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4. Bosoni'/.ain.on in the case of arbitrary

4.1. S^(3),
:

Expressions for currents in terms of free fislda Х
ы
 , V/.,.

(labelled by three positive root vectors оС
г
 , о4^ . Ы

3
 of Ь

1
/'. V)

algebra) and two-component scalar field ф , lying in the rool

plane, were presented in the last paper of ref *[i?.j. If roots arc

normalized by standard condition ( of. , Ы
3
 ) ~ ( o^ , »L ) ̂  ( o4 » r/, ')---

«2, then cvirrents look like:

(4.1.1)

У ^ = •4 ^
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2-
Energy-momentum tensor

q 1а"Иж parameter, related to the central charge:

k+C
v
 - ^+3 =°f (4.1.2)

. weight vectors

J
of the fundamental representation (aee fig.За)°

Operator expansions are:

and

(4.1.4)

(4.1.5)
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Here Ф. and « ^ stand for two components of <p , which are

parallel and perpendicular to the vector c> = ~ (o

There are various versions of the representation (4.1.1): it

may be replaced by any other one, obtained by a change of fields

(with arbitrary S), which leaves T in (4.1.5) and operator expan-

sions (4.1.4) invariant. (This is the origin of Q_ and б para-

meters in the last paper of ref .[

Our purpose поту is to eliminate central charge dependence from

(4.1.1), as it was done in sect.2.4 in the case of Sc(2)v.
 Nov/ i-t

is achieved by a more complicated change of variables:

(4.1.7)
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(4.1.9)

The sets of currents J or J may be represented In a matrix

form:

T -<*«
X.

(4.1.10)
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This matrix T ( ЗЛ \X/ } <$> J m a y b e rewritten as

(4.1.11)

with
1 О О
\i 1 О (4.1.12)

(4.1.13)Л
о о 'Щъ )

Of course, if one recalls Gauss product from sect.3.1, it is clear,

that

~'.f)43u
-N* *W >eF - 4/

-
l f v

 (4.1.14)

with

О 1 ^
s

\o о 1

e о о
= / о е

 ь
 о

(4.1.15)

о о е^
(4.1.16)
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and (4.1*11) is nothing but a special choice of gauge for the cur-

rent matrix % f
L

However, this is a usefull gauge, since it provides representation

of current algebra in terms of free fields. It is also easy to

check up, that nontrivial change of variables (4.1.7), which was

not required in the case of St(2) but is crucial for all other

groups, may be encoded in the following rule:

On the left hand side a linear combination of monomials
- — r>̂.

l< Ч ^ & (Y)"^^U ̂ )J» arises, and (4.1.18) simply represents

(4.1.7) in the form of

J

Of course one may repeat all the reasoning of sect.2.4 con-

cerning anomalies, which arise under the change of variables

(4.1.17), and apply it to the case of SCO) (or any other group),

see sect.4.3. below. Then one will realize that classical fields

^ in (4.1.16) are related to quantum <£- and d> in (4*1.1 -

4.1.13) as

(4.1.19)



This means, that KK commutation relationo (4.1.5) are valid pro-

vided

2r -f.., (4.1.Й;.;>

while quantum WZW action implies, that

If- ̂ (о) в ̂ iL

iiqs.(4.1.17) together v/ith (4.1.19) determines the structure

of screening operator insertions. These have the form of

(4.1.24)

It seems that only (4.1.22) and (4.1.24) should bo cimaiJered an

independent screening operators, at least in иоие applications it

is enou^'i to U:JO only thocc two kinds of incsertiona, .leaving I'm?

