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ABSTRACT

2 coarse-grained, static-scheduling parallielization of the
standard itcrative scheme used for solving the discrete-ordinates
approximation of the ncutron transport equation is described.
The paralic! algorithm is based on a decomposition of lhc_angular
domain along the discrete ordinates, thus naturally producing a scl
of completely uncoupled sysicms of cquations in cach itcration.
Impicmentation of the paraliel cade on Inicl's iPSC/2 hypercube,
and solutions 10 test problems are prescnled as evidence of the
high specdup and cfficiency of the paralicl code.  The
performance of the paralicl code on the iPSCPR2 is analyzed, a.nd
a model for the CPU time as a function of the problem size
(order of angular quadrature) and the number ol participating
processors is devcioped and validated against measured CPU
times. The performance modcl is used lo speculaie on Ehe
polcntial of massively paralicl compulers for signiﬁcaq‘dy spccdmg
up rcal-lifc transport calculations at acceptablic cfficiencics. We
conclude that paralic] computers with a few bundred processors
are capable of producing large specdups at very high efficicncics
in very large three-dimensional problems.

I. INTRODUCTION

The nculron transport equalion is a special case of the
general Bollzmann cquation in which the highly imp{ohablc
collisions between neulrons are neglected, thus rendering the
Boltzmann collision term lincar. Solutions {or ncutron transport
problems arc sought in many practical applications such as _lhc
design and optimization of nuclcar rcaclor cores, shicld design,
calculation of hcating rates in various rcactor components, clc. In
most such situations the problcm is oo complicated to be solved
analyiically, and approximatc methods are incvitable. Indced, over
the ycars many approximation methods, algerithms, and computer
codes have been developed, implemented, and used 10 oblain
numerical solutions to the ncutron transport cquation.l]
providing a wide spectrum of approaches cach having ils own
range of physical probicms for which it is most suitable.

A varicly of paralicl algorithms have been developed
recently for solving ncutron transport problems cach based on a
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specific domain decomposition that is most suitable lor a certain
class of problems.[2-6] Decompositicn of the neutron energy
variable along the multigroup structure commonly employed in
nuclear applications has been shown 1o be particularly suitable for
probiems involving upscaticring (i.e. scatiering from low 10 high
energies).[2] Also chaotic iterative schemes have been reporied
for such problems. and found to possess sevcral inicresling
fcatures.]2) Decomposition of the spatial domain has been
considered in an attempt to provide a large number of concurrent
processes offering the potential of very high specdup.|5] The third
alternative for realizing a paralle] algorithm is 1o dccompose the
angular domain along the set of discrete ordinates employed in &
calculations. This has been done for two-dimensional Cariesian
geometry problems,[4] and for one-dimensional spherical
geomelry.[6}

As will be discussed later, the angular domain
decomposition in Cartesian geomelry occurs in a natural way,
unlike most other possible decompositions mentioned above. That
is to say, in Cartesian gcomctry the solution algorithm is
comprised of operations in cach discrete direction (i.c. angie) that
are completely and naturally independent of all other discrete
directions. Hence, the original and decomposed algorithms arc
identical in that they perform the same sel of operations, on the
same set of initial and intermediate data, and therefore produce
identical intermediate and final results cvery siep of the way.[4]
This is not true in the other cases where the decomposition is
artificially introduced into the solution algorithm, and often
requires a larger number of ilcrations to achicve convergence
compared to the undccomposed casc.f5,6])  Obviously this
disadvantages the parallel algorithm because the total amount of
computations performed (which is proportional to the number of
itcrations) bccomes larger in the decomposed algorithm, so that
specdups with respect to the undccomposed algorithm (ic.
scquential) that are proportional 1o the number of processors are
practically impossible.

In the last fiftcen years, nodal mcthods have been
devcloped, implemented, verificd against conventional methods,
and hcavily ultilized in the solution of ncutron transport problems
in various tcchnical scttings.[7-10] These mcthods have been
shown 10 posscss very high accuracies, thus permitting the use of
rclatively coarse meshcs, which cventually translates into hign
compulational cfTiciencies.[7-10] Furthermore, it has been shown
recently that general high-order versions of one particular variety,
the nodal intcgral method, can be written in a simple weighted
difference form.[10] making il easy tc implement, or backfit, into
cexisting weighted dilference production codes. The demonstrated
high computational efficicncy of nodal methods (i.c. short CPU
time for a givea accuracy as compared to conventional meihods)
made it the mcthod of choice in calculations for real-life
applications.



