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ABSTRACT

A coarse-grained, static-scheduling parallelization of the
standard iterative scheme used for solving ihe discrete-ordinaies
approximation of the neutron transport equation is described.
The parallel algorilhm is based on a decomposition of the angular
domain along the discrete ordinalcs, thus naturally producing a set
of completely uncoupled systems of equations in each iteration.
Implementation of ihc parallel code on Intel's iPSC/2 hypcrcubc,
and solutions to test problems are presented as evidence of the
high speedup and efficiency of the parallel code. The
performance of the parallel code on the iPSC/2 is analyzed, and
a model for the CPU time as a function of the problem size
(order of angular quadrature) and the number of participating
processors is developed and validated against measured CPU
times. The performance model is used to speculate on the
potential of massively parallel computers for significantly speeding
up real-life transport calculations at acceptable efficiencies. We
conclude that parallel computers with a few hundred processors
arc capable of producing large specdups at very high efficiencies
in very large three-dimensional problems.

I. INTRODUCTION

The neutron transport equation is a special case of the
general Boltzmann equation in which the highly improbable
collisions between neutrons are neglected, thus rendering the
Boltzmann collision icrm linear. Solutions for neutron transport
problems arc sought in many practical applications such as the
design and oplimizalion of nuclear reactor cores, shield design,
calculation of healing rales in various reactor components, etc. In
most such situations the problem is too complicated lo be solved
analytically, and approximate methods arc incviiablc. Indeed, over
the years many approximation mclhods, algorithms, and computer
codes have been developed, implemented, and used to obiain
numerical solulions to the neutron transport equation.] 1]
providing a wide spectrum of approaches each having its own
range of physical problems for which it is most suitable.

A variety of parallel algorithms have been developed
recently for solving neutron transport problems each based on a
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specific domain decomposition thai is most suitable for a certain
class of problems.[2-6] Decomposition of the neutron energy
variable along the multigroup structure commonly employed in
nuclear applications has been shown lo be particularly suitable for
problems involving upscattcring (i.e. scattering from low to high
energies).[2] Also chaotic iterative schemes have been reported
for such problems, and found lo possess several interesting
fcaturcs.[2] Decomposition of the spatial domain has been
considered in an attempt lo provide a large number of concurrent
processes offering the potential of very high speedup.]?] The third
alternative for realizing a parallel algorithm is lo decompose ihe
angular domain along the set of discrete ordinatcs employed in Sn

calculations. This has been done for two-dimensional Cartesian
geometry problems, [4] and for one-dimensional spherical
geometry. [6]

As will be discussed laler, the angular domain
decomposition in Cartesian geometry occurs in a natural way,
unlike most other possible decompositions mentioned above. That
is lo say, in Cartesian geometry the solution algorithm is
comprised of operations in each discrete direction (i.e. angle) that
are completely and naturally independent of all other discrete
directions. Hence, the original and decomposed algorithms are
identical in lhal they perform the same set of operations, on the
same set of initial and intermediate data, and therefore produce
identical intermediate and final results every step of the way.[4]
This is not true in the other cases where the decomposition is
artificially introduced into the solution algorithm, and often
requires a larger number of iterations to achieve convergence
compared to the undecomposed case.[5,6] Obviously this
disadvaniagcs ihc parallel algorilhm because the total amount of
computations performed (which is proportional lo the number of
iterations) becomes larger in the decomposed algorithm, so that
specdups with respect lo the undecomposed algorithm (i.e.
sequential) that arc proportional to ihe number of processors arc
practically impossible.

In the last fifteen years, nodal methods have been
developed, implemented, verified against conventional mclhods.
and heavily utilized in the solution of neutron transport problems
in various technical scUings.|7-10] These methods have been
shown lo possess very high accuracies, thus permitting the use of
relatively coarse meshes, which eventually translates inlo high
computational efficicncics.|7-10] Furthermore, it has been shown
recently thai general high-order versions of one particular variety,
the nodal integral method, can be written in a simple weighted
difference form,[10] making it easy lo implement, or backfil, into
existing weighted difference production codes. The demonstrated
high computational efficiency of nodal mclhods (i.e. shorl CPU
time for a given accuracy as compared lo convcnlional mclhods)
made it the method of choice in calculations for real-life
applications.