complicnted object (4.1.23) anicie. (lioto, that exponent я P V

*-J* "P/ ""
and Q

 y
*'

c
\ in (4.1.22) tmd (4.1.21) expressed through

aimple roota c^^ and •iZ
i
 have vanishing dlmcnsiono, a,£*

The last thine we need to explain is the ori£in o£ trunafowua-
[;,••

| tion law (4.1.9) rclutinfi proper KM currents J witli their clas-

| aical analogues J (unollwr piece of thia relation is.eq.(4.1.19)

f juat discussed). Additional ter«i« ~d?(x tuld ^(b^^Ci. i n (4«'"»9)
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arise in fact because of the transformation (4.1.7), which diagona-

lizez bagrangian form (4.1.18). One should recall only that X

and \)</ are quantum fields and one cannot change variables in such

a simple way as if they were ordinary functions. In such changes

one should carefully follow the normal ordering, which is implicit

in all formulae including quantum fields. For example, if one sub-

stitutes V i = K. (^,+^1 % )
 i n

 ^a. ̂ in expression

(4.1.1) for J
g1
, the answer is not simply K ^ t V ^ + Y i ^ J

Instead

4- ^ ^ . (4.1.25)

(since <^.^)Vt4^ - ^ M Vi(^ * ̂  +.-.

In other words, J-. ( W )=• < Дол [V& ) + ^^Ti • Analogously

-1
.
26)

*j.)« -
and

as stated in (4.1.9)* Note, that the same kind of reasoning is

required, when transformations (4*1•&) are performed.

4.2. General prescription

In fact the case of Su3)
k
 exhausts almost all possible prob-

lems, which can arise for arbitrary simple group. Let us formulate

the procedure, required to find a representation of KM algebra G

in terms of B>^ -systems OL , \X4 labelled by all positive

roots o(.€-Ai and scalar fields <t , which take values in Car-
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tan torus. In fact we are going io repeat the content of sect.4.1

in inverse sequence.

1) Fix a system of positive roots -AJ_ and introduce two

fields Xot and \>C£ for each < * е Д
 +

—Ю
2) Represent Q OQ in the form

linear matrix function of W and оф . (This kind of representa-

tion is usually provided by Gauss product

(4.2.2)

'"*•'• i \

with an appropriate change of variables ^ у ""* ̂ 'l т /•

3) Redefine \)</ —> v^'C^'i^') according to the rule

(4.1.18)

^ ^ -
 {4
.
2
.
3)

4) 1-form d~ <52J — к ITQ, Э о , J should be con-

sidered as integrated symplectic structure { о<сл ̂ ^'иЬсчсэ ^

ut-i ^^ P °*Я. ) which dictates operator expansions for the

field3 VC/ , W , 7^ .In particular, (4.2.3) implies, that

^Ov and X are Darbowivariables j_ 3j, and

-4-... (4.2.4)

5) Kxpross carefully 3" (v/hich ia originally defined in terni3

of W ) througli W , taking into account the rules like (4.1.25),

(4.1.26). Then
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сю
(4.2.5)

• \j • • ~ \_ i \_
-

i {~Х) being some matrix function of ~X . (We stressed tho fact

that J dcpands on к explicit]/, while J and г contain no expli-

cit k-dependence).

6) The fields <p- are free and they are naturally labelled by

• Ьй-$>.£ vectors 6^ in Cartan plane. If оф
с
 appear

in J (
o
\
 a s

 diagonal elements vyith. unit coefficients their opera-

tor expansion is postulated in the form of

with

C^ ̂  Ki" C
v
 (4.2.7)

with this normalization of <p J does not depend on k. Free

scalar fields with natural operator expansion

are related to <f> • through (4.1.8),

(4.2.9)

Then J ( WP( ф>) form a level к KM algebra and Sugawara's ener-

gy-momentum tensor is quadratic in these fields:

,_. _ . _ - • » (4.2.10)

with

\
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This corresponds to the free field Lagrongian of the form (in

conformal gauge for 2-dimensional metric)

^ 4 * (4.2.12)

The only thing v/hich remains is to find a representation, re-

quired in eq.(4.2.1) for all siraple groups. As we already said, it

is provided by Gauss product formulae, discussed in sect.3 «5̂  .In

sect.4.5 below we shall give a few more explicit examples. However,

although, the whole set of currents J can not be presented in a

simple and general form, some ingredients look quite universal. For
—»

example Gartan current, labelled by Cartan vector U. , is

= - Z (?,3) NJc&Y* + i% Т£Э£ (4.2.13)

One can easily check, that this formula is in accordance with the

value К = 9
/
~ ( ~ v

 o f
 central charge. Casimir eigenvalue

may be defined ac (3*3,. H )

« Z . (М,3)(3,3) (4.2.14)

for any К and V . .