In this paper we cxplore the patential for achicving high
pecformance on massively paralicl supercomputers in soiving
multidimensional  ncutron  transporl  problems. This is
accomplished by estabiishing a model for the perfoimance of the
paralicl nodal lransporl code, P-NT.{4] as a function of the
problem size and the number of processors. In Sect. 1] we discuss
the standard iterative scheme uscd in solving nculron transport
problems, and we descrine its implementation on Intels iPSC2
hypercube. Two test problems thal have been salved by P-NT on
the iPSC2 are presented in Sect. 111 with particular emphasis on
the paraliel performance of the code. The paraliel performance
model is then deveioped in Sccl. IV, and is validated against Lhe
mcasured results deseribed in Sect. 1Il. We conclude with a
summary of the work and Lthe most pertinent conclusions.

ANGULAR DOMAIN DECOMPOSITION OF THE
STA..\ DARD ITERATIVE SCHEME

In order to illustrate the issucs involved in developing a
paraliel algorithm for solving thc nodal transport equalions
without being overwhelmed by algebraic details, we restrict our
discussion here Lo the lowest (zero) order nodal method. Our
parallel code P-NT has a {irst order (i.c. lincar-lincar) capabilily
which is used laler to measure and model the performance of first
order methods. The rcader interested in parallel high-order
mcthods will find it straightforward 1o apply the concepts
presented here o the general-order weighted difference equations
presented in Ref. 10, since the angular domain decomposition is
independent of the approximation order of the nodal method.

Like the gencral Boltzmann cquation, the steady stale
ncutron transport cquation in two-dimensional Cartesian geometry
has five independent variables: two spatial, two angular, and one
cnergy, variables. In mostly all numerical applications these
variables arc discretised, and discrete values representing the
angular flux (the dependent variable) are defined with respect to
the discrete independent variables, and solved for algebraically.
The cquations for the lowest order nodal method in
two-dimensional Carlesian gecometry with monocnergetic ncutrons
are given by,
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where (p,. m,) are the a and v angle cosines for the k-th discrete

direction. k=1...n{n=2,8. in an S order quadraiure. (23,.2b, )

are the x and v dimensions of the j-lh computavional cell,

T s ,
% and o, are ihe lotal and scatlering cross sections in the ij-ih
cell respectively, and S is a [ixed ncutron source. The spatial
weights in Eqgs. (2) and (3) are derived consisiently via Lthe nodal

integral method, and arc given by,[10]

T T
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The dlscrclm:d _dcpendent variable is represented by three
quantitics: v is the jj-th ccll-averaged angular flux,
ijk

mw (£by) is the x-averaged angular fux evaluated at y = by,

and ana]ogously mw (s, ) where m is the iteration index. The

angular flux is considered continuous across node boundarics, so

that
m-x m-x y m-y
¥y (+by) = L -5 K (+3y) = L M SLRDS

The relationship among the dcpendent discrete-variables is
depicted in Fig. 1 on a typical computational cell, forpy, n, >0
for u, <0, and 1, <0 the sense of the horizontal, and vertical

arrows is reversed, respectively. At a given celi, normally the
incoming angular flux (in the sense of the arrow) is known {rom
the ncighboring ccll, or from global boundary conditions if the
given cell is interior or adjacent 1o an external boundary,
respectively. Then Egs. (1-3) provide three lincarly independent
cquations that are solved for the cell-averaged {lux and the two
oulgoing fluxes on x and y constant surfaces, which by
continuily of thc angular flux, are incoming fluxcs to the adjacent
cclls in the x, and y dircctions, respectively. The process i
repeated in these adjacent cells until the entire mesh is covered;
this compleics one “mesh sweep” in the k-th angular direction, to
be followed by swceps in all other angular directions ihus
completing one iteration. The quantity iterated upon is the scalar

S
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Nux m;“‘ which is updated at the conclusion of the m-th
Y

itcration using,
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Relalionship among dependent variables for a typical
compulational cell; arrows indicate incoming and

outgoing angular directions for the case py, ng>0.

Fig. 1.

where w, is an angular weight defined consistently with the k-th
discrete dircction. It is worthwhile mentioning that scveral
gencralizations of the method described above can be achieved by
siraightforward modifications; scc Ref. 10.

The solution of Egs. (1-3) plus the global boundary
conditions constitutes the bulk of discrete ordinates transport
calculations, as it involves a very large number of unknowns (o be
cvalualed every iteration. For cxample, an Sg calculation on a
20 x 20 mesh, involves 12,000 cell and surface averaged angular
fluxes to be caleulated per itcration. In the standard ilcrative
scheme Egs. (1-3) arc solved via the successive “sweeps™ described
above. The Jack of dependence between the angular lux in each
dircction k and the angular Muxes in all other directions represents
a naturally occurring decomposition in the angular domain which
we cxploit in developing the parallel solution algorithm presented
below.

