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WESS=-2UNINO-WITTEN MODEL AS A THEORY OF FREE FIELDS.
3. THE CASE OF ARBITRARY SIMPLE GROUP: Preprint ITEP §9~72/

A.Cerasimov, #,,,ﬂars‘\a kov ’ A.Morozov, M.Olshanetsky,
S.Shatashvilli’ “ =« M,3 ATOMIN"ORM, 1989 -~ 40p.

Bogonization of tVess-Zumino-Witten model and free field repre-
sentation of KAC-MOODY elgebra on the lines of ref.[‘l]is worked out
for eny simple algebra of any complex level.

Fig. - 4, ref. = 10
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4o Bosonization in the casgse of arbitrery group

£.1. sﬁ(alk

Expressions for currents in terms of free fislds )(d N
i -3

, —— 7 .
{(labelled by three positive root vectors o, , A, . oly of sl

i
algebre) ané two-component scelar field '-"J> , lying in the rooi

plane, were pregented in the last peper of ref,_[,il}. If roots arc

-y~ — —y — -
normelized by standard condition (of,.cf,) = (Of .o ) =« (of,

Ch‘_.‘ i
=2, then currents look like:
J =T, = v+ pv
Jo=J, =v
(4.1.1)
J-d's = J—g_s = %

Jg,= Ty = ~ XY+ Ws -(2-9%)p +1q25, 0F
Josy= J3g= - X WA -{f%f{iﬁ R O A
{2422 — (3-97)0%e-ig i 0 +ig B
Ty = Jiy = X6 W Y 04 — X0 e s -
—(3-91)o% ~ {4 o8

H»{1 = Hf‘z— l—bu{:]u— J, = -2’)(1\% —>@\)E +Ye W +
+£c‘,&19<}>
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= Hoy = He = Jo = T = =% =R
+ (g, oy O
H Hﬂs Ju -.Y 3(1\)(/1-—3(\)0‘,_ 2’{5\)(/3
: + lCt, dz%

q isfh:parameter, related to the centiral charge:

k+Cy = k43 = 61,2“ (4.1.2)

— -
My, flz, j(lg are . . weight vectors
/
L¥4

of the fundamental representation (see fig.3a).

Operator expansions are:

v/ — E);l
\X/“(z){?(o) - "5& T (4.1.3)

;ZJ:[}) §~F{°) =— (5?}7) éogz +...

and
]- (%):)—\,g ()= k 3k +
2 | (4.1.4)
+ ok jﬂ;gw b

Energy—mom&ntum tensor

e 20T T T A

S‘Q >, .%/ 8 SPe
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= \k1175>(§ 4—\)%&?5}él—+\xyszaié — é%(j;qu')z,__
LI EY
- i%(?aqbg)) — ¢t :%:~.2;Qk#ﬁl

Here <F“ and <kL stand for two components of <¢> » Which are
. e N e __:7
parallel end perpendicular to the vector 3: i(b(1+0(1+0(3)~h~&
There are various versions of the representation (4.1.1): it

may be replaced by any other one, obtained by e change of fields

Y, — W, + 53(.3\X/1,

W, — W, +s>e\)</2_ (4.1.6)
O e

(w_ith arbitrary S), which leaves T in (4.1.5) and operator expan-
gions (4.1.4) invariant. (This is the origin of & and @ para-
meters in the last paper of ref.['?,]).

Our purpose now is to eliminate central charge dependence from
(4.1.1), as it was done in sect.2,4 in the case of S€(2)k. Now it

is achieved by a more complicated change of variables:
~

\VA_: K\X/L
\X/)_—- kWL

~ ' (4.1.7)

—9-’:_ Lk =~ Lk ™

J“z‘#‘ = ‘5;[”; = -;.1:4% (4.1.8)
~ ~

I(,"KJ:[A , sz-:kj.o(

[P ST YR

W T PR S A R

T T




g Wiy o e g s

T

TR R TR A TV ¥

S

i

8

:I;Cii = kLt];1£1-+-:a:(?

j"o(z "—‘-. K ,J\:-—ol,_ _)@,?{1
j‘ds = kﬁf""‘s

e
- = - K -
e = - W

e M s 8t Y i & B sl WA Pt ¢ e

(4.1.9)

N
The sets of currents J or J may be represented in a matrix
~ form: ~ ~ ~

r)(i.(x\;a. + )(‘:. \’\X?L +?’<FL

LA AA %+
4'13%?-—¥:T?15 (;E;:’ 2;;)

"){ )(z\xﬁ :. ¢ 17('3\)‘/3
- ’QXJ'LX‘S L+}(1 s“'/i -
[Pt

+ x;a(“, -$.)

.
e e s A e o o LT

i

o ~
\xﬁff’Q?\X(b

"(}“‘/1"" 3\’73_

+ 7@)(,\)(/,. + 91,_

% xw

,'\V}"' 3
YR

'FX;? (4’ 3= 4’.1.)

(4.1.10)

o
- 3\w3_

Y%

SCUSNRSIHTS, NESCEPLT I .
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This matrix Ff(% \; )q;) mey be‘rewritt‘en as.
?j:1=- ij-:f ()<? :];;) ({;;):F'> 211, (><? -+
& 0% 0
with 1 o O - ]
31_,(7() = ()('1 i O) (4.1.12) '
% % ! -

(4.1.11)

N A~ B:F* Ny \Yf' (4.1.13)
Jo W)= o of W |
o O O

0f course, if one recalls Gauss product from sect.3.,2, it is clear,

that

T G 0)[30130] 2[guehga00]-
= 3;1 (gabﬁu)j:a + 3;" '33;0 (4.1.14)

with

" L%,
; gu(¢)=(o 1 ¢ | (4.1.15)

O O i
;. e o o :
L,
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hpi—kp.z ~ /( "PL—LPZ‘
\P:L_\'Ps’\’ I \PL“‘@,
Ot -k = e W= Yo (4aam
| oty >~ P,
d=et P, = et (W )

and {4.1.11) i_:;l nothing but a gpecial choice of gauge for the cur-
rent matrix J = 3_1 ag » 3=9 uH’)ﬁ:aHf\;)gz, (’O .
However, this is a usefull gauge, since it provides representation
of current algebra in terms of free fields, It is also easy to
check up, that nontrivial change of variables (4.1.7), which was
not required in the case of S€(2) but is cruciel for all other

groups, may be encoded in the following rule:

) -1 T =, ot (4.1.18)
K Ir Io BgL()()j- K Tr 29,90 (?Q)T( %’B;@\V
+
On the left hand side a linear combination of monomials
; —_— T A
K CV,,} (Do-b{"‘ \X/} arises, and (4.1.18) simply represents
{4.1.7) in the form of

Of course one may repeat all the reasoning of sect.2.4 con-
cerning anomelies, which arise ﬁnder the change of variables
(4.1.17).“and apply it to the cage of Se(3) (or any other group),
se¢ sect.4.3. below. Then one will realize thet classical fields
\PC in (4.1.16) are related to\ quantum ?{- and :Z: in (4.1.1 -
4.1.13) as '

- 7 (4.1.19)
¢

REUI. " P It
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This means, that KN commutation vrelations (4,1.3) are valid pro-

videgd
-7 . -2 .
QZiﬁE(ﬁf7~%:4>(5} =~ (DEQED ézi?’if 4. (4.1.20]

while gquantum W2\ action implioq, that
LPL' (Z)L\D (0) = _"__’.EJ.‘) -.Doqz + (4:1.27)
d .