In this paper we explore the potential for achieving high
performance on massively parallel supercomputers in solving
multidimensional neutron transport problems. This is
accomplished by establishing a model for the performance of the
parallel nodal transport code, P-NT,[4j as a function of the
problem size and the number of processors. In Sect. II we discuss
the standard iterative scheme used in solving neutron transport
problems, and we describe its implementation on Intel's iPSG2
hypcrcubc. Two test problems that have been solved by P-NT on
the iPSG2 arc presented in Sect. III. wiih particular emphasis on
the parallel performance of the code. The parallel performance
mode! is then developed in Sect. IV, and is validated against the
measured results described in Sect. III. We conclude with a
summary of the work and the most pertinent conclusions.

II. ANGULAR DOMAIN DECOMPOSITION OF THE
STANDARD ITERATIVE SCHEME

In order to illustrate the issues involved in developing a
parallel algorithm for solving the nodal transport equations
without being overwhelmed by algebraic details, we restrict our
discussion here to the lowest (zero) order nodal method. Our
parallel code P-NT has a first order (i.e. linear-linear) capability
which is used later to measure and model the performance of first
order methods. The reader interested in parallel high-order
methods will find it straightforward lo apply the concepts
presented here to the general-order weighted difference equations
presented in Rcf. 10, since the angular domain decomposition is
independent of the approximation order of the nodal method.

Like the general Bollzmann equation, the steady stale
neutron transport equation in two-dimensional Cartesian geometry
has five independent variables: two spatial, (wo angular, and one
energy, variables. In mostly all numerical applications these
variables arc discrcliscd, and discrete values representing the
angular flux (the dependent variable) are defined with respect to
the discrete independent variables, and solved for algebraically.
The equations for the lowest order nodal method in
two-dimensional Cartesian geometry with monocnergetic neutrons
are given by,
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where ( u , . T|t) are the x and y angle cosines fo; the k-'.h discrete

direction. k = 1 n ( n - 2 / S . in an Sn order quadrature. r2n|t.2b i
are the x .ind y dimensions of the ij-th computational cell.

Oj and o* arc the total and scattering cross sections in the ij-th
cell respectively, and S is a fixed neutron source. The spatial
weights in Eqs. (2) and (3) are derived consistently via the nodal
integral method, and arc given by,[30]
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The discretised dependent variable is represented by three
quantities: I is the ij-th cell-averaged angular flux,

^ (±b,) is the x-averaged angular flux evaluated at y • tb^,

and analogously J (±ay), where m is the iteration index. The

angular flux is considered continuous across node boundaries, so
that

k k

The relationship among the dependent discrete-variables is
depicted in Fig. 1 on a typical computational cell, foruk, T)k>0;
for iik<0, and Tik<0 the sense of the horizontal, and vertical
arrows is reversed, respectively. At a given cell, normally the
incoming angular flux (in the sense of the arrow) is known from
the neighboring cell, or from global boundary1 conditions if the
given cell is interior or adjacent to an external boundary,
respectively. Then Eqs. (1-3) provide three linearly independent
equalions that are solved for the cell-avcragcd flux and the two
outgoing fluxes on x and y = constant surfaces, which by
continuity of the angular flux, are incoming fluxes to the adjacent
cells in the x, and y directions, respectively. The process r
repeated in these adjacent cells until the entire mesh is covered;
this completes one "mesh sweep" in the k-lh angular direction, lo
be followed by sweeps in all other angular direclions ibus
completing one iteration. The quantity iterated upon is the scalar

flux which is updated at the conclusion of the m-lh

iteration using,

'J k - l •ij*
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Fig. I. Relationship among dependent variables for a typical
computational cell; arrows indicate incoming and
outgoing angular directions for the case Uj., Tik > 0.

where uk is an angular weight defined consistently with the k-th
discrete direction. It is worthwhile mentioning lhai several
generalizations of the method described above can be achieved by
straightforward modifications; sec Ref. 10.

The solution of Eqs. (1-3) plus the global boundary
conditions constitutes the bulk of discrete ordinatcs transport
calculations, as it involves a very large number of unknowns to be
evaluated every iteration. For example, an S8 calculation on a
20 x 20 mesh, involves 12,000 cell and surface averaged angular
fluxes to be calculated per iteration. In the standard iterative
scheme Eqs. (1-3) arc solved via the successive "sweeps" described
above The lack of dependence between the angular flux in each
direction k and the angular fluxes in all other directions represents
a naturally occurring decomposition in the angular domain which
we cxploil in developing the parallel solution algorithm presented
below.