Another universal formula io representation (4.2.10) for Su-

gawara energy-momentum tensor. Prom that formula one easily dedu-

ce* that central charge of Virasoro .algebra involved is

(4.2.15)
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D and r are dimension and rank of algebra G. The "strange for-

mula" of ?re«dental (зееГ Ц , eq.(i2.1.8)J and eq.(6.A.3l ) leQow )

I 5 P 1 - SDCy (4.2.16)

is used*

4.3. Comments on LapyanRian approach in generic сазе

Let us remind the main group property of classical if/ZW Lagran-

gian

- L „
(it follows directly from equations of motion expressecL_in the form

of Xagrangian variation, <bL - 1 ~ J} ^ "

The main feature of Gauss product P = 5L»

in triangular matrices, which is exploited in our construction, is

- О (4.3.2)

Also

Therefore

(4.3.5)

with

Por appropriate choice of parametriisation Q--^ (*f) the first term
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in (4.3.5) becomes

< 4
-

5
-

7 )

and the main prescription is to use the fields \X/ instead оГ ^
 5

such that (4»3»5) becomes diagonal and quadratic:

As explained in sect.2.4 one should take into account Jacobian of

ncl

bution, which changes the action /-î p — ^ u

Ge

product

the change of variables ĵ-' — * \)C^ , including anomaly contri-

n / ^ n

Generically this change of variables is defined by a matrix

Э ^ (4.3.9)

specifies the relation between W and fc

see sect.4.2 above). Eq.(4.3*9) is again a sort of Gauss product:

X
L
 and Yy are a lower and upper triangle matrices respectively with

units at diagonal. —,-j»

Matrix C(^) is diagonal and has Q, as an entry, cor-

responding to the root ОС . The same matrices X, C, Y defines

the classical part of original measure of integration over the fi-

eld* у , according to

Л I—

^ (4.3.Ю)

J
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In the case of S{_(2) matrices X and Y are unit. However, for

other groups they are non-trivial and thus classical measure is

highly non-linear. Therefore the proper quantum measure in functio-

nal integral is subtle in this cane. Naively (i.e. provided that

the measure coincides with the classical one) the relevant anomaly

is

^ ^ (
X
CY )]

However, we prefer to onit matriceo X, Y from this expression, at-

tributing their contribution to quantum measure. Then, according

to (2.4.11)

ЦтгКоо^Г. G" "C(f) a d(f )Э I - -̂3.12)

v5l (G|) is the Liouville action, C ^ and P are defined by

(4.2.14) and (4.2.11) respectively. Starting from (4.3.11) instead

of (4.3.12) we would obtain extra contributions (like ,

\Ъ$£Я (/t-/^^ ( В Г ^
4
^ ) | ̂  ^ ^ e case of s({3))Quantum ac-

tion which should be cancelled by quantum measure in order to make

Lagrangian theory (2.4.1) consistent with WZW conformal.model de-
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fined by KM algebra and Sugawara stress tensor.

Combining (4.3.5), (4.3.8) and (4.3.13), one obtains the final

quantum W3W action

(4.3.14)

with _

" % ~ (4.3.15)

in accordance with (4.2.12).