Bgs.(4.1.17) together with (4.1.79) determines the struciure

of screening operatov ingertiong. Theqe have the form of

é§ Wy et é§ wie Lut /o (fov 241) (41222

é% [)XébEL (1'. q&f”{;) N \P wie A )
é{[\&/l e——wl "/1/(1— 7(14/ eLo(ﬂ"/}) 4/\,\// 3’1"/;/](4“ o )

=(4.7.23)

o «{:

%("".SA“%W&)J{\&’-’ﬁ(;"(\"/s‘)(t\vz)e /1/(41:~r 34/) (4.1.24)

It seems that only (4.1.22) and (4.1.24) should be congidered un

independent gcreeuning operutora, at least in come applicationa it

is enough to use only thiese two kinds of insertiona, 10nv*r( i
RV

complicntcd object (4.1.23) anide. (Hote, thut cxpononts £

—i (o
and Q. }P/ ” in (4.1.22) and (4.1.24) expreszed through

~» -
gimple roots cli and u&i have vanishing dimensions, c.g.

A {e“i"(ﬂ?/“p) = ”“‘{ (“;J) (‘{?‘ o?n) =0

(sec(31.10)
The last thing we nced to explain is the origin of transforma- P

tion law (4.1.9) releting proper EM  currents J with their clas-

aical analogues ?F(unuthcr picece of this relation is.eq.(4.1.19) .

Juat discussed). Additionul terny 7913_ and ;(%EATEL in (4.1,9)
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arise in fact becaugse of the transformation (4.1.7), which diagona-
lizez Lagrangian form (4.1.18). One should recall only that
and \X/ are quantum fields and one cannot change variables in such
a simple way as if they were ordinary functions. In such changes
one should carefully follow the normal ordering, which is implicit
in all formulae including quantum fields. For example, if one sub-
stitutes ;=K (\)(/3 +>@_ \X/),) %_ /3 in expression
(4.1.1) for Jd,4+ the answer is not simply K)(%('\X/_;—b—)( 1 V5, )

Instead ~ ~
)@\k@ -~ K g‘:& [3(1 () (W5 J.—)@wi )_(z) - s‘.ugu&r.-tﬂ =
= KX;.,\;/;‘* LR ERE % + Fa)e (4.1.25)

(since K)(g_(o) \>(\<74. (2) = ')(%,(o) \)(/,1(2)“ __% +...
(a4

In other words, :)—_21 (W )‘—' K 1;_1 (\f;/) + ?)( . Analogously
— KX 0 — —k @ XX L (%% +>(1w,,) @) -

::3“?%’:} )= — o Wy — |<>@7@9(_5w,, Yo"
j&l (\'V) = kjsa_ (.W) "%

ag stated in (4.1.9). Note, that the same kind of reasoning is

(4.1.26)

required, when transformations (4.1 .6)' are performed.

4,2, General prescription

In fact the case of S&B)k exhausts almost all possible prob-
lems, which can arise for arbitrary simple group. Let us formulate
the procedure, required to find a represente.tion of KM algebra G
in terms of },X -gystems 9@ 5, W labelied by all positive
roots e 4 end scalar fields + , which take values in Car-

S s S
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tan torus. In fact we are going Lo repeat the content of sect 44

in inverse sequence.
1) Fix a systelp\gf positive roots A+ and introduce two
fields )('o( and X/ for each Ae Ny
2) Represent 3—193/ in the form
-1 = ~4 J(\: \r};, "\’) .
3 9§,= J—:‘QLDO (">( ¥ Ju ()L)+ (4.2.1)
+§:i(90 99, () s° that EE; (Wid) s
™~
linear metrix function of W/ and 3;1 « (This kind of representa-

tion is usually provided by Gauss product

g’ - 8 U () 33 (“P)QL (>O (4.2.2)

~A ~
with an eppropriate change of variables k[/, \P - \X/|<f> )
3) Redefine Vo —> W '( \‘;{;’ >(,) according to the rule
(4.1.18) ‘
-] — g - -4 g ~ "~
K—r\’ gb ’agb J= K—F’ 03L gL. ()0 J_(o) (W) )—: (4.2.3)
= Z- %?{d
: Le A+ —_— ~
4) 1-form o\'i& =k Ir 311 ng J should be con-
sidered as integreted symplectic structure { LSZ "VO'Patti/ ”
d‘.aJ?_\V’\' FO‘% ) which dictates operator expansions for the
fields W , W , . In perticuler, (4.2.3) implies, that
\x/ and ?(’ are Darbomvo.riables[ 3], and

Wa(i)‘tf,(O) = atf/z +... (4.2.4)

5) Expreas carefully T (which is originally defined in terms
~o .
of W ) through W , tuking into account the rules like (4.1.25),
(4-1-26). Then
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KT(\)?,)O;F) = j[k] (WX, $) + F(9O (4.2.5)

F?(“’ being some matrix function of . (We stressed the fact
:}'D:] L X = .
that depaends on k explicitly, while J- and contain no expli-
cit k-dependence).
~ .
6) The Tields <PL are free and they are naturally labelled by
—_—

~e
. bchgpg vectors €; in Carten planc. If ?ﬂ#ﬂ appear
:)@) as diagonal elements with unit coefficients their opera-

tor expansion is postulated in tne form of
~~ -~ — T .
- QY — H Q* Cl/ '2_.’
L(}) 4’3() = (el.) )3 hk"“ QD@%—}—_” (4.2.5)

with

92
CL = k+ Cy . (4.2.7)

~ @ @~
with this normalization of <#> :r does not depend on k. Free

scalar fields with natural operator expansion

-
o_(.';,(%—) 5;+ (o) - — (DT,F ) &g‘z + (4.2.8)
are related to q;i through (4.1.8),
- — . ~ )
¢4 = % +, (4.2.9)
Then 3- (W:)O 4;) form a level k KM algebra end Sugawara's ener-

gy-momentum tensor is quadratic in these fields:

