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5. MULTILOCP CALCULATIONS FOR PEES ¥TELuI Oil RIEMAKK

SURFACES L-3 4. 5" ]

In previous sections v/e discussed the free field repre-

sentation of WZVffi! and represented it in terms of several

scalar fields,which take values in a circle4 and of several

6>T -aystams of bosonic fields V A ,0Сл
 with spin jsi. We

tried to demonstrate,that this kind cf representation sirapli-

fies considerably calculation of tree (genus 0) correlators

in WZ5?M, just as it happens in analogous situation with mini-

mal models L.51 . Нот/ever, the main advantage of free field

representation ±3 that it naturally gives rise to multiioop

conforlmal blocks (modulo a special projection,see p.c) in

the Introduction). Before a brief and preliminary discussion

of this subject in Section 6 below, let us remind the main

information concerning multiloop calculations for free fields,

5.1 JJIFFERBHTIAL GEOMETRY рр.ахЕшта SURFACES YJ ]

Here »ve collect some facts from the theory of Riemazm sur--

facss,which appear usefull in laultiloop calculations

Jaoobiap map. ^

may be considered as a map of genus p Лхеташа surface S

into p-dimensional torus (Jacobian), which is a factor of

C
p
 over a group of translations ~? • -*. \ L.%. .V ^^

 +
x

The concrete choice of point §
c
 in (5.1.1) is usually unes-

sential.
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The image of Riemann surface under the map (5.1.1) is

described by Eiemazm's vanishing theorem in terms of theta-

-functions. On S there are p~1 points R
1
,...»R

p
_

1
» such,

that for arbitrary p-1 points on S

(parameter * is arbitrary non-singular half-integer charac-

teristic) •

From this theorem it is easy to derive,that holomorphic

1-differential
+i .н. _2a> I

>LV> (5.1.3)

has double ceroes at points кГ,»».,Н__
1
 and is in fact a

square of holomorphic Ji-differentiali^C^). Another corolla-

ry is tn#>t Prime bidifferentiwi,

г

possesses a simple tero when \*\' and has no poles at all*

£C£,,V ) ie invariant under the shift of ^ along any A-pe-

riodt and changes under the shift of ̂  along В.-period as:

S V + UiT-) (5.1.5)

is another usefull object: a holomorphic p/2-diffe-

rential without poles and seroes,

For even non-aingular theta-charaoteriatio e Seego

kernel i« defined as
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It may be interpreted a.s Green function of /^-differentials

(spinors) on Riemann surface with appropriate boundary con-

ditions: i

For these Green functions the following analogue of Wick's

theorem holds: -* J». _» , ^/
n
 ^

n
~, ' ',

(5.1.9)

We shell need also Green functions of Laplace opez*ator Д^

Usually Green function ^\) д.
й
\^^> on a .•jurface y/ith metrrlc

defined as a solution of the following equation:

-function here is normalized as follows:

)- ~pf^"^ • (5.1.11)

The second t-згт on the r.h.s. of (5.1.10) is due to aero

modes: Green function io<\ G-(ЧЛ} = "^ ̂ "
 (
^^ ̂ ^ •> ̂  ̂  ̂

with normalised oigenfunctiona i\.(•&) Д^ф^ = /V.Ф„ satisfies

the equation

It is hard to write down explicit formula for G for ar-

bitrary metric
 r
0

k
 . In string theory,however, we need •

Plightly different Green functions,wich are solutions of two J*

other equations: (5.1.13) and (5.1.15) below: . *•

Л



or,In oonfoxmal gauge,

with additional constraint
A/

1 ' ° . (5ИИ5)
I*.

Explicit aolutiou of eq.(5.1.H)

'I

Eq.(5»1.i6) defines single-valued function on S-The multi- \

equal to:

2»i
it accounts for the proper dependence of ЧЛЛЦЛХ-з-тл) «« *х »

in applications it ia unessential.(Vector % g and metrio

^ iiXV) entering eq»(5.1*17) are defined below,in eqa.

(5.1.28) and (5.1.29)).

The aeoond type of relevant Green functions ia defined by

the equation

with «х^Ш1- -\ i.e.

Solution of (5.1.18) look* like5) ^

;i

and la aingle-valued function of *% and \ • Ом factor :

*•«



turn* & into O-differential in all &.*•• bet us not*,

that «q.(5.1.20) provides a principal way to find out a Green

function of the type (5.1.11). One should find a new metrle

ПГ oatmeeted with original ПГ through

. (5.1.22)

Then subatituting thia <X into *q.(5.1.20) one gets 6- .

Let us define Green function at coincident points as

4
V< L i W ) (5.1.23)I

Counterterm is chosen to maintain two-diaensional oovariance.

