

A.Gerasimov, A.Marshakov, A.Morozov,

M.Olshanetsky, S.Shatashvili

WESS-ZUMINO-WITTEN MODEL AS A THEORY OF FREE FIELDS IV. MULTILOOP CALCULATIONS.

УДК 530.145

WESS-ZUMINO-WITTEN MODEL AS A THEORY OF FREE FIELD. IV. MULTILOOP CALCULATIONS: Preprint ITEP 89-74. A.Gerasimov, A.Marshakov^{*}, A.Morozov, M.Olshanetsky, S.Shatashvili^{**} - M.; ATOMINFORM, 1989 2 - c.44

The free field representation of Wess-Zumino-Witten model /1,2/ is generalized to the case of arbitrary Riemann surface. The multiloop calculations for free fields on Riemann surfaces are discussed. The special attention is attracted to the bosonic **f** -system, which appears in the "bosonization" scheme for the Kac-Moody current algebras. We consider the general properties of the multiloop blocks of the WZWM and in particular we explain, how the one-loop characters are reproduced by our methods.

Fig. - 2, ref. - 21

(С) Институт теоретической и экспериментальной физики, 1989

*)Lebedev Institute, Moscow

' LOMI, Leningrad

のいたいというないというというないないというというという

M-16

5. MULTILOOP CALCULATIONS FOR PREE FIELD ON RIEMAIN SURFACES \3 4.5]

In previous sections we discussed the free field representation of WZWM and represented it in terms of peveral scalar fields, which take values in a chrole, and of several $\mathcal{G}\mathcal{T}$ -systems of bosonic fields $\mathbb{W}_{\mathbf{A}}, \mathbb{X}_{\mathbf{A}}$ with spin j=1. We tried to demonstrate, that this kind of representation simplifies considerably calculation of tree (genus 0) correlators in WZWM, just as it happens in analogous situation with minimal models [6]. However, the main advantage of free field representation is that it naturally gives rise to multiloop conforimal blocks (modulo a special projection, see p.c) in the Introduction). Before a brief and preliminary discussion of this subject in Section 6 below, let us remind the main information concerning multiloop calculations for free fields.

5.1 DIFFERENTIAL GEOMETRY OF RIEMANN SURFACES 7

Here we collect some facts from the theory of Riemann surfaces, which appear usefull in multiloop calculations

Jacobian map, z

5

$$\xi \to \bar{\xi} = \{ \overline{\omega} ; \overline{\xi} = \{ \overline{\xi}_1 \dots \overline{\xi}_p \}$$
 (5.1.1)

may be considered as a map of genus p Riemann surface S_p into p-dimensional torus (Jacobian), which is a factor of C^p over a group of translations $\overline{\xi}_i \rightarrow \overline{\xi}_i + \overline{\xi}_{ij}; \overline{\xi}_i \rightarrow \overline{\xi}_i + \overline{T}_{ij}$. The concrete choice of point $\overline{\xi}_e$ in (5.1.1) is usually unessential.

The image of Riemann surface under the map (5.1.1) is described by Riemann's vanishing theorem in terms of theta--functions. On S_p there are p-1 points R_1^*, \ldots, R_{p-1}^* , such, that for <u>erbitrary</u> p-1 points on S_p

$$\Theta_{*}(\vec{s}_{1}^{*}+...+\vec{s}_{p_{-}}-\vec{R}_{1}^{*}-...-\vec{R}_{p_{-}}^{*})=0 \qquad (5.1.2)$$

a na manana manana manana na ma

(parameter * is arbitrary non-singular half-integer characteristic).

From this theorem it is easy to derive, that holomorphic 1-differential

$$y_{*}^{2}(z) = \sum_{i=1}^{p} \Theta_{*}(\vec{0}); \omega(z)$$
 (5.1.3)

has double zeroes at points R_1^*, \ldots, R_{p-1}^* and is in fact a square of holomorphic $\frac{1}{2}$ -differential $\mathcal{V}_{4}(\xi)$. Another corollary is that <u>Prime bidifferential</u>.

$$E(\xi, \xi) = \frac{\Theta_{*}(\xi - \xi')}{\nu_{*}(\xi)\nu_{*}(\xi')}$$
(5.1.4)

possesses a simple zero when $\frac{1}{2} = \frac{1}{2}$ and has no poles at all. $E(\frac{1}{2},\frac{1}{2})$ is invariant under the shift of $\frac{1}{2}$ along any A-period, and changes under the shift of $\frac{1}{2}$ along $B_{\frac{1}{2}}$ -period as:

There is another usefull object: a holomorphic p/2-differential without poles and zeroes,

$$\tilde{G}_{*}(\tilde{s}) = \frac{\mathcal{V}_{*}(\tilde{s})}{\prod} E(\tilde{s}, R_{*}^{*}).$$
 (5.1.6)

For even non-singular theta-characteristic e <u>Szego</u> <u>kernel</u> 1s defined as

$$G_{e}^{(N_{1})}(\bar{s},\bar{s}) = \frac{\Theta_{e}(\bar{s}-\bar{s})}{\Theta_{e}(\bar{o})E(\bar{s},\bar{s})}$$
 (5.1.7)

ž.