The transformation rule (4.3.9) impliea the form of screening

operator insertions. In fact for sift/>le roots 0(
s
 J CiXipf "^ ^

for all ^J^{as it happcnaj with c ^ and o/j in the case of 3̂ .(3) in

sect.^f.1). In this case the insertions have particularly

form. For

к
«>**

Since

§f V * ^ , V* / ==• — ^ — ^ ~ \ ~ ~
 WJL

 (4.3.17) £

I- for anv simple root, dimension of exponent is vanishing,

— yJ . V/e shall demonstrate m

the next section, that insertions of Cy^. (for sitahle.roots o

only) appear sufficient to reproduce all known correlators for

- algebras.
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4.4» Correlation functions in ЭШ/) WZW theories

Now let us turn to the computation of the correlators in ge-

neral case of the sJc(W WZW theory. The formulae for Cartaa's cur-

rents of the algebra and the stress-tensor are coincide with (4.2.10)

and (4.2.13): .

И -

T»
where:

(All useful information about the root system of the S M ^ W and

other simple algebras can be found in ref.fl J ) . The formulae for

the other currents are more complicated.

In this section we restrict ourselves Ъу considering the cor

relation functions of the vertex operators of the fundamental rep-

resentations of S u V ) which have the dimensions equal to Я. The

highest weight vectors of these representations are:

(4.4.3)

wncr* л and •* satisfy:

(4.4.4)

Vector* CX£ (i»1,...,C ) are simple roots of the Svf/V) ,I

•Rank S u V ) . The other vectors of the representations N(N) can be
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obtained by taking t.u*? products о Г highest weight vectors V e / V ,

V ^7 /V with some monomials Xot. .- • ^fix,, " ^1 ~* ^х t- • *~

-i-^<~cJ.(~-/X, For the S>t(3) algebra ihe furidurnenta] ге)лч'кег;+а:аопь

3 and 3 have the follow?ng fonr: (s«o ^'*j~.'x>^h"Az.^/\ ~--~fii ) •

Ъ : V , V^. , У
A A . A

"̂  ' V V
where d + o = i . One can find the.'.q ;,янле1ег;; in the general

form of the $4,(3} currents inYJef »L-'J * ' -'"•
erc
'
 vve
 choose

and consider the two-point correlation function, following the way

proposed in sect.2.

The vacuum charge V^ ч^-) i" General case will be of the

form:

(4.4.6)

Then, the two-point correlator equals:

v
A
 w v > v

s
w ) = ̂s s-

Ab
where the opei-ator V belongs to the representation N and V is

waved operator of the representation N , which, in fact, is defined

by the equality (4.4.7). The dimension Д :

ia the dimension of the operators (4.4.5). q, is the value of

the second Caaimir in the fundamental representation, which for

I the S£(Л/)will be: KfZ \ *'•

I 3-" Ы (4.4.9)
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The indices A and В in (4.4.7) coincide when the sum of weights
\ / \ /*

or Carton's eigenvalue vectors of the v» and V» is zero, i.e.M
 D

 л

they have opposite directions. For example, the operators Vr~ \J

and \/ — у \Xx~"%l^Z / have opposite weight vectors, thus

(4.4.10)

1

Then the equality (^.4.7) is satisfied by inserting v\(i) ,

Let из remind that the "vacuum" insertion (^.4.6) is the con-

sequence oi" the fact that metric on eipha,.rj nas a singular point R,

i.e. it can be written ir. tr.e i'orm C'S
1
 - О('г)| , where

aeromorphic differential Lu['f) r ^ - R ) o(^ has pole

of order 2. It is necessary to point out that all above formulae

for the vertez operators deserve зоне explanation, concerning the

normal ordering implied. The naive normal ordering implies that the •

dimension of the vertex operator Vy_ - '-£/xh (i|i <f> ) '• is simply

j u. . But due to the presence of the term (л! <b in the

Lagrangian our ф is not quite ordinary free scalar field. This

leads, in particular, to the fact that the correct normal ordering

prescription differs from the naive normal ordering by the following

(4.4.11)

Later on we shall continue to write the expressions for the

vertex operators in a slightly vulgar manner, omitting O->(£) ,but

one should remember that it is the second factor in (4.4.11) which

leads to the absence of the dependence on point R in the correlators.