In fact we hare

Й 'fe V (5.1.24)
The following metrics on Riemarm surface are of special

interest:

Bergmann metric:
 0

Щ $л C j ^ \ t . (5.1.25)

It ie normalised so,that

^ (5.1.26)

Arakelov metrie%related to the Bergmonn one,according to

(5.1.22),

(5.L29)
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Singular metric»;

(5И.ЗО)

which are squares of moduli of holomorphic or meroraorphic

1-differentials W(^). These metrics have zeroes and poles

at some points Q
a
»?

A
 respectively. Curvature is concentra-

ted in these points,

К =
There are constraints on Q. and P,

V * (5.1.32)

As a consequense we have:

(5.1.33)
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5.2. SCALAR FIELD ON RIEMAKN SURFACE

5.2.1. Let us consider the functional integral

where Ф(%)±в a scalar field on the surface S . Integration

over zero mode <j> «const gives rise to condition Z ^x - O .
2=1

Thus,we may use Green functions (5.1.13). One equaly verifies,

that this Gauss functional integral is equal^o

5*2.2. Consider now a slightly more complicated functio-

nal integral,

Integration over zero mode leads to the follov/ing condition:

4) = O. (5.2.5)

It is usefull to shift variable ф-^Ф*-фе , with %

being solution of the equation

4.4\-+-.fci21 ^J о ^ Л х Л . (5.2.6)
i Ц

Let us introduce агдхИ1агу singular metric ^ xf
1
*,^)- /Mf (%•)(

with double aeroes at points Й„ . We raay rewrite (5.2.6) in

the following way:

Solution of this equation looks
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Insertion of F(^, Чх^ таксе the whole expression soalar at

point* Joi
;
4r eau is unessential in what follows.

Now it is easy to calculate functional integral (5*2*4):

J ^lK\ (5.2.9)

Let us begin with evaluation of

(5.2.10)

Exponentiating this expression,one gets: ̂

^
 ( 5

'
2 >

Where 3ttVi
k
]

e
^^l?^4]\^4 Liouville action.

Taking into account regularization rule (5.I.24),we obtain

the final answer: . . , 1/,

(5
-
2
-'

2)

5.2.3. Consider now the scalar field Ф which takes values

in a circle of radius г: ф.-»фь 2JTZ
 On
 * non-siroply-eonnec-

ted surface this field is not necessarily single-valued. In-

deed, we have _

,. . . -i- _i. _ *.л.„-г _ 5.2.13)
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where %C%,\) is single-valued on S . The values of

are no longer arbitrary, instead

(5-2,14)

Functional integral now is an infinite sum, with each

item related to a definite homotopic class of mapping of S

into a cirole, Mapping classes are labelled by two p-vectors

ra.
f
n. and

where
 ы

(5.2.16)

We obtain the result of integration over <p
s
 .making use of

(5.2.2) and the condition 2T£r = o . . „

(5.2.17)

The sum in eq.(5.2.15) is usually reffered to es instanto-

nic contribution [ч\ , because non-trivial solutions of

equations of motion 'ЪЪф-ь are known as instantons. Instanton

contribution 1Ув,"в1 is calculated in Appendix to this sub-

section. According to eq. (A.'iT̂ f̂rom this Appendix,we have:

r
 :>.

 ( 5 e 2 # i e )

Talcing into account,that det Im T • det K^e e n\ we ob-

I
 tein:

 , -л
 Л
Ч *



In Appendix: i t i s dsnionstreiecuthst whenever _£>*- "/?_ i s

rational number<,the siis J]z,zl i s finite bilinear coir.oi»

nation of theta-fimotionsc,

5he most important result of consideration of circle—valu

ed scaiars instead of ordinary scalar fields i s the absence

of non-izolemorphic contributions like a-SpClt-*) I ^ T ^ ' ' ^ )

iE. final answers „

All this consideration is straightfcrwadly generalised

to th.s oase of a nultiplet of soa2ar fields staking values in

a torus (see,for example( L* ^)» '2?he ffiain new tiling i s the

occurrence of la t t ice theta-fimcti-OK, associated with the to-

rus Cn/f ( Г- being a translation group)s

APPEEDIX

Let us consider the instsntonic sum, depending on two real

p-vsctors y^lyD't, 1 one comples p-vector z. end two parame-

t e r s >̂ and Y : _

and express it in terms of theta-functions wnen Ь is rati

опяй. Let aa apply Poisson transformation w-r. to m.,

in order to obtain:

T
F)- -t ? llf
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If J> i s rational,

(A.4)

further simplifications-arise; ̂  _» _*

Let us иве the following substitution:

where a. and Ъ. are simultaneously sven or odd, and ccrapc

nente of p-vectors €.p end ^a. take valnes 0,1/P.,,*,

<P-1)/P and 0,1/Q,...,(Q-1)/Q respectively;