— 2, _ A
T—. (K*'Cv\ Hie I J‘% AEA, (];LI'C’L.‘-j:'olj;L—

4 H de Z W, 0%__%@;?)7...

e,

«2.10
277 (4 )

.‘ -
L9579
C{,u
with

| 33 Z oL T (4.2.11)

ciéhAq-
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This corresponds to the free field Legrangian of the form (in
conformal gauge Tor 2-dimensional metric)
-—1)___7 . —»
~
L\TL “-2 \x/o)%—ngoqo 9++%—d€§a% (4.2.12)
e Ay :
The only thing which remains is to find a repregentation, re~

quired in eq.{(4.2.1) for all simple groups. As we already said, it

is provided by Gauss product formulae, discussed in seci.3.2 . In

" .,

sect.4.5 below we shall give a few more explicit exomples. However, .
although the whole set of currents J can not be presented in &
simple and generel form, some ingredients look quite universal. For

u——,
example Cartan current, labelled by Cartan vector )k , is

—_
. . e
H = -2 (}1’,3[) \XQ’)(O‘ +Lc[/)x'3+ (4.2.13)
s NGA.+
One can easily check, that this formula is in accordence with the

2
value K=Ct/—-cv of central charge. Cosimir eigenvalue

may be defined as (3.2.1 )

e §
(}*,\))Cv Z (/u o) (o( 5)) (4.2.14)
— - D(GA*.
for any }\ and .
A Another universal formula is representation (4.2.10) for Su-

guwara energy-mementum tensor. From that formule one easily dedu~

ces that central charge of Virasoro . algebra involved is

Caw = 2 CW)@‘*Z Cp +Cy =

:;o v 412352
_ Xt A\ A (= =P N =
2 —«+ (z=4)-4 + 1. ( k+c\,)
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D and r are dimension and rank of algebra G. The "gstrange for-

mulae” of Preudental (see[ 4 s eq.(12.1.8)] and eq.{(6.2.31 )Gefow)

4-'2}52& D¢y (4.2.16)

is used.

4.3. Comments on Lapgrangian approach in generic case

Let us remind the main group property of classical WZW ILagran-~

gian
L‘(ﬁ [jigmj = ch [jiJ“" Lce [72-]4-4%7;’5313:13;%}.4'3’”
(it follows directly from equations of motion expressed in the form

of lagrengian variation, SL» = = 3—183_3( 3-.1 83,))

N
The main feature of Gauss produc:t §= 3U(+)3:)(‘P)9L, (:t)

in triangular matrices, which is exploited in our construction, is

LCQ [QU]': L‘ce[gb]"'o (4.3.2)

Algo

Hrle (301 =-£Tr g2 292" (13-
Tr 291992 290 = dgada Ju 2fu=0 o
inl o [97 = u-qu[gugagL] =
=-5 T 1954990 |*+ T 290’ T

with

3_/ (*‘\P) - (jug,z)—i P (3 ug&b) (4.3.6)

For ﬁppropriate choice of parametrization 37) ( "P) the first term

(4.3.5)
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in (4.3.5) becomes
— =

X ‘ -4~ ) ¥
-3 ir o = - T o (4.3.7)
l T 3 = 3@ :2, D LP \P
and the mein prescription is to use ihe fields \X/ instead of bl

such that (4.3.5) becomes diagonal and quadratic:

kK Ir thgh @T(\\“{’) ZW?{ (4:3.8)

As explained in sect.2.4 one should ta.ke into account Jacobian of
the change of variables \kx 2 \X{L , including anomaly contri-
bution, which changes the action L\CQ — ,}_4%_ .

Generically this change of variables is defined by a matrix

~KZ DC {)C(‘F)Y (4'3—14 (4.3.9)

{ x )@ spec:.fiea the relation between Y/ and K\X/ ,

gsee. sect.fy.2 above). Eq.(4.3.9) is egain a sort of Gauss product:

product

IL and YU are a lower and upper triangle matrices respectively with
units at diagonal. , e
Matrix C(\P) is diagonel end has & as an entry, cor-

responding to the root OL . The same matrices X, C, ¥ defines

the classical part of original messure of integration over the fi-

elds \\’ + according to

IZglt*= ;;—SG Telg *0g)* = gGl [;%-R(ﬁ_:%“sz+ (4.3.10)
+ 33,90 9= 9o 5930 ] =
(&[40 Zo (geny, (),
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In the case of 56(2) matrices X and Y are unit. However, for
other groups they are non-trivial and thus classical measure is
highly non~linear. Therefore the proper quantum measure in functio-
nel integral is subtle in this case. Naively (i.e. provided that

the measure coincides with the classicel one} the relevant anomaly

(4.3.11)

Aneim

is
log et (G ey 2 (rey )z
Hewever, we prefer to omit matrices X, Y from this expression, at-

tributing their contribution to quantum measure. Then, according

to (2.4.11)

twly2et, [GrCHT Te)] ~ wam
n ﬁ@"’*‘[ 204C |7+ |30y CG |* + 4244 CG»
Tty = A S, @)+ i@‘ﬁ[jaagc}i.egc .
RG] Ao (G) - ﬁ[«z&@@(ﬁﬂ*
PS5 o@H R - o

A€ A,
. ~ .
A :S (,4/ l”\"a 2 <§52
= 12 Pliouy (Cl + N o | +(5‘P) (4.3.13)
—a
:Shbwv(cﬁ) is the Liouville action, C:V andj> are defined by
(4.2.14) and (4.2.11) respectively. Starting from (4.3.11) instead
of (4.3.12)'we would obtain extra contributions (like o
-—-é? 2 9. ] ‘tz.ti‘.
l’b@;} (‘“?ﬂl"‘ﬂ e 1?) \ in the ease of 5{(3)) quantum ac-
tion which should be cancelled by quantum measure in order to make

Legrangian theory (2.4.1) consistent with WZW conformal.model de-



e R e

59
fined by KM algebra and Sugawara stress tensor.

Combining (4.3.5), (4.3.8) and (4.3.13), one obtains the finel

quantum W2W action

U -LhrLce C ]B\PI —S‘PCQ
Q/ N O, _
= LZ_ w,;a “:L oYDY +pY CEJ—

(4.3.14)

LA, ~
- ) L2034 + i
DZZZﬁ-W‘*’b)(iLﬁ_ o 4; ﬁ/ @/

1 |
“P-:"T/‘{) | (4.3.15)

in accordance with (4.2.12).