The Malhcmatical Sciences Section of the Engineering
Physics and Mathematics Division at Oak Ridge National
Laboratory owns and operates an Intel's iPSCQ fypcrcubc
computer which has 64 nodes (processors), each with 4 Mbytes of
memory, and connected to the other nodes via a six-dimensional
hypcrcubc scheme. Information is shared among nodes via explicit
message passing introduced into the code through extensions to
FORTRAN. The nodes communicate to external i/o devices
mainly through a host computer; hence a host program reads the
input data and passes it to all participating nodes, and at the
conclusion of the calculation, collects the solution from the nodes
and prints it out. The standard iterative scheme is performed
exclusively by the nodes. After receiving the input data from the
host, each node program determines the set of angular directions
it is lo solve (static scheduling), and immediately starts sweeping
the mesh in these directions. Clearly the larger the number of
nodes participating in the calculation, the smaller the work load
for each node, and the faster the computation. At the conclusion

of the mesh sweep the global operator GDSUM is called to
perform the summation rcpiescnted by Eq. (6). yielding the new
iterate of the cell averaged scalar flux on each of the participating
processors. Next, aii nodes compare the point wise relative
difference between the old and new scalar flux iterates to a user
specified convergence criterion. Upon convergence, node 0 sends
the host the converged solution, otherwise all nodes start a new.
iteration by again sweeping the mesh each in the discrete
directions previously assigned to it.

III. PERFORMANCE OF P-NT ON THE iPSCC

Tnc parallel algorithm described above has some important
features that bear heavily on its performance. The parallclizaiion
realized by the angular domain decomposition is very coarse
grained; this implies that number of data exchanges between the
participating nodes is very small, and this contributes positively lo
the high efficiency of P-NT. On the other hand, the grain
coarseness sets a strict limit on the number of independent
processes available for concurrent execution, thus limiting the
potential for extremely large spcedups on very massive parallel
computers. More specifically, the number of independent
processes available in a two dimensional problem with vacuum
boundary conditions on all global boundaries, in a calculation
employing an S I0 quadrature set is 60; in three-dimensional
problems this number is 120. In extreme cases where very high
quadrature orders are necessary, e.g., S ^ two and three
dimensional problems offer 220 and 440 independent processes,
respectively, well below the full potential of massively parallel
supercomputers capable of supporting thousands of processors.
Hence, it seems that for present applications the algorithm
presented here is suitable for high performance on low to medium
size parallel supercomputers.

Another difficulty resulting from the grain coarseness of
the parallel algorithm concerns load balance. If the number of
participating processors does not divide the number of
independent processes, some nodes will remain idle in each
iteration until all directions are calculated. This is extremely
penalizing when a large number of processors is used, so that the
share of each processor is only a few directions, because in this
case the idle time will be of Ihe same order as the busy time, thus
reducing the efficiency. Dynamic scheduling would not repair this
problem cither because all independent processes have almost the
same length. This disadvantage is highlighted in a hypcrcube
connection scheme where the number of processors available to
the user must be a power of two, which limits ihe ca^cs in which
perfect load balance is achievable.

In the performance measurements presented in tins
seciion, and the performance mode) presented in Sect. IV, we
side-step this disadvantage by assuming that arbitrary noJc
numbers are available to the user. This is not as bad an
assumption as it may appear, because it essentially extends the
applicability of our conclusions and performance model lo other
connection schemes (e.g. grids) that do not restrict the choice of
the number of participating processors, as long as the CPUs and
communication speed arc comparable lo those of the iPSG2.
Hence in the performance measurements presented in this section,
we present results obtained on cubes that do not utilize all nodes
in that cube, and in such cases we calculate the efficiency based
ĉ -.'y on the number of participating nodes, not nil those included
in the attached cube.