Restrictions on ей and b. may be encoded by "& -f-unctions

2fhe sura (A.5) now tiaras into

(A.9)

where
 f

M«lcing use of the definition of theta-function,

«e get the final «xpreeeion:
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5.3* CIRCLE-VALUED SCALAR FIELD WITH MODIFIED LAGRANGIAH

Let us consider now the functional integral

where scalar field ^ takes values in a circle, ffith given

value of coefficient A in (5,3.1) розз!Ые values of radius

of the circle and mome.iia kj are restricted by the single-

-valuedness condition for exp Б(Ф ):

^
г
? (5.3.2)

Using these restrictions,we may write:

Divide the field <p into homotopically trivial ф% and non-

-triviai^L _ par-4s, as we did in as.5.2.3. Kien:m,n

(5.3.4)

и
ft

x
 has been already calculated in (5.2.12).Now we shall

discuss the instantonic contribution* To begin with let us

note,that Cf.3.1) is not generically a proper formula. The

field ф> itself and not only its derivative enters (5.3*1).

However,the field Ф is not single-valued and does not

take definite value at any given point. To make the field

it Ф single-valued we cut the surface S (Pig.l ) and de- "'

¥ A. P >*
t:, fine single-valued у an this simply-connected surface ,

- S*. How A
1118

"
6
 is well defined, but it depends on the \
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cute. Por example, in the case of p«2.(Fig*«i) small defor-

mation of the cut change instantonic contribution as follows:

VT V,. Vj.

It deserves noting,that there is no difficulties of this

kind, with terms ^ I ^ T ^ i ) because of conditions (5.3.2).

To make (5*3.6) correct we should add some boundary term.

It is eaay to verify,that proper expression is:

where Q. is defined from

*^(V*O (5.3.9)

and ~J) -S-1.L (.̂»̂  is any divisor of appropriate degree. It ie

easy to show,that (5.3*3) does not depend on divisor D and

metric g. Given a section Co&) of linear bundle. associated

with D, we may write down explicit expression for £2 :

If we change D for another divisor D1 and section

for to 4 s), the difference is

^f4\ag8l\Vv
where д

а
. jk and Д

t
 <b are jumps of the field Ф ,. on

the cuts. Let us choose one special divisor к.
 г
 with

)* bet us show,that (5.3.6) really does not depend

on the choioe of metrio g. Changing the me trio g -> g*, we

have:
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S

Let us choose metric to Ъе *̂i =\Vvl4̂ \ for the sake of

convenience* Then we obtain:

This sum has been already calculated in (5.2.^

The answer is bilinear combination of theta-functions (if

Al « P/Q, P,Q€2), In order to obtain a single theta-func-

tion with given characteristic \jg\ > one should consider a

more general boundary condition of the type

(5.3 U)

Some linear combinations of A(A<,^) $ which arise in this

case instead of (5«3«13)f with different (JtjPj^ are equal

to a square of module of a single theta-function. However,

in this case a.*j> С
^ Ф С % 1 ^

 i s n o
*
 w e l 1

 defined. Also our

discussion above, concerning the term ^Щ^чф appear incor-

rect. The proper prescription for (5*3.8) in this situation

(5.3.15)

This expression is obviously invariant with respect to the

shifts (5.3.14) and does not depend on any cut.
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5.4. b-c-SYSTEMS WITH ARBITRARY HALF-INTEGER SPIKS >

In this section we reproduce the formulae for conformal

blocks of Grassmanian b-c - systems with spins (j,1-j) for

arbitrary J e. Ш «We shall use the following strategy.

First,we obtain correlation functions in the simplest case

of j»%, using local bosonization. Then, by a change of vari-

ables in functional integral «re shall treat the case of arbit-

rary 3.

5.4.1* Let us oonslder a special case of b-c-system:

fermions Ч-(4yVfe)with spins % and the following O.P,E.:

,=AL/+ Y I (5.4.D

Stress tensor has the form of

"4 " V
2
.^lt'yVH4V

f
b

s
H^)

v
K4')i (5.4.2)

On the sphere this theory may be easily bosonized in terms of

one scalar field,which takes values in a circle of unit radius:

u
 (5.4.3)

Indeed,let us compare correlation functions in the theory

i of fermionic spinors and in its bosonized version:

(5.4.4)

\
t
_ It is easy to realize.that (5.4?4) and (5.4.5) possess the

зшпе seroeo and poles ana thu3 coincide. Hote al30
t
that cent-

ral charges of these fermionic and bosonic theories are the

seme:
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з.
й
 " <-й)2(б3

2
-6^+1)

 imQ
 (5.4.6)

{ -% is due to the fact,that <p ia real boson ).