The vulgar form of the vertex operators gives correct results provi-

ded the point of the singularity H ia taken in infinity.
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JPor the four-point funetion this is not the whole story. As it

has been explained above, one should make some insertions with

"screening" charges which are of the form of a one-dimensional ope-

rator integrated over a noncontractable contour. Let ua consider the

correlator

<4(
We choose (in the 9 Ц З ) case):

A

(4.4.13)

and \/ was defined in (4.4.40)* It ia necessary to insert

Hank 5"(̂ j«i N-1 contour operators ( с =2 for Sub) ) which have

the form:

^ e T'
 u

.
4
.
15)

in the vClS/ case, where C\^ is a simple root (one can change

for 0C3 which is the other simple root in the Sv(3)ease)*

о(
г
=^+^

3
-=9 6 the highest root of the St(3.) algebra. The

charge neutrality is satisfied because of the following equality:

(4.4.16)

which takes place for the general vLW) caae. It should be stressed \

that the (7 * appearing from the charge balance (4.4.16 )
v
8hould be A

expanded into the «urn of the simple roots ' • '

9 « 0?i+ "...*©?{ • (4.4.17)
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"oecauseTonly the operator of .the form:

where Ot
s
 ia a simple rootTfhas unit dimension since

о
 u

.
4
.
ie)

Thus, theV&orrelator (^/.4.12), (^.4.13). (4.4.14) is proportional

\
Y l T l u

-
4
-

1 9 )

(see fig.4).

Integration over C^ leads to the result

irtxich i e i linear combination of the Knizhnik-Zamolodchikov equation

aolutione, given in ref «L'5 J«

?or the general S\(/Vycase the prescription suggested above,

gives for the 4-point correlator: 4
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since Я в L + 1. The result (4.4.21) is also a linear combination

of the Knizhnik-Zamolodchikov equation solutions [5 ~]. To prove

this fact one should use the following relation for hypergeometric

functions:

•f-

61.4.22)

The other correlators in the Sv\<V/ VZV theory may be computed in

a similar manner.

J
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4.5. TWO MORE COMPLICATED EXAMPLESt

FREE FIELDS FOR WZWM WITH GROUPS SL(4) AND Sp(2)

Hare we elaborate explieitely the free field representation

for the садов of the group Sp(2)—so(5) of rank 2 and the group

•1(4) of rank 3.

4*5*1* Sp(2)j£: We can use the parametrization, introduced in

•••3*3:

о \

(4.5.1)

where the relation between fields bf: and root subspaces

ia illustrated in Fig. 3b* At the same time 3~(<}u$3>)

where

J ИУ. UJ UJ \

(4.5.2)

and

f*st

(4.5.3)

i
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Theae fields are related to free fields /, , ̂' as follows:

v/ith central charge к = -3 + q . The currents, expressed in

terms of free fields look like: $Ji< ~
 Л

The energy-momentum tensor is

-ц
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4.5«2. Sl(4)
k
: This ce.se is direct generalization of.

that of sl(3)
v
 ^

3 e e S
3«4.1). In terms of original fields W

& s

ф. the current matrix 3" = К of *л<4 looks like:

4

(4.5.7)

1-4-

¥:•. Ь* *М *»̂ ч. Л- rw л *̂  _ ,л л /V_ ~" л *J *V-
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Relation between two independent free fields ia:

w W $4 A

Substituting these expressions into eq.(4«5*7) after appro-

priate normal ordering we obtain:

^

^

.-«нрж*$*
м
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4«6. HftMLTOHIAK APEROACH. OR THE WZW LAGRAHGIAN