The transformation rule (4.3.9) implies the form of screening
operator 1np01t10n<;. In fact for simple roots O, YH“) of = =0
for all oL (as it nappcma‘ with ®; and © in the case of U(Z(B) in

sect.}f.1). In this case the insertions have particularly :ﬂm’ble

form. For o\\-‘*
Qq = gf' =2 DTS\P (ZeAx(X)ds}Wf> - (4.3.16) |
-8 it/ (s x4 )dsf\x/j)

Feh

Since

- :z(cz_J'”)
bg“* = —Jf——- (4.3.17)
< Sl 7 (ds,ds> i 4.3.17

for any simple root dlmenslon of exponent is vanishing,

A( ~ 15 ‘}} 0212_(_015)( +Qf) D. We shall demonstrate in

the next section, that insertions of Q,,g {for sunrle_roots 0(5

only) appear sufficient to reproduce all known correlators for .

SQ (W), - algebras.
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. Correlation functions in ) WZW theories

Now let us turn to the computation of the correlators in ge-
neral case of the 9e(N) WZW theory. The formulae for Cartan's cur-

rents of the algebra and the stress~tensor are coincide with (4.2.10]

and (4 2.13):

= WC,+K 24 Zo«\xm@

O(GA {4.4.1)
W, X, - Hod)— L T2
- d%x e -0 e 57

Cy=N , Lr=2 , ﬁbz(z)ﬁ.(")”%-a’cj?*-—-(«t.mz)

(A1l useful information about the root system of the SQ(M and
other simple algebras can be found in ref. 41 ]). The formulae for
the other currents are more complicated.

In this section we -restrici ourselves by considering the cor-
relation functions of the vertex operators of the fundamental rep-
resentations of SeW) which have the dimensions equal to N. The

highest weight vectors of these representations are:

V 2&(}:(\.——4>) \/ Q*‘P( +) ‘1/ =Crk (4a4.3)

where X and )* satisfy:

are etetys
I3 =1  dA=0 =3¢

' (4.4.4)
_,_i*:i ) &,-;\* O K_-.—_'f,,..le—i .

¢

Vectors J;_ (1-1,....8) aze simple roots of the Sef/V) ,ed-h
sRank Sefh/) . The other vectors of the representations N(N) can be
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obtalned b teking tuae products of highesi weight vectors \/6/ ,
. —ny —
. - - - ")
\/ - /V with some monomisle Do wew X, o olatolyt F
Is (RN (U
d,<=tiéiﬁ. For tne Sg(3)&3gebra v Tundumentel reprosenteilons
* t7 ':7 -—‘7’.. Batl
3 and 3 haove thn foilowing Form {see iz 3, R P ~7Q5 )-
/ ‘\/( Y
. \ k ¢ "Ta. 4).‘ j -~
5.V, Vi, V(% ag (.4.5)
= la Vs
3 \/ \/ \/ (X ,,,1,73)
U
where 4—%7 { . One can anﬂ thesy peramceters in the genersl
abe ,

1C

i *e~.LhJ.; Yerc we choose &= ( f;: i

Torm of the QK(J/ CUrrents
and consider the two-point correlaiion funciivn, following the way
propoged in sect.2e.

The vacuwn charge \é (R) in general case will be of the

form:

\/ (R)—:eq | H )(d (R) (4.4.6)

Phen, the two-point correlator equals:

<V (2)\/ (o)\/\R)> :12A SA& (4.4.7)

¥
where the operator \/ belongs to the representation N and \/ is
waved operator of the representation N , which, in fact, is defined
by the equality (4.4.7). The dimension ZS :

)\k(z\ +a?,§ Ccl, (4.4.8)

=13 (N+28)=

g
is the dimension of the operators (4.4.5). ng. is the value of
the second Casimir in the fundamenial representation, which for
the Se,(.‘\/)will be: N"— {

C} Y (4.4.9)

IS

ket
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The indices A and B in (4.4.7) coincide when the sum of weights

\ x
or Cartan's eigenvelue vectors of the \ﬁs and \/ is zero, i.e.

/\
thney have op9051te direc uions. For exasmple, the operators \/ = \/
and »i = X’ %}1} have opposite weight vectors, thus

~ . U, + LU
»x ( v ‘ o s (444.10)
\'/1 = [“F‘ O\*’%’H’}—_}\e -
KEN

/
”hnn the equality (Q.4.1) is satigfied by inserting L}_(E) s
% /
\/ (o) and \s(Rx-
Let ug remind that the "vacuum™ insertion (4.4,6) is the con-

s 2 singular point R,

sequence of the fact that metric on sphe.= ha
. . . . " el
i.e. 1t can be written in ftne form c}a = l oz ), , where
o 14
meromorphic differentisl (v [¥) -<i R- < has pole
of order 2. It is necessary to point out that all above Tormuleae

for the vertex operators deserve gome explenation, concerning the

normal ordering implied. The naive normal ordering implies that the.

\/ L LA,

dimension of the vertex operator - = »€*F <Lf~? )« is simply
~y

3'}xi . But due to the presence of the term sz.% in the

Lagrangian our cb ig not quite ordinary free scalar field. This
leads, in perticular, to the fact that the correct normal ordering

prescription differs from the naive normal ordering by the following

way 4 a2
\/,,. = 1 exp (LFJP ) (w(ﬂ) Y (4.4.11)

Later.on we shall continune to write the expresgaions for the
vertex operators in a slightly vulgar manner, omitting W(2)
one should remember that it is the second factor in (4.4.11) which
leads to the absence of the dependence on point R in the correlators.
The vulgar form of the vertex operators gives correct resulis provi-

ded the point of the singularity R is taken in infinity.

e,
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Por the four-point funetion this is not the whole story. As it

hag been explained above, one should make some iﬁsertions with
"screening” cherges which are of the form of a one-dimensional ope-

rator integrated over a noncontractable contour. Let us comsider

correlator

V@ VSOV OV EVRG ... Q)

We choose (in the 90(5) case):

v (*\= \/(2-) (4.4.13)
V@) = VR o

end \/.t* was defined in (4.4.40), It is necessary to insert
Q, = Rank SQW)s N~1 contour operators (€=z for $€(3) )} which heve

the form:
-t %

Q= %Wie ﬂ’ | §'>@Wz, (4.4.15)