Let us consider now a couple of fexmions on arbitrary

Riemann surface. To define the theory on arbitrary surface,

we have to choose phases, which fermione acquire when they

more along non-contractable cycles. This freedom is fixed

by the choice of some "characteristic"
 f
 i.e. of two p-v«*-

tors e, о • When fermion is shifted along Aj. (B^) cycle,

it becomeз multiplied by «.-n̂  CS(£**C) j «/*$> "\Tt (£*.•+\} •

Before we discuss,how to bosonize fermionic correlators

one comment is in order. When functional integral in boaonic

theory is calculated, one should integrate over momenta p

of intermediate states PC'V*}^* • However,from (5.4.3) we

see,that only integer momenta are allowed,if one wants to

make correspondence to fermionic theory. This is exactly the

reason,why we should consider ф as a field,which takes va-

lues in a circle of unit radius, 4 ^ ^
+
 2ЭГ •

We have already discussed in ss.5.2,5.3 how the correla-

tors of circle-valued scalar fields are calculated.Thus we

have:

In ttrn» of f «xmiooe «hi* f omul» may b« interpreted лт tol-

correlators in ferslonic theory
 s

и .НЧ;?ОН ci^i'j^cO^LfZ^L""^^;) (5*4.9) '
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It is easy to verify,that (5.4.9) has proper transformation

properties under the shifts of z
±
 or у. along A or B-

-cycles.

Pay's identity,

acquires a natural interpretation as Wick's theorem:

where G f ° C 4 ; > b ^ C t У О
;) (5.4.12)

and «Ц^. - § 4 ? к,

are fermionio propagator end determinant.

5.4.2. Let us discuss now the case of arbitrary

The simplest way to wprk out the answer makes use of the

change of variables \Ъ \.

y/h

H Slf4W4) (5.4.H)

sre Ŝ L • у is holomorphic (j-%)-diff Drential with zeroes,

located at points Q
1
,...,Q , n.= (2j-1)(p-1). It is

3
 3

obvious that O.P.S. for b and с hais согх-cct form:

(5.4.15) \

Ordinary погтз of b and с coi'respond to the following '

norms for Mr and H" : \
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Thus integration over regular b and с fields is equiva-

lent to integration over Я" possessing poles at Q..,...,

0 and ^ possessing zeroes at the same points. The-

refore we have the following relation between measures:

""Кг 1

where «

The

be = Zi

action
0 - ^
i s :

S
Г П

and we obtain the following equality:

(5.4.18)

(5.4.19)

The charge conservation in fermionic theory leads to the

following restriction: m • n + n.,, or

v*. - * ~ (j-i-^i^-^. (5.4.20)

The norms (5.4.16) are not exactly standard norms on

the bundles ot j and 1-j differentials,which have the

form of

j\*1--• *\ ̂  )^i** ' W - № *
 =
ov~ \C^^)*^<* e- (5.4.21)

To make (5*4.16) and (5*4*21) the same, let us choose the

metric g and (3-й)-differential £l_ ..^ as followa:

(5.4.22)
i\ * J 1—
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Thus we obtain the following answer for correlators of

o,c-systems in metric ^^^VvV);

ft.-\ \ "X

•*• Now we shall discuss,how a transformation frorc one cha-

racteristic to another may be performed (to * as a speci-

al case). We use the same trick - a change a£ variables;

where tn e, is defined by the coadition, thai; •-; v.; ;lase,e

characteristic е'(э)« Explicit formula 1з:

^ ^ t t ^ V - (5.4.25;

Changing variables in accordance with (5-4.24),we obtain the

following relation: . --,, ,

(the formula

was used). Two last factors in (5.4-26) are compensated by vj

Quillen'a anomaly \10j
 s
 associated with the transformation ^

(5«4.24)« Thus we come to the following answer: %

"•?••-



Let us comment alec on the case of j=1. When K=0 and

j = 1 the-ta-function in (5-£.23) vanishes. This just Indica-

tes,that when 3=1> there is on additional zero mode of the

field b(z) and that of c(s). In this case the least pos-

sible N is П.. + 1 = p, and instead cf (5.4.28) one may и.~з:

5*4.3. Consider nov/ eqs
0
 (5.4.AA), (5.4.IS) .from the

coint of view of bosonization (5.4.3):

,., ,ф,-. (5.4.30)

?/e тан obtain these formulae direetly from (5. -?.3) by the

following shift of the field Фс V ) in (5.4.3):

: (5.4.31)

After this shift in the functional integral over г
1
 we get:

where shifted action

Keeping in mind, that integration is over fields,which take

values in a circle, we obtain the following answer:

(5.4.34)
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where ^[V^A*! stands for Liouville action, and the coef-

ficient 2(С^-Ц*0} (the central charge for j-differenti-

ala) is composed of two pieces:

X - Ц6?-Ц»Л ^ C ; (5.4.35)

The second term on the l.h.s. comes from the general formula

in the case of j=0.

Taking (5#4«36) into account one sees,that (5.4.34) is in

agreement with (5.4.13).