The parallel code P-KT wilh zero and first order spatial
approximations has been successfully implemented on the iPSC/2.
Because the ancular domain decomposition occurs natu'.illy as
discussed before, P-NT requires exactly the same number of
iterations as the equivalent sequential code , GONT,[10] and
converges to an identical solution (10 within roundoff). This facl
has been checked lo be true in all cases executed to verify ihe
correctness of the paralieiization procedure. P-NT was used to
solve two lest problems whose geometry and material composition
arc presented in Fig. 2. The spatial discretization employed was
a uniform 16 x 16 mesh, and the two problems solved were an S8.
zero order case, and an S16. first order case. In order to evaluate
the performance of the parallel code, we monitored the CPU time
required for convergence as a function of the number of
participating processors, and used this data to evaluate the
performance of P-NT. We used two quantities to represent a
quantitative measure of the parallel performance of P-NT: the
speedup, S(P) = CPU lime required by one processor/CPU time
required by P processors lo solve the same problem, and the
efficiency, E(P) = 100 x S(P) / P. The speedup and efficiency vs
the number of participating processors for the two lest problems
are shown in Figs. 3 and A respectively. As expected the second
lest problem yields higher speedup and beilcr efficiency for the
same number of participating processors. Two factors contribute
to this result. First, the first order method requires more
computations than the zero order method, because in the former
four flux spatial moments are calculated per computational cell,
while in the latter only one spatial moment is calculated. Il
should be clear also that in the first order case all four spatial
moments have lo be summed globally via GDSUM, so that the net
improvement in performance implies thai lhis additional burden
is more than compensated for by the increase in compulation
time. Second, the higher order quadrature provides a larger pool
of independent processes lo be performed concurrently, thus

reducing the relative effect of the communication penalty
compared lo the useful computation time. Since three
dimensional applications would produce similar effects, namely an
increase in the number of calculated flux spatial moments per cell,
and a two fold increase it, the number of independent processes
for the same quadrature order, we conjecture that even higher
speedup and efficiency should be achievable. On the other hand,
it has been observed that increasing the number of computational
cells produces only marginal improvements to the speedup and
efficiency.[4]
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IV. PERFORMANCE MODEL FOR P-NT OS THE iPSC2

The full potential of parallel codes for high performance
can not be determined based on a few test cases alone. For this
purpose it is desirable lo develop mathematical models thai
describe the performance of the parallel computer for a given
algorithm as a function of relevant parameters. In general this
process can be cxtrcmcK complicated and it is often necessary to
use statistical methods lo fit simplified models lo measu'ed
performance daia. or lo use very crude models, e.g. AmJ..hi's law.
In contrast, the parallel algorithm described in Sec. II is lor the
most part "clean and simple" enough lo permit the development
of a fully mathematical model that describes it? performance as a
function of problem size, r'-presented by n. the angular quadrature
order, and the number of processors participating in the
calculation. P. Tnis fact is a direct consequence of the coarse
grained and stalir scheduling features of the parallel algorithm,
which makes predictable the exact sequence of operations
performed on each processor. The only exception to this
predictability is the global operation. GDSUM, which is truly
statistical in nature, as discussed below.

There arc three main components of the CPU time that
add up to the total computation time: a serial component thai is
independent of Ihc number of processors; a parallel component
thai is inversely proportional to the number of pioccssors; and a
"global summation" component which is dominated by
communication and therefore is directly proportional to the
dimension of the attached cube. Determining the full dependence
of each of these components on the spatial approximation order,
ihe mesh size, and the angular quadrature order is difficult. The
dependence on the approximation order is easily accounted for
paramctrically, i.e. we develop separate models for the zero order
and first order methods. The dependence on the mesh size is
currcr'iy being developed and is complicated by the dependence
of the number of iterations on ihe number of computational cells.
As noted previously,[4] only minor gains in performance are
achievable by refining ihc mesh; so for the time being we develop
the performance model for a constant 16 x 16 mesh. In contrast
the number of iterations required for convergence depends very
weakly on the angular quadrature order. Hence it is reasonable
to approximate the parallel component dependence on n as
dirccily proportional to n(n+2)/2, because for a given mesh, one
mesh sweep takes the same amount of time regardless of the
quadrature order. Aiso, the results presented in Sect. Ul indicate
that the serial and global summation time component arc much
smaller than (he parallel component, and should grow much
slower with the quadrature order.

