XB . (1)

In many practical cases, all these functions xa B reduce to just Slater

determinants. We stress the fact that boosting a determinant just generates

another determinant. This seriously simplifies practical calculations.

As will be shown, whether the particle number N is small

{N=2,3,4...) or large (N ~ a few hundred), our theory is able to calculate

a microscopic estimate of the multistep amplitude tXx'IV'GVIx>. where V

and V are the post and prior interactions, then E and H are the collision

energy and total Hamiltonian, respectively, and G=(E+ie-H)"' .

It is understood in the following that proper antisymmetry is

included, hence x and X* are Slater determinants, with the corresponding

boosted shell model orbitals xt.xj t respectively. In the same way, the

trial functions 4>,<1>' , which we will introduce for the variational estimate

of "G, are determinants, with orbitals <pj ,<p! . We will find that these <p,<p"
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make a new model, which we name the transition shell model.

The details of the formalism have been published elsewhere1). The

essential ingredients of the theory are the variational functional

r(tr) <x'iv
(V'V ' <*'|(

whose stationnary value with respect to <t>,4>' provides "G, and the

corresponding generalized Hartree-Fock equations

(Hi-hJIV = {w*QS)lx1>, <xJl(w'+S'Q') = «pJKr^-h), (3)

where t\i ,h,co,cj' ,Q,Q' ,S,S' are, respectively, a single particle self energy,

a self-consistent Hamiltonian, two self-consistent channel energies, two

particle-hole projectors and two self-consistent channel average fields.

The reason why the variation of F, Eq.(2), leads to driven

Hartree-Fock equations, Eqs.(3), is that the denominator of F has the same

structure as the Rayleigh-Ritz functional. Hence the variation of Slater

determinants in the denominator just generates Hartree-Fock terms. Driving

terms come from the numerator. It will be noticed that it is the numerator

of F which depends on the channels, and that both initial and final

channels are treated on the same footing. There are two trial functions, $>

and <£' , in order to accomodate this duality. The presence of channel

orbitals X,tX ' in the driving terms is transparent in Eqs.(3).
j

For all usual values of N the numerical solution of Eqs.(3) is no

more difficult than the solution of traditional Hartree-Fock equations. But

this solution is not very easy to obtain, either, for we have to face the

usual non linearities of Hartree-Fock fields, and furthermore the

functional F shows saddle points rather than maxima or minima.

A significant amount of experience has been obtained, however,

including a surprisingly good approximation to Faddeev-like equations2"3'

for N=3 and N=U. We show on Fig.l, taken from réf.3', a comparison between

an exact four-body amplitude and its mean field approximation.

We also report here a useful manipulation of Eqs.(3) in order to

obtain convergence of the usual iterative algorithm for self consistency.



.5

For this we notice that, formally, the variation of F leads to an

equation l4»> = (E-t-i€-H) " ' V lx> • In order to generate the proper on-shell

limit, we first select IraE finite rather than infinitesimal. As wave

packets, x and x1 are square integrable and thus the condition "IraE finite"

leads to square integrability of <$" and $' . If now H splits into a channel

Hamiltonian HQ and a prior interaction V, the auxilliary problem where

H=H0+AV, A -» oo, provides the trivial limit solution I4>> • -» -lx> for Eqs.(3).

It is then easy to reduce X to 1 and obtain a smooth extrapolation to the

physical solution. Simultaneously, we reduce ImE back to e.

We find the following result, which is of some practical

importance: even though the exact on-shell scattered waves are not square

integrable, the mean field approximations 3>, <î>' are still square integrable

when ImE vanishes. This violation of boundary conditions must not be too

surprising on second thoughts: in order to approximate a scalar product

[<X'IV] [GVIx>] by another scalar product [<x'IV] I4>> , nothing forces <£

to show the same boundary conditions as GVIx>- In other words, just one

scalar product does not define a whole vector.

Among several few-body collisions, we have programmed Eqs.(3) for

an elastic p-t scattering, governed by a Gaussian two-body local force

v.j = -V0 exp -(rj-rj)2/^, V0 = 50 MeV, n = 2 fm. (4)

The target is described by boosted, spherical shells,

+ir2.3./,K/3). P = 2 fm,(5)

with a similar formula for the final orbitals x'2 3 /. boosted by -K'/3-

the sake of simplicity, we freeze the orbitals in the direction

perpendicular to the reaction plane defined by the two vectors K,K'.

We have solved Eqs.(3) on an 11x11 mesh in the reaction plane, for

many energies and angles. The momentum density plots for variational

orbitals shown on Fig. 2 are taken from the whole atlas we have generated.

In all cases, the self consistent <p,<p' show very smooth shapes. A zoology

of such "transition orbitals" is still an open problem, but it can be seen

already at this stage that these shapes make smoothly deformed shells,

without major singularities so far.



From the form of the functional, Eq.(2), it is seen that the

amplitude "G is the product of two widths, divided by an energy denominator.

An interpretation of $>,$>' as intermediate states is thus in order. Their

smoothness indicates that there is a whole extension of the shell model

concept: it not just a convenient picture of bound states, but also of

transition steps in a collision.

We have tested the quality of the mean field approximation in the

case of several soluble models, for N=2 for instance, where the comparison

with the exact multistep amplitude is trivially available. Our experience

contains the case of long range forces (Coulomb) and the case of trial

functions with much fewer parameters than the full flexibility of orbitals

<p,<p'. It turns out that F provides excellent approximations in general.

The interested reader may look into ref.4) for a case with N=5, a

semi-quantitative calculation of elastic ir-a scattering. There an exact

solution is not available for comparison with the variational estimate, but

the outlook of the variational estimate is definitely sound enough. This is

very encouraging for calculations for higher values of N.

In conclusion, the same methods which have been so successful in

the history of the static shell model for the diagonalization of H are

available for the inversion of E-H. In particular, a suitable inhomogeneous

term can be added to Hartree-Fock equations, in a self consistent way, in

order to microscopically define a collision term without ad hoc parameters.

This extended Hartree-Fock theory provides a parameter free calculation (no

ad hoc optical potentials for instance) of collision amplitudes.
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Figure Captions:

Fig.l: Exact versus mean field amplitudes for a soluble N=4 model.

Fig.2: Momentum density plot of variational orbitals for an elastic p-t

collision at 90*. Left plots for projectile, right plots for target.
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Abbildung 4.4: Die Diagonalamplitude D fur die exakte und die Mean-
-Field-Rechnung bei K — 1 und c = 8.
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Abbildung 4.5: Die Diagonalamplitude D fur die exaktc und Mewi-Field-
-Rcchnung bei K = 1 und t = 2.
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