In conclusion it is usefull to stres3,tliat bosonization

prescription,discussed in as.5.4.3 works v;ell with any metric

g on Rieraann surface (not obligatory singular).
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5.5.fr-Tf-SYSTEMS.flriTH ARBITRARY SPINS .j€ %

£-Y-systema axe the analogues of b-c-systems, but with

opposite statistics. They are bosonic fields. Up to «vow

|>-Y-aystems arised as superghosts in the theory of NSR su-

perstring [11\ (in that case j»3/2). We believe,however,

that free ft -Tf^systems are important in the study of gene-

ral conformal theories, and above we demonstrated that they

really arise in bosonization of WZV/M (in this case 3*1).

The theory ot these objects in the case of arbitrary spin

is discussed in ^lftt IV] { in what follows we present a brief

extraction of these results.

5.5.1. To begin with let us discuss the general properties

of fy'Y-systema and their conformal blocks. Because the only

difference as compared to b,c-systems 1з opposite statis-

tics, determinants of JrX -systems are inverse of those for

b,c-syatems. To be more precise,the following quantity is

unity:

Additional insertions arise because of zero-modes of the

fields b and §> - which are holomorphic ^-differentials.

Making use of the simple observation,that

we obtain the following answer for determinant ofR "Jf-system:

where \^»
4
l4)\ standa for a basis of holomorphic j-diffe-
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rentlals, and oUA-'^C- for determinant of b,c-syeteai.

Prom (5*5*1) we see, that central charge oft Of-system Is

opposite to that of b,c-system.

Note,that occurrence of zero modes of bosonic fields makes

functional integral infinite in contrast with fermionic case,

where it became vanishing. Generically, when all в. in

(5*5*1) are different points on Rlemann surface, determinant

of zero-modes, arising in denominator, is non-vanishing.

But if it vanishes.the functional integral diverges. This

may be in faot Interpreted as appearance of appropriate mero-

morphic (1-j)-differential, which is a zero-mode of
 /
"lf4V) #

Sometimes these poles are reffered to as *unphysical" (since)

they are not implied by local О.Р.В.,which accounts only

for singularities at coincident points). It should be easy

to express all functional integrals and correlators of *>Tf

-fields in terms of b,c-ones, but unfortunately we have

nothing in b,c-system,what can be interpreted as ^ If fields

themselves. In what follows we present a direct computation

of correlators in J.,Y -system in the simplest case of j«#*

Then by changing variables (as we have already done la the

case of b,c-systems), we derive the answers tor arbitrary 0*

5*5.2* Let us compute correlators in the case of ;]•#•

We shall use the notation &.-ir, "ft-4" in this case. The basic

fields of the theory are:



108

On* «a*ily Tirilies the following O.P.E.:

(5.5.2}

where additional field,built with the help of Heavyside

step function, is introduced:

(in the case of superghosts fields of this kind enter the

picture changing operator). Combining (5.5.3) and (5.5*2)

one obtains:

Thus to find all correlators we need only to know those of

U, гЛМг«У>, 4Ci"). Let us calculate the correlator

It is easily expressed in terms of Green function for

fields Ч', Ч* » which is absolutely the some as that in

the case of fermions, G-̂ g (4,4)- ̂
)e
^~"*'

У
 v . °«

e
 should

only use integral representation of S>OV) and К

A (5.5.6)

Let us integrate out all q̂  besides q .The answer is:

^
v
v . - > - 2 4

lt iCK^^JllH^^ *̂Rlt iCK^^^v
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Ilovf the following equation (Cramer rule) may be used:

Together with the familiar Pay's identity (5.-1.S ),

this leads to the following result:

It is usefull to express this result is a slightly different

form, making use of the relation between determinants,

^= QeCo ) (5.5.11)
e

The final answer is:

^ (5.5.12)

It is natural to introduce new fields: __ ,_,

(5.5.13)

); e

One readilly verifies, that new fields C\)4) and фз from

the point of view of O.P.E. are identical to grassnsanian

b,c-system v/ith spin 3*1 and to a free scalar field respec-

tively. Central charge of ̂>,V -system may be considered л

as a sum of central charges of (ъ
к
с) system and of scalar ф , "1

Щ
provided, that its lagrangian 1оокз like : f,
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Ч ^ Н . (
5
.
5
.,4)

Halation between ̂ ^ -systems and those of fields * b 4
v
^

is known under the name of "bosonization
11
 of bosonic "̂ .Ir-

-system3. In terms of these new fields eq.(5.5.i2) "
a s
 *~

following form:

(ск

i=
c
 3«5«3- Now we proceed to formulae for arbitrary spin j

Аз in the cese of b,c-3ystema we shall use the change of

variables in functional integration:

^ ^ / ^ ^ ) (5.5.16)

where holoraorphic (з-Уг)-differential Я^. л у posaes-
^ ft

ses zeroes at points Q
1
.,.Q , n,.= (2J-1)(D-1). The integ-

ration measure looks as follows;

(5.5.17)

Thus we obtain the following expression for correlator for

/ j ^ -system with arbitrary 3 (we take_Q_
 ч
_,.= "У* ̂ a")

 а з

in the case of b,c-system):

(5.5.18)
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—

Note, that ̂,Tf-systems may be
 M
bosoni_ed" in terms of

free Grasamanian fields СЧ
 v
 4 ^ *i^b spins (1,0; and free

scalar field with the Lagrangian

«.5-19)

in the case of arbitrary j. (In variance with b,c-systems

the coefficient before curvature in (5.5.19) is imaginary.)