AS d"
1
 OF KIRILLOV-KOSTANT FORM OH COADJOIKT ORBIT 0? KM

ALGEBRA,

Аз we have already mentioned in ss.3,6, there is a remar-

kable relation between the structure of Lie algebra <Я ami

certain mechanical systems, interpreted as the motion of

point-like objects or strings on homogeneous spaces M=G/H,

which are orbits of coadjoint representation of G. This rela-

tion is described by Kirillov-Kostaat construction. In the

case of particles this movement is described by natural Lag-

rangian, and in the case of strings the action of WZWM (end

not of ordinary non-chiral sigma-model) arises. In other

words,Lagrangian of WZWM may be naturally considered as d

of Kirillov-Kostant form on the orbit of KM coadjoint repre-

sentation. Moreover,the free field representation of WZWM

naturally arises for appropriate choice of coord5.nates on the

orbit,dictated by Gauaa decomposition. (Analogous construction

in the case if Vira3oro algebra leads to a free-field repre-

sentation of Liouville theory,see the second paper of refJ&~})

Generalisation of the orbit approach for finite dimensio-

nal algebras,presented in ss.3«5. to infinite-dimensional case

ie atraightf orv/ard. Consider a Kac-Moody algebra СИ elements

of which are triples W « ) Ф Cc © C'd where

- the loop apace of the Lie algebra Of,С is the central ele-

ment, a~7^ /c(% (see also section 6). The dual space is

СЛо}
 w l t h

 invariant pairing
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jotz li(z) vte)

= 4 (4.6.1)

H
From commutation rules

we may derive the formulae for adjoint and coadjoint action

of the loop group L Q
 :

ч- h+JctzmrfCtfefjCs/tc/} (4.6.3)

Let us consider the orbit &x
0
 , which contains & vector Л"<>

of the form

O,*) (4.6.5)

GeneruE element of this orbit JC looks like

The stationary subgroup of the element У о is the

finite dimensional group G, and

^ (4.6Л)

Let us calculate now Kirillov-Kostant form (3.6.6) . Pirst

of a l l ,

У-if 3 (4.6.8)
and

[Y, YJ*
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Then

Thus the canonical action Jf (3.6. ) is the integral

of the form oi ,which naturally has a form of two-fold

integral:

AS it has been explained above, Gauss decomposition leads

to diagonalizatioix of c# and thus of the Kirillov-Kostont

form on the whole orbit c^p «except for a set of measure ze

ro, where this decomposition becomes unvalid.
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4.7 TOWARDS BOSOHIZATIOH OP COSKC MODELS

Formal application of bosonisation scheme \p>.] to ooaet

models M-G/H is straightforward. However,generically it

does not seem to lead to quadratic stress tensors and thus

is not absolutely satisfactory* Surprisingly enough somewhat

more sophisticated embeddings of H into G may exist»

which give rise to a slightly different coset construction,

leading to quadratic stress tensors. Let us discuss several

simple examples.

We begin from standard coset models. The simplest possible

example is M « G/H « U(1)
v
 x U(1)

t
 / U(1)

v
 .

fr
 . KM currents

*1 *2 *1
+Ic
2

are expressed in terms of two scalar fields 4 ^ 4\. • taking

values in circles of radia 1/\kj' and I/Jkg respectively,

(4.7.1)

The H-subalgebra is generated by

\ *• ̂ v^i
 +
 1^г«к * tib**x +ь (4Л.2)

Primary vertex operators of original WZWM G are

К,
> а
 - еч

?

with arbitrary Integer n^,n
2
» Vertex operators of ooaet mo-

del 11 are those commuting with J
R
, thus they obey the cone*

tratnt

^^44^*0 (4.7.4)