The Mathematical Scicnces Section of the Engincering
Physics and Mathematics Division at Oak Ridge National
Laboratory owns and operates an Intel's iPSC2 hypercube
computer which has 64 nodes (processors), each with 4 Mbytes of
memory, and connectied 1o the other nodes via a six-dimensional
hypercube scheme. Informatinn is shared among nodes via explicit
message passing introduced into the code through cxtensions 1o
FORTRAN. The nodes communicate o cxternal Yo deviccs
mainly through a host compuler; hence a host program reads the
inpul data and passcs it (o all participating nodcs, and at the
conclusion of the calculation, collects the solution from the nodes
and prints it out. The standard ilerative scheme is performed
exclusively by the nodes. Afler receiving the input data from the
host, cach node program delermines the sct of angular directions
it is to solve (static scheduling), and immedialcly starts sweeping
the mesh in these directions. Clearly the larger the number of
nodes participating in the calculation, the smaller the work load
for each node, and the [aster the computation. At the conclusion

po-—

of the mesh sweep Lhe global operator GDSUM s calied to
perform the summation repiesented by Eq. (€). yielding the new
iterate of the cell averaged scalar flux on cach of the paricipating
processors.  Nexl, ali nodes compare the pointwise reiative
dilTerence between the old and new scalar flux icrates to 8 user
specilied convergence critcrion. Upon convergence, node O sends
the host the converped solution, otherwise all podes start a now
iteration by again sweccping the mesh cach in the discreie
directions previously assigned 10 it.

1I. PERFORMANCE OF P-NT ON THE iPSC2

The paralicl algorithm described above has some imporiant
{catures that bear heavily on its performance. The paraliclizaiion
realized by the anguiar domain decomposition is very coarse
grained; this implics that number of data exchanges beiween the
participating nodes is very small, and this contributes positively 1o
the high cfficicncy of P-NT. On ihe other hand, the grain
coarseness sels a sirict [imit on the number ol independent
processes available for concurrent exccution, thus limiting the
potential for exiremely large speedups on very massive parallel
computers.  More specifically, the number of independent
processes available in a two dimensional problem with vacuum
boundary conditions on all global houndaries, in a calculation
employing an Sy quadrature sct is 60; in three-dimensional
problems this number is 120. In extreme cases where very high
quadrature orders are nccessary. e.g., Sy, (wo and thrce
dimensional problems offer 220 and 440 incdependent processes,
respectively, well below the {ull poiential of massively parallci
supercomputers capable of supporting thousands of processors.
Hence, it secms that for present applications the aigorithm
presented here is suiiable for high performance on Jow 1o medium
size paraliel supercompulicrs.

Another dilficully resulting from the grain coarscness of
the paraliel algorithm concerns load balance. If the number of
participaling processors docs not divide the number of
independent processes, some nodes will remain idle in cach
iteration until ail dircctions are calculated. This is extremcly
penalizing when 2 large number of processors is used. so thal the
share of cach processor is only a [ew directions, because in this
case the idle time will be of the same order as the busy time, thus
reducing the cfficiency. Dynamic scheduling would not repair this
problem cither because all independent processes have almost the
same length. This disadvantage is highlighted in a hypercube
conncclion scheme where the number of processors available to
the user must be a power of twa, which limits the cases in which
perfect Joad halancc is achicvahle.

In the performance measurements presenied in this
section, and the performance model presented in Sect. 1V, we
sidc-step this disadvantage by assuming that arbitrary node
numbers arc available o the uscr.  This is not as bad an
assumption as il may appcar, because it cssentially exiends the
applicability of our conclusions and performance model o other
connection schemes (e.g. grids) that do not restrict the choice of
the number of participating processors, as long as the CPUs and
communication speed are comparabic 1o those of the iPSC2.
Hencc in the performance measurements presented in this scetion,
we present results obtained on cubes that do not utilize all nodes
in that cube, and in such cascs we calculate the cfficiency bascd
coly on the number of participating nodes, not all those included
in the attached cube.