Bosonization rules are:

^ ^ « " H f e t f *
4
 ^ > ^ ^ V ^ (5.5.20̂

or ̂ l*>* H(̂ £>"> €̂ = W & ̂ (f ЫЛ

It is straightforward to recover (5.5.18).starting from

(5.5И9) «nd (5.5.20).

j

If
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6. MULTILOOP CORRELATORS IH VZW THEORY

6.1. OEHERAL FORM OP CONFORMAL BLOCKS

In this section we ahall discuss the implications of

bosonisation prescription for WZWM in the case of arbitrary

closed Riemann surfaces. Mote,that bosonized version of a

theory contains mere irreducible representations of KM algeb-

ra, than the WZWh itself. Thus to obtain oonformal blocks

of WZW theory one should design some linear combinations of

coniormal blocks of its bosonized version in such a way,

that additional fields are projected out. On the sphere (ge-

nus 0) these linear combinations are contour integrals of

oertain dimension one operators,arising after bosonization.

In the case of higher genera besides these contour integral

insertions one should take linear combinations of conforms!

blocks,corresponding to different "boundary conditions"

(thete-characteristics).

Naive calculation of multiloop correlators of WZWH, rely-

ing upon boaonization prescription gives the answer l\ke

where ^ ( A ^ J / ^ ^ ? ' \А.Л are conformal blocks of £>,Y-sys~

terns Ĵj (*X ĵ  with spin j«1, and зрГДФ.А ^J U.'̂  ore con-

formal blocks of a raultiplet of scalar fields taking values

in Certain torua of the group <it is proportional to

theta-fitnotioBfabboalated ?/ith this toru.
r
.0« Additional opc-

ratoro of dimension one arc located at points it\\ and 1 W
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surface has puncture* at points )«;i • All these confer-

mal blocks»entering r.h.s. of (6.1.1) were already discuseed

in Section 5*

Note*that through 3 С*л.ДАУ> О -functions naturally arise

in denominator of formulae for multiloop characters in WZffM.

In the spirit of usual relation between chiral and non-chi-

ral versions of the theory*we conjecture the following fore

of chiral conforms! blocks in WZW theory:

к 2. ere some characteristic-dependent coefficients*

and C
1
,...,С

Ш
 are some non-contractable cycles on punctured

Riemann surface* (Note,that ̂ Д ^ are periodic because they

are related to single-valued Si currents.) Actually conformal

blocks of WZWM arise only for some special choices of K
e

> X
and C«f...fC *

In what follows we are going to illustrate this general

suggestion in the case of genus 1 (torus). In this case»we

have an alternative way to obtain some correlators (including

partition functions), using well known characters of Kac-Moo-

dy algebras [45\ . We shall find a complete agreement with

(6.1.2).

i I

г ; * •
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6.2. CHARACTERS OP KAC-MOODY ALGEBRAS Vl5l

L«t us consider vacuum conformal block on a torus,which

is associated with irreducible representation of KM-algebra

with the highest weight A :

¥\^ C6.2.1)
where СП- is modular parameter of the torus,

К
 л
 is irreducible representation of KM algebra,

с is central charge of associated Virasoro algebra,

с « ^ ^ (6.2.2)

we shall show, that (6.2.1) is a value of character on the

special elementtfT^OOof KM group.

To begin with, let us present a brief review of KM algebras

and their characters [\5] • Let us start with current algeb-

ra Lot . Elements of L W are Laurent seria with coeffici-

ents in Oj . There 1з a bilinear symmetric form on them:

In order to get central extension of current algebra, one

should add cer.trul element с and modify commutation relati

one:

If we add one more element - derivative d к х /л\-

we obtain Ш algebra 01, with non-degenerate bilinear sym-

metric form

|i; i\ + Vcv j»-*, >-»Xc »y^^>^ (K.^>V\M-t X|*.
/
 (6.2.6)
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Cartel aub-algebra of Oj| ie

(6.2Л)

where W atanda for Cartan aub-algebra of Of .

Let ua introduce the dual apace vv *

W*€> <£Л.® CS (6.2.8)

ao«that the following relationa hold;

AeU^s S(c)*o (6.2.9)

Root decomposition for the algebra 0^ looks like

(6 210)

(6.2.10)

where root aubapaoea are defined by the conditions:^ ^ (6.2.11)

Elemente 0l6 к are reffered to aa roota« and dia*4 •

m mult
a
 are their nultiplicitiea. Por algebra 0^ we hare

the following root ayateai:

i
 (6

'
2Л2)

where 1. ia rank of Or and A - the root ayatea of Ov.