This constraint may be resolved only for rational k^ and

k
2
 (thus original WZWM should be rational}» and
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(к.,к
2
^ standing for an obviously defined analogue of the

largest common divisor oX rational k^ and kg. Thus primary

fields of coset model № axe associated with vertices

С pS£ V (ЛЛ-ЛЛг?) (4.7.6)
i.e. with thoae ol another W2»M U(1),, 1 - >

1
 \*

quite as it should be [б^. One may obtain the same result,

considering a current, orthogonal to Jj, in (4.7.2),

with IS defined from the integral valuedness condition for

«11 contour integrals ^i. ̂ *̂  н along non-eontractable

ejjclee on Riemann surfaces (•^T^^, end — ^ « ^ ^ are arbit-

rary integer winding numbers, thus ^fX^' and^Ilj should

be integer,and

for rational k ^ k ^ ) . In the case of this abelian model

Sugawara*s stress tensor of 1ZWM g naturally splits into

two orthogonal quadratic parts, associated with U(1). .

and M«U(1)
i :

^ С Л 7 9)

Another txample ie И « G/H « sl(2)
v
 x si(2)

v
 / sl(2)

Six independent bosonized currents are:

( 4 Л И 0 )
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and subalgebra H is generated by J
H
 • J^ + J»:

к

The central charge of this subalgebra is kg » ̂  + kg.

One easily verifies,that (W-independent) vertex operators

of coset model M, commuting with all J
H
, have the form of

v - t v ^ v ^ K V ^
 (4Л

-
12)

Thus coset model is easily bosonized. Unpleasent thing,howe-

ver , is that stress tensor of H is no longer quadratic,

even at classical level J
H

J
H

+ J
H ^ H " ^

H
H
 c o n

^
a
^

n s a
 tern like

(4.7.13)

Therefore the stress tensor of M • G/H also contains higher

powers of fields. This is the reason,why we do not find this

construction for ooset models quite satiefaotory (though it

obviously provides a very simple bosonization of any coset

model). We shall try to demonstrate a possible outcome with

the help of one more example, M • G/H » sl(2)/U(1).

Generators of KM algebra 8 are now:

According to the general scheme above, subalgebra Я is ge-

nerated by H»j-Tw 4 ^ [ ^ ^ l ^ r •
n d h a a t h

*
 ш а и

*

ral charge к • -2 + q . Vertex operators of coset model M,
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ooBsniting with the current H, have the form of

(4.7.15)

(«gain,for the sake of brevity,we present only W-independent

vertices) • The stress tensor T ^ - ( £ ^ • ^

1B no longer quadratio (in variance w i t h T f t f ^ ^ ^ ^ " ^ * )»

it contains a classical texn iCw7-, analogous to (4.7.13).

Thus Гц also is non-quadratic.

However» one may embed subalgebra H « U(1) into G •

• sl(2) In a quite different way. Let generator of H be

4 - b i ^ (4.7.16)

Then oentral charge

kg - q
2
 + kQ « -2 + q

2
, (4.7.17)

but instead a real separation of variables takes place:

H is described entirely in terms of the field Ф , while

M = G/H - in terms of ОС and V . ХМ algebra (4.7.14)

acquires a form of

И » (4.7.18)

Vertex operators of this M « 81(2)^/11(1)^2 are mode from

X and V T only, e.g. T <=: X and both stress tensors

and T
M
 are quadratic:

1 л *
1.Л. r (4.7.15)

One eay also note,that currents I in (4*7*18) fora a closed

KM algebra sl(2)
 2
 themselves, if к - -2 (k+2-q

2
-O).

»e oonalder this kind of construction a somewhat more beati-

full e«aerali*ation of abelian theory (4.7.1)-(4.7.9).
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It may be a bit surprising, but this non-standard const-

ruction can be applied to other non-trivial manifolds M • G/H.

Before we give a one more example of how this works, let us

comment briefly on Intrinsic meaning of this fact.

The classical part of bosonisation \tC\ of KM algebra G

in fact comes from the action of G on homogeneous spaces

G/H as an algebra of vector fields. Then X*. are related

to (complex) coordinates on G/H,and V/,^%%. The fields ф
et

are related to coordinates on H. "Classical* Killing vectors

j(.W,X) do not depend on Ф , but such decoupling no longer

takes place,when W ^ X ; ^ are considered s-dependent, and

(central extended) KM algebra G arises Instead of classical

finite-dimensional G. Thus far we considered only flag mani-

folds with H being a product of U(1) factors .