The paralicl code P-NT with zero and first order spatial
approximations has been successfully implemented on the iPSC/2.
Because the angular domain decomposition occurs naturally as
discussed before, P-NT requires cxaclly the same number of
itcrations as the cquivalent sequential code , GONT,[10] and
converges 1o an identical solution (1o within roundofT). This (acl
has been checked 1o be truc in all cases execvted 1o verily the
correctness of the paraliclization procedure. P-NT was used to
solve two test problems whose geomelry and material composition
are presented in Fig. 2. The spatial discretization cmployed was
a uniform 16 x 16 mesh. and the two problems solved were an Sg.
zero order case, and an Sy first order case. In order to cvaluale
the performance of the paralic] code, we monitored the CPU time
required for convergence as a funciion of the number of
participating processors, and used this data to evaluate the
performance of P-NT. We used two quantitics to represent a
quantitative measure of the parallel performance of P-NT: the
‘speedup, S(P) = CPU time required by one processor/CPU time
required by P processors to solve the same problem, and the
efficiency, E(P) = 100 x S(P) / P. The speedup and efficicney vs
the pumber of participating processors for the two test problems
are shown in Figs. 3 and 4 respectively. As expected the second
test problem yiclds higher speedup and betier efficiency for the
samc number of participating processors. Two {actors contribute
lo thic result.  First, the first order method requites more
computations than the zero order method, because in the former
four [lux spatial moments are calculated per computational cell,
while in the latter only one spatial moment is calculaied. It
should be clear also that in the first order case all four spatia
moments have to be summed globally via GDSUM, so that the net
improvement in pcrformance implies that this additional burden
Is more than compensated for by the increase in computation
time. Sccond, the higher order quadrature provides a larger pool
of indcpendent processes to be performed concurrently, thus
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Fig. 2 Gceometry and nuclear properties of the test problem
with vacuum boundary conditions, i.e., zero incoming
angular flux, on alf four exicrnal boundaries.

?c]ducing the rclative effect of the communication penalty
compared 1o the usclul compuiation time.  Sincc three
dimensional applications would producce similar cffecis, namely an
increase in the number of calculated flux spatial moments per cell,
and a two fold increasce in the number of independent processcs
for thc samc quadrature order, we conjecture that even higher
speedup and ¢[ficicncy should be achicvable. On the other hand.
it has been obscrved thal increasing the number of computational
cells produces only marginal improvements to the speedup and
clficicncy.[4]
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"IV. PERFORMANCE MODEL FOR P.NT ON THE iPSC?2

The full poiential of parallel codes for high performance
can not be deiermined based on a {ew test cases alone. For this
purposc it is desirable 1o develop mathematical models that
describe 1he performance of the paralie] compuier for a given
aigorithm as a function of relevant parameiers. In gencral this
process can be exiremely complicated and it is ofllen necessan 1o
usc siaustical methods to fit simplihed models 0 measured
performance data. or to usc very crude madcls, e.g. Amd.hi's faw,
In conirast, the paralle] algorithm deseribed in Scct. 1] s far the
most part “cican and simplc” enough to permit the development
of a {ully mathemauical modce! that describes its performance as a
funciion of problem size. represented by n, the anguiar quadrature
order, and the number of processors participating in the
calculation. P. This {acl is a direct consequence of the coarse
grained and static scheduling features of the paralicl algorithm.
which makes predictable the cxact sequence of operations
performed on cach processor.  The only exception 10 (his
predictability is the global operation, GDSUM, which is truly
statistical in nature. as discusscd below.

There are three main componcents of the CPU time that
add up to the toial computation time: a scrial component that is
independent of the number of processors; a parallel component
that is inverscly proportional to the number of processors; and a
"global summation” component which is dominaled by
communication and thcrefore is directly proportional to the
dimension of the attached cube. Determining the full dependence
of each of these components on the spatial approximation order,
the mesh size, and the angular quadrature order is difficult. The
dependence on the approximation order is casily accounted for
paramctrically, i.c. we develop scparate models for the zero order
and first order methods. The dependence on the mesh size is
currer*ly being developed and is complicated by the dependence
of the number of itcrations on the number of computational cells.
As noted previously,{4] only minor gains in performance are
achicvable by rcfining the mesh; so for the time being we develop
the performance mode! for a constant 16 x 16 mesh. In contrast
the number of iterations required for convergence depends very
weakly on the angufar quadrature order. Hence it is reasonable
o approximaie the parallel component dependence on n as
directly proportional to n{n+2)/2, because for a given mesh, one
mesh sweep takes the same amount of lime regardless of the
quadrature order. Alsa, the results presented in Scct, [ indicate
that the scrial and global summation time components are much
smaller than the parallel componenl, and should grow much
slower with the quadrature order.,

Let Ty, be the scrial time componemt for the order o
method, 0 = O, 1, T, the time required 1o sweep the mesh once
for order o method; and T,q the time required to perform the
global summation for order o mcthod.  According to the
simplifying argument presented in the previous paragraph T
Tpg and T, arc independent of n and P on a given mesh, The
total CPU fime immedialcly follows,

To (0P) = Ty + Ty {"_Q’FZ_JI
) &)
logP
+ Ty 05 , o0, 1,

T

t
'

———— e - - - 1. . --

where [.] is the ceiling function, and the jast lerm on the RHS is
cqual to the attached cube dimension. The paraliel component
of the model is capable of modcling poorly balanced situations.
even though we have intentionally avoided such cascs in the test
problems described in Sect. ]11.