(6.2.12) ia a direct conaequenae of (6.2.10) and the fact»

that for finite 0£ all «ult^* 1.

For a syatea of aieple roota in \ for baaia in the

root apace) we ckcose the following roota:

(KC»AL ч«*..Л ; a
e
 = i~ *o (6.2.13)
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where «Ц exe simple roots of 0^ and JU - Z. «L;

ie long root* Thus all positive roots are:

Discuss now the Weyl group of algebra 0^ . Affine Weyl

group is generated by reflections 1*/*.*... \^ .

MX4
with respect to simple roots c^ € L. • Because of the

relation (i,i^VCi we have\tX)=S • Therefore Vs/ ac*s on

a factor-space \ /£ % . It is easy to prove,that on the hyper-

plane E = ̂ M ( U V ^ \e\^/^.%\ t h e action is affine.

Shifts along dual roots J.- are generated by elements
3

(6-2-16)

On the whole space ^ these generators look like

where \ is projection from лё-'fc on W and V4

л it
Let т u be * shift operator acting on **

4.Д\^ U w ^
r
 S.0M U f ^ ^ (6.2.18)

where квН= E«I«l; •
J

к в E I ; • For simply-laced algebras К coincides

with th« root lattice. Operators -t have the following pro-

perties:

^ W ^К
Ч
*

>г
^-у^ (6.2.19)
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where *w (= \ivj and \* ia the Weyl group of finite-dimensi-

onal algebra 0^ . Thus T* -̂  \ Л is a free abelian group,

which is a ̂ \czw.ai subgroup in "W" . It is not difficult to

realize,that VvT is a semidirect product V =ViКT . i
n

fact Vi'YY- 1 because Vi is a finite group, and T is

a free abelian one. Yi is generated by *., --.Ъ,̂

(3.5И), and \\ contains an additional generator
1
^ , which

is «ipitssed through the shift ±±% :

Using the properties of ffeyl group it is easy to obtain

generalized formula for characters of Kac-Moody algebra:

г -
where л is the highest weight of irreducible representation

H . and U is some element of Cartan subalgebra. P stands

for the generalized half-sum of positive roots and is defi-

ned by the conditions

t$.0O* A lOiUO , <y.0=0. (6.2.21)

Let us use the fact,that Weyl group is half-direct pro-

duct of finite Weyl group and the group of translations,

and rewrite the numerator in the following form:

l^jl (6.2.22)

where theta-functions are introduced through
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(these are in fact lattice thete-functions,corresponding to

Cartaa torus, of the level,proportional to ( « * ^ }.

In (6.2.22) the following notation is used:

A'kCl̂ V. ' oicW a-, X an 5. P are projections of > end <? on Vi'

Vi. ZE the central charge of associated central extension of

current algebra, and g is dual Coxeter number, which coin-

cides with С , С и g. For simply-laced algebras dual Ccxe-

ter number coincides with Coxeter number К arid we may slso

use the formula

* W G =iV-4")«aŵ  Q- . ' ' (6.2.24)

Coxeter numbers ars listed in

"Lei us choose the following pajr-emexrization of Gartan ele-

ment e:

к - -ЪТГС W t -v UC *• Т г Л Г ) . (6.2.25)

When -^> are tended to aero'
r
'the numerator and denominator

of (&.2.£B) possess zeroes of order 1Л+\* Resolving the

uacertaintity, one obtains:
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ie Ded.eid.nd function.

Let us remind tixat we would like to calculate the follo-

wing quantity:

• W C U A - I I ) ^ ~7i,X^
 f
 (6.2.29)

Gonformal dimension and central charge are given by

Д
х
= l̂ *- ̂ РД

4
) ^_

=
 Av«v (L- <̂  (6.2.30)

Taking into account the Preudental's"strange"formula,

Vb.2.3T)

we obtain the final answer:

(6.2.32)

It is also easy to calculate cocXormai blocks of the

form o£ ^

1 ^ k ^ > ^ ^ {*№1СА§У1Н>\ (6.2.33)

Using eq.(6.2.7C) with tiie element

4»**t - гпСтА - Ju^*) (6.2.34)

we obtain the following relation:
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6 vat

(6.2.35)

In this derivation the product formula for theta-funetion,

^ffi-Cs^TPiV HCve Ob-«-
 e

 JH-e- e Лб.2.36)
i s applied.