3y
in the SQ(B) case, where { 12 a simple root (one cen chenge
— —
Ay for 0(-, which 15 the other simple root in the SA/3jcase),
Then oy=cl,+3l,=8 ol
W olg=o{y+0/,=0 5 the highest root of the SU(3) algebra. The
charge neutrality is satisfied because of the following equali*.;;.y;

53T

- +A (4.4.16)

which ta.kes place for the general Qg(”) case. It should }J% strepsed
A.4.12)

that the 9 » appearing from the charge balance (#.4.16)Yshould be

expanded into the sum of the gimple roots
——tlp ’

-ty -—n .

b ho

ik
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{ve ned , ‘ N
becaugé€Yonly the operator of the form: X/ .,,7(1 };(—%/ S+>

- whick
where OLS ig e simple root,fhas unit dimension since

Al (-+ 54:) a2 s( L+ > O (4.4.18)
(sf’(s v ) &‘), J

Thua, theYiorrelator (4.4.12), (H.4. 13), (4.4. 14) is proportional
to: 4 _’_ 4

%M\Jc dt, t, a‘/ (,- 1) ({: —X) al’ (.[: JC‘JCL (4.4.19)

(see fig.4).

Integ:-ation over t lea.ds tc the result

5 24
| Syo\t k, 3 (6-2) T (-x) ¥~ (4.4.20)

A -z
NF(%“ ‘L 1-2 x)

which is a linear combination of the Knizhnik~Zamolodchikov equation

solutions, given in ref.[ 5 l _
Por the general Se (/V) case the prescription suggested above,

gives for the 4-point correlator 4

Gt bt T 1) T x)‘?'

[t ts)... m-;fa] v
J4

~ &dt, t ‘V‘(Jq-i) F(h-x) F?

~E(L AL ALY
Fg v @“x)

{444.21)
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gince N = e+ 1. The result (4.4.21) is also a linear combination
of the Knizhnik-Zamolodchikov equation solutions [5 ]. To prove
this fact one should use the following relation for hypergeomeiric
functions:

&H"}) ™~ {b&,};{i,b})a) -r(é:f—d’—fz+c<z) Pé‘\}\é’;a} +

(4.4.22)
+5.>(%-17 !—-(a‘g,+i,¥)z}= @)
The other correlators in the SQ(N ) WZ% theory may be computed in

a gimilar manner.

T RMEIL T A v e w mee s -

5% YO S
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4.5, THO MORE COMPLICATED EXAMPLES;
FREEZ FIELDS FOR WZWM WITH GROUPS SI.{(4) AND Sp(2)

Hexe we slaborate explicitely the fyree field representation

for the cases of the group Sp(2)2so(5) of rank 2 and the group
#1(4) of rank 3.

4.5.1. Sp(2),: We can use the parametrization, introduced in
88,3,3: ~ ~
dy, o W W5\ 10 0
= [ 0 de (W, v _ ._3‘_1_}_____.
J= Ag-ory | 3‘-")‘2 : 1 0 (4.5.1)
O |o g, 5 KphFalpe 4

where the relation between fields u{" and root subspaces %’,,

is illustrated in Fig. 3b. At the same time 3 @u 93)) a(jaﬁ-n)
where 33— a(ta.rg (o,'p', e‘pe) g‘p) ‘i”!)

1% % (4.5.2)
3,(9)=[ 0 4 4, $3-2
{1 -W
o5y
4
. 2%0[%
-

(dy,- ¢, dv,)
A (Ayyryy dyy- ol + gl

e
€
=€
= &2 dV., - (4.5.3)

52 E> 8 R

TN LY SPapes
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These flelds are related to Iree f:.eldsJJ) L, B8as follows:

KW1—~— wy x—(tt/z_-k
( jz ) \}1 3) (4.5.4)

KWS:U’/_; ) K%l‘ ”"/tf*]i:& f{, oK b, =g P
with centrel charge k = -3 + q . The currents expressed in

terms of free fields look like: J1< ( G’ 5)‘1,(
=4 4 W, _ .
g«”—v—}ik{t‘f"&fgw‘tf—‘)s 3+CL'B¢{) yiz*z%f%fq%f

4
+2., ]“]‘v %) ‘15 z 2‘]1 3) \71‘/ a3

(jz,';éfgu/ t f W, *-JIU/+ }1},‘ éfff\sl”'{g
+WD(¢ ¢j)+(ma)9}1 Tz = 2;, wi+ 3Rt
g +ci/9¢ Tis =Wy, :724—241(/_,]{ (4.5.5)
Ty=-% L st “J‘ Sy *a.)‘ MR Wy a]z % —f.e]z,
‘24/‘1}4]9 Uy~ ]&fj 7"/"'4](1)‘;/’;“/ “Jaty WG, 49(@*%
F AN AP B) + (ke 2) 2= Cke )R, Tp=Hatidt
* Mg Wi o e W i, Qwﬂgg’L‘eiJ}‘/ Jyi= X1 ¥y
- J3 W - Wa = oy - g, =29 Js )2 0P, -9 %, 8,
+ KR+ (k) Ky Opg ~ CK+3) %, Oy
724:7!5 ) a3 = T2z ) 754:‘7{2, 744:73/, Yo37" %,
APPERY IV

The energy-momentum tensor is

T= 0 J% = -1, 91, - u4 9/\'{1439]3_

(4.5.6)

%),

'zcz«s)
2
cwy 3y - LOPE OB 2 =
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4.5.2. 51(4) : This cese ig direct generzlization of

that of s1{3}), {see ss.4.1). In terms of

= Kgic;da looks 1like:

?: the curreni metrix
- T .- i N
k jH = D\é"\"’l\\?\!{": 'X.‘z_\,\’?_#rx,_x‘\'\.‘l‘
u [ ~. N
k. 3\; = W +‘X3\’\( ‘I‘"X_s' \Mz‘

k ‘3‘\3 = . +CKQ\N4
=3;4 = \\l
-
k’. ':S‘?_& —:.(X'z'\'\:q "lx ‘\Nr--r)h \J‘J\ KX \;‘J,‘\Z,I./\_g_\\« J(;L ‘fﬂL ,i:{‘; ‘ni’)’.i
v - 3‘2_‘1 = Am ¥ \HSJ‘-"}' \\j.. ‘)’,‘u\,‘ Mg-if__h lg\:»,,
J4
B3 = W, *XEW"%*“" AN (4.5.7)
4
2 = W - %Wy,
Y
¥.d