(SU(n)/U(1)
n
~

1
) in the case of sl(n)) and this provided

us with bosonisation of WZflM. Inclusion of non-abelian sub-

groupa H provides a natural approach to arbitrary coset

models. An important ingredient is splitting of KM algebra

and, what is even more important, the splitting of Sugawara's

mtrumu tensor into mutually commuting quadratic pieces* Above

we considered two examples of this kind: U(1)
k
i U(1)-/U(1)

and al(2)
k
/U(1)

k + 2 #
 Let us present a really non-abelian

example of G/H - 30(3)/SU(2)xU(1). !• reserve the notation

ф for scalar field,associated with coordinate on U(1).

Of oourse,in non-abelian situation not all coordinates on H

are associated with soalar fleldst some й,тГ -pairs arise.
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In the case of SU(2) which is now under consideration, one

^>) V -pair of fields with spin 1 and one scalar field ^

arise. If we start from the sl(3)k algebra (4.1.1), this

J»)Y -pair may be identified with X - ^ V ^ , and

s *• ft*»4* W V T L ( 4 . 7 . 2 O )

—» -+

(M is a weight,orthogonal to <=<., , see Pig.^ft). Generators

of J>1(2) algebra,embedded into sl(3)»look like:

Original algebra (4.1.1) may be rewritten in terms of j—•

instead of

U.7.22)

H
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If central oharg* of «1(3) algebra 1» к • -3 .+ q
2
,

then that of sl(2)-subalgebra (4.7.20 is -2 + q
2
 « k+1.

Sugawara'a atreas tenaor

(4.7.23)

naturally splits into two quadratic pieces, depending on

fields in H and G/H respectively. Currents I are na-

tural objects in the sl(3)v/sl(2)
k+
.. coset model with the

stress tensor I
C 0 M

t » Note,that if k+1 • 0 (i.e. q
2
«2)

the central charge of sl(2)^ .. vanishes, and the algebra

of currents I closes by itself - the si(2)-currents de-

couple - and I form an sl(3)_
1
 KM-algebra, realized is

terms of only 5 free fields. This suggestion may be easily
p

verified by explicit calculation of O.P.JS. of I's for q «2.

Generalization of this example is rather straightforward.

Let us stress once more,that this coset is somewhat un-

familiar, since in the case of G/<$>H. with simple group

i

G all subgroups possess the same parameter q, thus the cor-

responding central charges are non-equal and mutually rela-

ted through

and the central charges of the Yirasorc algebra for this со-
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set model is

, 7
X

Of course these approaches to cosets are not the only

ones,suggested by boaonisation scheme \Д^. There is also a

close relation with models,possessing higher spin symmetries

(W-alg»bras) ]_ 1- - 3-1. In particular, the stress tenser in

the construction of ref4_8-j for s K n ) ^ al(n) ̂ /aUn)^
+
^ -

-model is a fragment of boaonised stress tensor (4.2.Ю).

She oruoial restriction in ref.^Sj is that one of Kac-Moody

algebras in the direct product is of lerel 1. This is the

reason,why bosonisation in terms of sealers only appears

possible* Making use of the full stress tensor (4.2..1Q), one

should obtain an analogous construction for other G/H, ho-

werer, %,V -systems arise in generic situation*

Application of bosonisation construction to quantum

KM algebras in the spirit of ref*[lO] (where only the case

of k»1 «as discussed) also seems straightforward and de-

serves investigation.

We shall return to bosonisation of coset models anet to re-

lated Questions in another publication.
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Pig.3x

a)H» roots of the algebra sl(3)— А„

Correepondenoe between the fields K̂ ' end the positive root

subspacee: !•• -*• <^^•

b) The roots of the algebra вр(2)а?С, 1
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Pig.4: Contours of integration С in Felder's construction

in the case el(3).
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