In order to validate the model, Eq. (7), we instalied clocks
al several locations in P-NT 10 monitor the various time
components for the zcro and first order meihods as a function of
the number of processors.  The scrial and paralic] time
componcnts behaved very consisiently with the model, je.. T and
Tro were praclically constant Jor all values of P considered.
Because of the global nalure of the summation operation, it is not
[ully determinisic, so thal repeating the same run can give slightly
different measuremeats of the consumed CPU time. However,
the measured data seemed (o closely follow a linear dependence
on the cube dimension as jogically expecled in a hypercube
connection scheme. Therefore, we calculated T o @s the ratio of
the measured global summation time to the attached cube
dimeasion averaged over the various choices of P. The agreement
between measured and mode! data for this component is
reasonable. The measured and model time components for the
Sg. zero order, and S, first order test problems are compared in
Figs. 5 and 6, respectively, (he observed good agrecment
establishes the validity of the model.
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Fig. 5.  Comparison between cxperimental and measured time
components [or the Sg, zero order method icst probicm.

To explore the [ull potential for high efliciency para'.cl
performance by the parallel algorithm presenied here on a
two-dimensional 16 x 16 Cartesian mesh for the zero and first
order mcthods we use the model, Eq. (7), to cvaluale the
cfficicncy as a function of n and P. Figurcs 7 and 8 dcpict, with
pattern codes, the regions in the (n,P) plane at which high
cfTicicncics are predicied by the model for the zcro and first order
methods, respectively. As expected, regions of high elficiency for
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the [first order mcthod cover a larger region in the (n,P) planc
than docs the zero order method becausc of the heavier
computational joad in the former method.  “lslands™ of high
cfTicicncy appear at locations in the (n,P) plane where the
computational load is wcll balanced at a few isolated points, and
is poorly balanced at surrounding points.  Onc important
obscrvation to be made from Figs. 7 and 8 is that Joad balance is
extremely crucial for achicving very high cfficiencics in genceral,
but that for very large probiems rcasonably good cfficicncics are
still achicvable on scveral tens of processors.  The utility of
performance modcls, such as Eq. (7), is cvident [rom
Figs. 7 and 8; a uscr solving a given S, problem and interested in
high efficiency performance, i.c. lower computation cost, would
normally sclect P in a region surrounded by the darkest pattern on
a constant n line. In contrast, a user interested in the highest i
speedup, i.c. shoricst computation time, would seiect the largest )
possibic P, especially if it exists on an island of high e{ficiency.
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V.SUMMARY AND CONCLUSIONS :
We presented an angular domain decomposition of the ,Eg’ 8. Pa_l:;rﬁ-qx{}ci Z:app;)f lx::ecﬂ'xc;cncy for the first-order
standard itcrative scheme commonly used in solving ncutron methed m - 1) plane.
transport problems that yiclds a coarsc grained paralicl algarithm.
We described our application of the parallel algorithm e the
highly accurate nodal method, and its implemcniation in the
parallc! nodal transport code, P-NT. We demonstrated the very
high spcedup and efficiency that the parallel code is capable of
achicving on Intel’s iPSC/2 hypercube using two test problems.
Also we developed and validated a modcl for the performance of
the parallcl code on the iPSC/2, and we used the model to explore



thke polential for high performance in cven larger probicms than
used here. )

Quir test probiems and perlormance model suggest that the
limited number of processes that can be executed simultancously
in this algorithm (dictated by its coarse grain) limits the size of
paralicl computers that can be uscd 10 a [ew hundred processors.
Mcdium grained aigorithms based on alicrnalive domain
decompositions, combined with well cstablished  acceicration
schemes may provide a iarger aumber of concurrent processcs at
a rclatively low iteration penally. This should utilize to a luller
cxtent massively parallei computers, with thousands of CPUs.
Also, alicrnative architectures, such as shared memory machincs,
seem 1o be very well suited (o take [ull advantage of the present
paralle] scheme because of the smaller number of processors they
normally support. Finally, [uturistic applications may arisc in
scicnce and tcchnology which require using a very high order
angular quadralurc in three dimensional geometry, in which case
the present algorithm will perform extremely well on massively
parallel computers.
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