= X % Xy XK e K0 T KK, VY 'sz’v
N m«mgw +X 13}’4\\14%1“@3 A G E 3+A11~'xse\'x,

£ Ja2= W Ko YRS AT T2V X s W ¥ Y D W
> ALY swmc?,) &, ~'&g+ a'x-s N

b I3y = ‘ﬁ’s"’xs“\-f -)3\}53 ’\S(XG\Nt.—'x?\“ -X(Y. \\;Z“c”)( 7)\\. FAXLX Wy

1'33« = W~ ‘x;wg 'xl\m‘wc "xg\uA

€3y - ~Xq'lfg\u‘, ‘}qxg\ul ‘X,"\tsmgvxi‘(‘s'xe\lg* 'XSY"\YGW "YYqW 'x'y?,}-
=IO, LY 0 XS X N XN o N XX W, —

= XY N KK XX, K d G B d @) +
o b IGAEEFD A TAR, B dng Xeddy sl KXedxy
v J42- o YA 'Xs’\(q(k ')(gwg *Yﬂc\ﬁz*'){ﬂth s "xz.'x«‘Nf'Y;.Yst‘* XXX L\“ 2+
PO TP XA XX xwabwﬁwg\@ﬁ A

o + Vis'kfl@»r@ Drdxs x,n,, XWNAATKN XN XX

3"(‘5 -'XS ¢ "XS\“I’XS‘XLN 54 'X;’Y,.\N;n’;}(&w 5 ‘nwz-'xl"h.\hh": 'L’)(:.W +X'{X‘&5
L2 BT B8 At O C w,; Yd (&, - F3)+dX ¢

2 Y- CQ; 'chu-'stTs *'Xs‘Xa\N;Jk,‘w +xz'xew,‘ +Y, ¥, w 'xm{y‘w“
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Relation between two independent free fields is:
(15 . Fa % . W T O
W =W KWWy Wz Wot W, 00, = Wy, KW = WA X W,

o~ (‘.-5.8)
uw;=w;*¥3wgﬁ'xtwl‘ , Kﬁv““t; , K= -1‘-(-0(1')’ 0:'-: 9-&1, ‘#,; -'Fz$

Substituting these expressions into eq.(4.5.7) after appro-
priate normal ordering we obtain:

j“ = X\w\ Vhw,_* ’Y..,\NA *%‘}*l

3\1=W\h'xsw\+‘!gw4‘

3\3 = wr#‘x;wl‘

j\‘\ = wl‘ : .

PR U S AR LS ALY

J22- KW A U Wy ¥ X W g ¢ ﬁ‘,“ 2

Nz aly T eXWg
Trq = Wi

L SURLATRE LIRS L'V T AT AR AT U SO 0 O LR et

317 = FaW MEW KW - T W, - Wt G- ) (e )y

R N AL AV R

W= W :

RIVERES § AV A AW mswrxz W, '%«'xs‘wf“'x«"(;“’b’f'xﬂt%w(‘%&g\“‘( 4.5.9)
K HAY AN AL K W 1,'7(«‘3@:.40%'¥m‘1(érh}+1’l.7ls'*&49+° )

4 MTOM S (e OXN Y~ CADUA), + ()X V%4

B R ATy 2 T 1 A R 20 PR A S TR iy R

“E XN, H RN A T KWyt U AV ARSK S, ) 4
+ WU —(x+ DXV

A3 = Wy AWy YN, Yt W - KA L W - KK - W
A2 ACRRER ST
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4.6, HAMILTONIAN __ APPROACH, OR_THE WZ¥ LAGRANGIAN
As _a~' OF KIRILLOV-KOSTANT FORM ON _COADJOINT ORBIT OF XM
ALGEBRA,

A3 we have already mentioned in £s.3.6, there is a remar-
kable relation hetween the structure of Lie algebra tg anid
ceriain mechanical systems, interpreted as the motion of
po:lnt-likve objects or strings on homogenecus spaces M=G/H, ]
which are orbits of coadjoint representation of G. This rela-
tion 1s described by Kirillov-Kostant construction. In the
case of particlea this movement is described by natural Lag~
rangian, and in the case of strings the action of WaWM {(end
not of ordinary non~-chiral sigma-model) arises. In cther
words,Lagrangian of WZWM may be naturally conaidered as a-?
of Kirillov-Kostant form on the orbit of KM coadjoint repre-~
gentation. Moreover,the free field representation of WZWM
naturally arises for appropriate choice of coordinates on the
orblt,dictated by Gauss decomposition. (&nglogous construction
in the case if Virasoro algebra leads to a free~field repre-
gsentation of Liouville theory,seec the second paper of rer{ﬂ)

Gencralization of the orbit approach for finite dimensio-—
nel algebras,pregented in ss.3.5. to infinlte-dimensional case
is sirsightforward. Consider a Kac-Moody algébra g elements
of which are triples W(z)@ Cc®Td where tez)eL g
-~ the loop space of the Lie algebra g,c is the central ele- :
ment, d"zl{/flz (see also section 6). The dusl space is ;

g ¥ { V(Z)@fJ @ CA, } with inveriant pairing

N
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<t,v>= f2 A (dz tizyvez)

Zc, Ap = Afe)=1 (4.6.1)
<d,§>= $(d)=1
From commutation rules

[u@xcopd, u, @) comdi-
(4.6 a)
-[a,)uz].;-//,z? ﬂzzaa,q;fz——fe/zuz? Yy @od.

we may derive the formulae for adjoint and coadjoint action

of the loop group L 6‘

</fq/ fuerc eudp={gug - gy ed+
+ L‘2~fc/zfl[z)09’(zjaz;)c /ta’j (4.6.3)
Jc/"{zr@/u’zf ooy ={gr g+ X505 o
® (/u v L folzvgGo)@ Ao f
Let us consider the orbit (%, , which contains & vector Xo

of the form

Xp= (0,9, X) (4.6.5)
Generuf element of this orbit X looks like
Y= (Kj"af’ ¢, k) (4.6.6)
The stationary subgroup of the element Xp is the

finite 'éiﬁxenhiér{al g;'oup G; and

¢
.= £ % (4.6.7)

0
Let us calculate now Kirillov-Kostant form (3.6.8). First

of all,

B2 g"”/J (4.6.8)

and

[ ¥,¥1= [g'dg, Fg] 655 [4e 7'ty % T ofye =
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= [{y"dg,g"a/g]@ (*‘Qfﬂfdz (f’/ji.’a“/j - (4.6.9)
- Sl §'%3 577 ))c
Then
_0_:5"7 h_/'z/z [j”a/dvg"aza’j -Jdg 5" zjg"éé?) (4.6.10)
Thus the canonical action 4 (3.6. ) is the integral

of the form & swhich naturally hes a form of two-fold
integral:
2 ~/ - ~fy -/ ~
A= Lt J[ A5 (- gy 5y + (5ol 57 5 )61
As it has been explained above, Gauss decompogsition leads
to dlsgonalization of 0;2 and thus of the Kirillov-Kostent

form on the whole orbit ng sexcept for a set of measure ze~

ro, where this decomposition becomes unvalid,

.
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4.7 TOWARDS BOSONIZATION OF COSET MODELS

Formesl application of bosonigation scheme )_9_] to comet
models M=G/H is straightforward. However,generically it
does not seem to lead to quadratic stress tenscrs and thus
is not absolutely satisfactory. Surprisingly enough somewhat
more sophisticated embeddings of H Iinto G may exist,
which give rise to a slightly different coset construction,
leading to quadratic stress tensors. Let us discuss several
gimple examples.