Let TJO be the serial time component for the order o
method, o = 0, !; T ^ the time required lo sweep the mesh once
for order o method; and T.o the lime required lo perform the
global summation for order o method. According to the
simplifying argument presented in the previous paragraph Tw ,
Tpg. and Tg? arc independent of n and P on a given mesh. The
total CPU lime immediately follows.

where [.] is the ceiling function, and the last term on the RHS is
equal to the attached cube dimcnsioa The parallel component
of the model is capable of modeling poorly balanced situations.
even though we have intentionally avoided such cases in the test
problems described in Sect. J1I.

In order lo validaie the model. Eq. (7), we installed clicks
at several locations in P-NT to monitor the various time
components for the zero and first order methods as a function of
the number of processors. The serial and parallel time
component* behaved very consistently with the model, i.e.. T and
Tpo w c r c practically constant for all values of P considered.
Because of the global r.ature of the summation operation, it is not
fully deterministic, so thai repeating the same run can give slightly
differeni measurements of the consumed CPU lime. However,
the measured data seemed lo closely follow a linear dependence
on the cube dimension as logically expected in a hypcrcubc
connection scheme. Therefore, we calculated T as the ratio of
the measured global summation time to the attached cube
dimension averaged over the various choices of P. The agreement
between measured and mode! daia for this component is
reasonable. The measured and model time components for the
Sg. zero order, and SJ6. first order lest problems are compared in
Figs. 5 and 6. respectively; the observed good agreement
establishes the validity of the model.

J-IME COMPONENTS(sec)
Model Serial

• Measured Serial
Model Communication
Measured Communicalion
LOP Model Parallel
Log Measured Parallel

Fig. 5. Comparison between experimental and measured time
components for the S8, zero order method lest problem.
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To explore the full potential for high efficiency para!:cl
performance by the parallel algorithm presented here on a
two-dimensional 16 x 16 Cartesian mesh for the zero and first
order methods we use the model, Eq. (7), lo evaluate the
efficiency as a function of n and P. Figures 7 and 8 depict, with
pattern codes, the regions in the (n.P) plane at which high
efficiencies arc predicted by the model for the zero and first order
methods, respectively. As expected, regions of high efficiency for
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the first order method cover a larger region in the (n,P) plane
than docs ihe zero order method because of the heavier
computational load in ihe former method. "Islands" of high
efficiency appear at locations in the (n,P) plane where the
computational load is well balanced at a few isolated points, and
is poorly balanced at surrounding points. One important
observation to be made from Figs. 7 and 8 is lhal load balance is
extremely crucial for achieving very high efficiencies in general,
but that for very large problems reasonably good efficiencies arc
still achievable on several lens of processors. The utility of
performance models, such as Eq. (7), is evident from
Figs. 7 and 8; a user solving a given Sn problem and interested in
high efficiency performance, i.e. lower computation cost, would
nor.iially select P in a region surrounded by the darkest pattern on
a constant n line. In contrast, a user interested in the highest
speedup, i.e. shortest computation time, would select the largest
possible P, especially if it exists on an island of high efficiency.

V. SUMMARY AND CONCLUSIONS

We presented an angular domain decomposition of the
standard iterative scheme commonly used in solving neutron
transport problems that yields a coarse grained parallel algorithm.
We described our application of the parallel algorithm to the
highly accurate nodal method, and its implementation in the
parallel nodal transport code, P-NT. We demonstrated the very
high speedup and efficiency ihal the parallel code is capable of
achieving on Intel's iPSO2 hypcrcubc using two test problems.
Also we developed and validated a model for the performance of
the parallel code on the iPSC/2, and we used the model to explore
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ihe potential for high performance in even larger problems than
used here.

Our test problems and performance model suggcsl that the
limited number of processes that can be executed simultaneously
in this algorithm (dictated by its coarse grain) limits the size of
parallel computers thai can be used to a few hundred processors.
Medium grained algorithms based on alternative domain
decompositions, combined with well established acceleration
schemes may provide a larger '.lumber of concurrent processes at
a relatively low iieration penalty Tnis should utilize to a fuller
extent massively parallel computers, with thousands of CPUs.
Also, alternative architectures, such as shared memory machines,
•seem to be very well suited to lake full advantage of the prcscnl
parallel scheme because of the smaller number of processors they
normally support. Finally, futuristic applications may arise in
science and technology which require using a very high order
angular quadrature in three dimensional geometry, in which case
the prcscnl algorithm will perform extremely well on massively
parallel computers.
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