Kow l e t us comment, how these formulae ar ise in WZW theo-

ry. Gartaa currents look l ike (4»3. },

W\O = - T KV<l>V»<LTCdL + t y W" (6.2.37)

So the l .h.e. of (6.2ЛЗ) has the form:

П <t*Л Л1"УгчЦдЛ- <**t 1ЦЛ4 ^ v " > (6.2.38)

These correlators ere easy to calculate (see a.5),and the

result is:

in complete accordonce with (6.2.35) and the general expec-

tations about the relation between WZW conformal blocks

and their bosonized prototypes (6.1.2).
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7. Conclusion

We presented here a rath r detailed discussion of "oosoniza-

tion" /1/ of Wess-Zumino-VYitten model, which represents it in terms

of free fields. In variance with other proposals (like /16/) this

scheme seems realy self-consistent description of WZWM, since Su-

gawara's stress tensor and WZVV action appear quadratic in these

fields.

.Те demonstrated, that this type of bosonization is applicable

for all simple KM algebras with arbitrary central charges К (Sect4)

The number of free fields is equal to dimension D of the group, and

this is very natural from the point of view of Lagrangian approach,

if one wants to have a unified description for all K, since as

К —><*=> WZWM turns into a theory of D free fields. For some low

values of К in the strong coupling domain other consistent bosoni-

zations may arise with fewer free fields (as it happens for K«1 or

K»2 /1?/), but they hardly can be naturally generalized for all K.

We demonstrate, that the bosonization prescription reproduces

all known answers for correlators at genus 0, which may be expressed

in terms of generalized hypergeometric functions (sects. 2.3, 4.4).

Integrals, relating these hypergeometric functions to elementary

ones like • > (Д- — i- ) J naturally appear as integrals
\+\ > >o

over insertions of dimension - 1 operators /6/, required to pro-

ject out the extra degrees of freedom, which arise in the theory

of free bosons, - that is to project on irreducible representation

of chiral algebra. In the caee of WZWM, which possesses explicit

Lagrangian formulation, one can interpret new insertions as a re-

sult of change of variables, needed to make Lagrangian quadratic,

and this allows one to find out the form of relevant diraen3ion-1

operators from the first principles. Ihis should be a proper way
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to derive an analogue of Pelder's prescription p8]from Lagrangian

approach. Note that ainee all non-trivial rational conformal theo-

ries are believed to be coset models, related to WZWK OSQt these

results suggested that all correlators at genus 0 in all RCI4 are

expressed through generalized hypergeometric functions. We believe,

that this suggestion may be verified from the study of monodromy

properties on the lines of refe«££<Q«

Important advantage of free field representation of any confor- I

mal theory (leaving aside its more "philosophical" implications)

is. that it provides one with e constructive technique for calcula-

tion of conformal blocks on arbitrary Riemann surfaces with handles

and punctures. We have demonstrated this technique in calculations

at genus 0 (sect.2.4). We have showed also how one-loop characters

of Kac-Moody algebra and WZVVM are reproduced and how the multiloop

conformai blocks look like (sect,5,&). Of course a more detailed

study of Felder's reasoning £ffif/ is necessary in multiloop case.

A new important news in the crucial role of ^ 0 system

of free bosonic fields [ii] in bosonization of WZV/M. Thus far Q>X

eyntema erised only in the TJeveu-Schwarz-Ramond approach to super-

strings, but now it seems that they may play a much more important

role.

The most trivial explanation of the boaonizution prescription

l_1J comes from the coadjoint orbit approach. The WZiV action is no-

thing but d~' of the Kirillov form or. a coadjoint orbit of Кае-

Mooay croup j"̂ ]» The Gauaa product expansion of group elements din.- J

gonbliiea the Kirillov form (aoct.4.3i 4.5) and a ainplo cliango of
 :

:
A?

varlabloii ia required to ninke it quotlrutic. Thin choice of the со- Ь

ordinatos (Gauss expimnion) brctika explicitly G—invurianee of Ki- : |

Tiliov ls form (invariant forni is d (,'HZ'S action) itself, and i t ia

лап-ausdretic), but dynamlca is of course C-invariant, and tliio
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guarantees that the currents nave proper Kac-]foody commit at ional

relations. Reduction of Kac-Moody algebra on generic orbits» natu-

rally leads to boponization of arbitrary coset models* Note that

an immediate application of the construction /1/ is description

of parafermions, since WZWM is decomposed in free scalar and para-

ferraionic fields /lУ.

We are going to return to all these questions in another pub-

lication.

We are deeply indebted to A.Alekaeev, Vl.Dotsenko, L.Paddeev,

V.Pateev, B.Peigin, V.Fock, E.Prenkel, A.Gorsky, D.Lebedev, A.Loaev,

A.Mironov, G.Moore, AJtosly for enlightening discussions.

I
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Sable

Cozeter numbers h and dual Coxeter numbers g of lie algebras
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-1 та:
1

i:

Hg.1.

ФЬе cut of the Riemann surface S (p»2)
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a,

Pig.2.

Deformation of the cut in the case p=
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