We begin from. stendard cosei models. The simplest possible
example 18 M « G/H = ’U(1)k1: U(1)k2/ U(1)k1+k2’ KN currents

are expressed in terms of two scalar fields Ch) 4>..‘_ , taking
values in circles of radia 1/0:—1‘ and 1/5:; respectively,

N WROPL 5 1,2 1R 0, (4.7.1)
The H~-pubalgebra is genersted by
)3“ = ‘:&\?\ * (ﬁih = (lt\{’t‘l *'S (4.7.2)
Primary vertex operators of original WZWM G axe
V‘\",\-L = va (‘\\‘\ R\*l * i“".‘_k;#;) ‘ (4.7.3)

with arbitrary integer D40y Vertex operators of coset mo-
del M are those commuting with JH' thus they obey the cons~
traint

WX 4, = O (4.7.4)

This constraint may be resolved only for raticnsal k, and
k, (thus original WZWM should be ratiomal), and

e Wa ey wes =Y/ ey (4.7.5)

S e
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{x,,k, | standing for an obviously defined enalogue of the

largeat common divisor of rational k1 and kz. Thus primary

fields of coset model M are associated with vertices

\) w = -ﬂ.*? k( .._...___..EK‘YI “ (ﬂt#\‘&\*l% (4.7.6)
* vy ‘;S k“"l(t‘*v-\\
i.e. with those of another WZWM U(1)1, 1= —m’sl

quite as it should be [6-1. One may obtein the same result,

considering a current, orthogonal to Jy in (4.7.2),

‘3“ = iK (rﬂiq%‘ ’R\Q§z) = (Xl kd-\({hﬁ’h (407.7)

with ¥ defined from the integrel valuedness condition for

all contour integrals l. <§‘3 along non-contractable

Jiea
end v <§>‘)‘~€1 are arbit-
rary integer winding numbers, thus 7‘{\7' and ‘\(J.S;:L should
Z‘L i

be integer,and
{Kd(
. oo (4.7.8)
&“Jt'!..s
for rational k, ,kz).

cgclea on Riemann surra.ces (—rﬂtg')‘e

In the case of this abelian model

Sugawara's atress tensor of WZWN g naturally splits into

two orthogonal quadratic parts, associated with U( 1)k +k

= 'zk[‘t:\l 5‘. 031' == Z&%D’ haat VZ(MLS? =

(4.7.9)
? . .__L * 1,
=T %(m‘u\ -2 4 (%) = z(\m \c,_; W ey

Another example is M = G/H = 51(2)1: x 31(2)1‘2/ sl(z)k +k

su 1ndopendont bosonized currents are-

WS =[-1z‘w\«r H%IS W, -\-I,wu £ 204 lf (4e7-10)
- ? . L - . C
R e O R SO P S R S

e Yy LAY

.
A
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and subalgebra H is genereted by JH = J1 + Jzz
‘“3 (\N ‘\-‘N-Dﬁ
IR AT \ﬁq’n"" rﬁﬁ*’br (4.7.11)

- . 2 e . ‘ , \
TP 1w~ e k0% - a8 E
The central charge of this subalgebra is kH s k1 + k2.
One easily verifies,that (W-independent) vertex operators

of coset model M, commuting with all JH, have the form of

4’1 ¢’7_
X~ @myy ( + ) (4.7.12)
(X, (X1> % QE_
Thus coset model is easily bosonized. Unpleasent thing,howe~

ver , is that stress tensor of H 1is no longer quadratic,

even at classical level HJ JHJH ZHH containg a term like
2
('Y\ -y'{j W\-Wl (4.7013)

Pherefore the stress tensor of M = G/H also contains higher
powerg of fields. This is the reason,why we do not find this
construction for coset models quite satisfactory (though it

obviously provides a very simple bosonization of any coset

model). We shall iry to demonstrate a possible outcome with

the help of one more example, M = G/H = s1{(2)/U(1).
Generatora of KM algebra G are now:

=T W ‘-
W Ex\u A ifi m\»]r- (4.7.14)
T [w -9 heb-kx]E qewe
According to the general scheme above, subalgebrs H 418 ge-

' i &
nerated by H -{-’Xw 4 iﬂ_’f_ P &;] = and has the same cent-
rel charge k = -2 + q?. Vertex operators of coset model M,

;.!‘;
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oommuting with the current H, have the form of
. .

No= Koy - “;"% & (4.7.15)
{again,for the sake of brevity,we present only W-independent
vertices)., The stress temsor |y =&{TD'.H7£

. vt 1‘
i® no longer quadratic (in variance withTf&i:ﬁliS*'lf-l\& 2,
it contains a classical term ’X’Wz, analogous to (4.7.13).
Thus T, also is non-quadratic. .
However, one may embed subelgebra H = U{1) into G =
= 81(2) in a quite different way. Let genera.tor of H dbe

W= :‘:_ % (4.7.16)

Then central oharge
ky=q° 4 kg =-2+q5 (4.7.17)
but instead a reel peperation of variables takes place:
H 1s described entirely in terms of the field ¢ s while
E=G/H - in terms of X and W . KM elgebra (4.7.14)
acquires a form of '
Tr=Tra Wi
30T =AW N (R A T:)
3= T -2%§% L\x W- x X ]1-22¢°
Vertex operators of this M = 81(2),/U(1), o are mede from

X and W only, e.g. v, = 7(“ and both siress tensors Ty

and T, ere quadratic:

To -ﬁ‘*rz Y IR 2%---1:@*’” 'NP]* WX
'S )w-’T (4.7.19)
n- ™

Ono -gy also note,that ourrents I in (4.7.18) form a closed
KM algebra l1(2)_2 themnselves, 1f k =« =2 (k+2=q -0).

We consider this kind of construction & somewhat more bea\ut/i-
full generslisation of abelian theory (4.7.1)-(4.7.9).
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It may be & bit surprising, but this non-standard const-
ruction can be applied to other non~irivial manifolds M = G/H.
Before we give & one more example of how this works, let us
comnent briefly on intrinsic meaning of this fact.

The classical part of bosonization ‘_2.-3 of Kif algebra G
in fact comes from the action of G on bhomogeneous spaces
G/H as an algebra of vector fields. Then Xa are related
to (complex) coordinates on G/H,and Wd_rvr%x_l The fields P
are related to coordinatu' on H. "Classical™ Killing vectors
3(\\',%) do not depend on (b » but such decoupling no longer
takes place,when ‘\T,I ,‘P ‘are considered z~dependent, and
(central extended) KM algebra G arxises instead of classical
tinite-dimensional G. Thus far we considered only flag mani-
folds with H being a product of U(1) factors
(SU(@)/U(1)®') 1in the case of sl(n)) and this provided
us with.boaoniuti_on of WZWM. Inclusion of non-sbelian sub-
groups H provides a natural approach to arbitrary coset
models. An important ingredient ia splitting of KM algebra
and, what is even more important, the splitiing of Sugawara's
stress tensor into mutually commuting quadratic pieces. Above .
we considered two exsmples of this kind: U(1), x U(1)_ /U(1)

. k ko

and n(z)k/U(1)k+2_ Let us present & really non-abslian
example of G/H = 0(3)/S0(2)xU(1). ¥e reserve the notation
¢ for scalar field,associated with coordinate onm U(1).
0f oourse,in non-abelian situation not all coordinatesz om H ?_;;‘;‘;
are associated with scalar fields: some },f -pairs arise.
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In the case of SU(2) which is now under consideration, one

g?> 1] ~pair of fields with spin 1 =and one scalar field ‘P“
arige, If we start from the sl(3)k elgebra {4.1.1), this

} ¥ ~peir mey bde identif:.ed with X \)W‘ , and
—=’ A

q; 3=
T @ a ) \50\3 N Y. - a.\ " ~\E//“3dﬂ(4 7.20)

oty -~ :
(1, 18 & welght,orthogonal to A, , see Fig.>a). Gererators

of s1(2) algebra.,embedded into
3: ”\Ni .
5 “X;N\ i:q[cac?\\ {(4.7.21)
§7= Xiwa- W g, + - 490

Original slgebra (4.1.1) may be rewritten in e
instead of WJLJ"X,."C‘P“

81(3),100k like:

rms of Ji 10

Tu=Ta+i = XW, v ™
X‘s}: I‘s = \\l'z
iz = Lz =Wz

T = Ty 45 =YW+ N . .
Tt = Tag Yo > Xs{= {'x’m XM W g = (36
1 Fq.‘x{?»ﬂm V1T
T3q = T -Xal - K\ &mﬁs\ut ')(5\\3—(3 QY% +
Wi €%l - %l -xss
Ju= Tu+y= ke -L*Jk‘lq‘h
Py VL (N & wsq-% ﬂ v
RIS "T'ss = -”X-.\N 75\“’-’_'\3 1%,

T I
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If central charge of s1(3) algebra is k = =3 + g2,
then that of sl(2)-subalgebra (4.7.21) is -2 + q° = kl.

Sugawara's stress tensor .
TIRE = WK WY, +Wad X3~ KGN L3 -
A s o 1,,1 (4.7.23)
=W - 3OR)-E2 AT L W Yoy e |-
=T lol@pu 1 +Tessek
naturelly splits into two quadratic pieces, depending om
fields in H and G/H respectively. Currents I are na-
fural objects in the s1(3),/e1(2),,, coset model with the
stress tensor T, ..i. Note,that if.. kit = 0 (i.e. qa-z)
the central charge of ’1(2)k+1 vanishes, and the algebra
of currents I closes by itself - the sl(2)=-currents de-
couple - and I form an sl1(3)_; EKM-algebra, realized in
terms of only 5 free fields. This suggestion may be easily
verified by explicit calculation of 0.P.E. of I'sa Ifor q2-2.
Generalization of this example is rather straightforward.
Let us stress once more,that this coset is somewhat un- ’

familiar, since in the case of G/ ® H, with simple group
i . :
G all subgroups possess the same parameter q, thus the cor-

responding central charges are non-equal and mutually rela-
ted through
KIH] + CylHl= 4= KiC1+ CyiC] 4720

and the central charges of the Virasorc algebra for this co-

s
[
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set model 1is

eh = KiCIDIe] 5 kMIDMAI
M= ICIAG 6] T KNG} .

mcrcv,c. —‘i‘mlﬁ,l;

W

= th@-EELS)L:(Q;G-ZQ,;)-

0f course themse epproaches to cosets are not the only v
ones,suggested by bosonizetion scheme m. There is also a
close Teletion with models,possessing higher spin symmetries
('-alg!bm)[ 7--'3-]. In perticular,the stress tenscr in
the construction of ref.[%] tor sl(n)yx sl(n),/sl(n), 4 -
~model is a fragment of bosonized stress temsor (4.2,.10).
The orucial restriction in ref.[ 8] is that one of Kac-Moody
algebras in the direct product is of level 1. This is the
reason,why bosonigation in terms of scelars only appears
possible. Making use of the full stress tensor (4.2.i10), one
should obiain an snalogous construction for other G/H, ho-
wever, 9.’!‘ -systems arise in generic situation.

Appliocstion of bosonization construction to quantum
KN algebras in the spirit of ret.[iO] (where only the case
of kel was discussed) also seems straightforward end de-
nrﬁl investigetion.

We shall return to bosonization of coset models and to re-
lated qucltionp in another publication.
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Pig.3:
a8)The roots of the algebra sl(3)~ A,
K= Q-8 , y= 24~ , X3= 2,0 ; #1,43€ll; p=<4=€-4;
M=€r , Ap=-E5 Afd’.rﬁl(‘j::l /“‘«31'2'.,,“&: e-

>
.- ~
Correspondence betwean the fields % and the positive root

O

subspaces: b{} > oy 5

b) The roots of the algebtra sp{2)2 c, i
X{: e"ez ) Jz':zel ) ‘sz €4+€&) d4 -:ze‘; ‘4)‘4 e‘n;

ft':?zf, 'F'o;z) A,:P;, )zr-er"e;j A{"’:‘é‘lf‘:‘{’ /l‘,(’=2) Af-ﬁ:,s
J- q ‘Jt

JESETE
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Fig.4: Contours of integration Cz in Felder's construciion
in the case 81(3).

DO ST
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