It may be interpreted as Green function of %-differentials (spinors) on Riemann surface with appropriate boundary conditions:

$$\frac{\langle \widetilde{\Psi}(\underline{x}) \Psi(\underline{x}') \rangle_{e}}{d_{2} d_{1} \overline{\partial}_{1_{l_{2}}}} = \langle \widetilde{\Psi}(\underline{x}) \Psi(\underline{x}') \rangle_{e}^{2} = G_{e}^{(l_{2})}(\underline{x},\underline{x}'). \quad (5.1.8)$$

For these Green functions the following analogue of Wick's theorem bolds.

$$\left\| \widehat{F}(\underline{s}) - \widehat{F}(\underline{s}_{*}) + |\underline{s}_{*}| \right\|_{2} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} + \underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} + + \underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})}{\Theta_{e}(\underline{s}_{*} - \underline{s}_{*})} = \frac{\Theta_{e}(\underline{$$

 $= det_{(i,j)} \underbrace{O_{e_{i}}(0)E(\underline{s}_{i},\underline{s}_{j})}_{O_{e_{i}}(0)E(\underline{s}_{i},\underline{s}_{j})} \underbrace{det_{(i,j)} \langle \langle \{1,3,1\} \rangle}_{e_{i}} \cdot \underbrace{det_{(i,j)} \langle \{1,3,1\} \rangle}_$

$$\int S^{10}(3,3) \sqrt{3}(3) d^{2}_{3} = 1 \qquad i.e. \qquad S^{10}(3,3) = \frac{S(3,3)}{\sqrt{3}(3)} \cdot (5.1.11)$$

The second term on the r.h.s. of (5.1.10) is due to zero modes: Green function $\log G(3,3) = \sum \phi_n(3) \overline{\phi_n(3)} / \lambda_n$ with normalized eigenfunctions $\phi_n(3) = \lambda_n \phi_n$ satisfies

the entering

人民にいてきたいいいいというないにあるとなるのである

the equation
$$\Delta \Phi_{u}(1) \Phi_{u}(2) = \tilde{\zeta} \Phi_{u}(2) \Phi_{u}(2) = \tilde{\zeta} \Phi_{u}(2) \Phi_{u}(2) - \tilde{\zeta} \Phi_{u}(2) \Phi_{u}(2) - \tilde{\zeta} \Phi_{u}(2) \Phi_{$$

$$\Delta_{0}^{(1)} \log G^{(0)}(3|1|A_{I}, \Xi_{I}) = \tilde{Z} A_{I} S^{(1)}(\Xi, \Xi_{I}) 2\pi i \qquad (5.1.13)$$

$$I = I$$

٩.

or, in conformal gauge,

$$\partial \overline{\partial} \log G^{(0)}(\underline{x}_{1}|A_{\underline{x}},\underline{x}_{\underline{z}}) = \sum_{J=1}^{N} A_{\underline{x}} \delta(\underline{x},\underline{x}') 2\underline{x} i$$
 (5.1.14)

with additional constraint

$$\tilde{\Sigma} A_{1} = 0$$
, (5.1.15)
 Γ_{21}

souther and a strength of the strength

Explicit solution of eq.(5.1.14) is: $G^{(0)}(\underline{1}|\underline{1}_{A_{1}},\underline{3}_{1},\underline{1}) = \underbrace{\int |\underline{1}_{A_{1}},\underline{3}_{1},\underline{1}|}_{I} |||E(\underline{3},\underline{3}_{1}) = \underbrace{\int |\underline{1}_{A_{1}},\underline{3}_{1},\underline{1}|}_{I} |||E(\underline{3},\underline{3}_{1}) = \underbrace{\int |\underline{1}_{A_{1}},\underline{3}_{1},\underline{1}|}_{I} = \underbrace{\int |\underline{1}_{A_{1}},\underline{1}_{1},\underline{1},\underline{1}|}_{I} = \underbrace{\int |\underline{1}_{A_{1}},\underline{1},\underline{1}|}_{I} = \underbrace{\int |\underline{1}_{A_{1}},$

(5.1.28) and (5.1.29)).

The second type of relevant Green functions is defined by the equation

$$\Delta_{\bullet}^{\{\tau\}} \log G^{\{k\}}(x,x) = \Im(S^{\{k\}}(x,x) + \alpha k \{\tau(x)\}) \quad (5.1.18)$$

with $\alpha \int R v = -1$ i.e.

$$K = -\frac{1}{4\pi i (q-1)}$$
 (5.1.19)

Solution of (5.1.18) looks like

$$\frac{\{R\}}{G(s,s)} = F_{2}^{1} \left[R^{*}_{3}^{1} \right] = F_{2}^{1} \left[R^{*}_{3}^{1} \right] = F_{4}^{1} \left[R^{*}_{3} \right] = F_{4}^{1} \left[R^{*}_{3}$$

with

$$\vec{S} = (P-1)\vec{S} - \vec{\Sigma}\vec{R}^*$$
 $\vec{S} = (P-1)\vec{S} - \vec{\Sigma}\vec{R}^*$ (5.1.21)

and is single-valued function of $\frac{1}{3}$ and $\frac{1}{3}$. The factor $P\left\{R_{a}^{*}\right\} = \prod_{k=1}^{p-1} \left(\sqrt{\frac{1}{2} \frac{1}{k_{1}\left(R_{a}^{*}\right)}}\right)^{\frac{1}{p-1}}$

turns G²P3 into O-differential in all R^{*}_a's. Let us note, that eq.(5.1.20) provides a principal way to find out a Green function of the type (5.1.11). One should find a new metric $\widetilde{\mathcal{T}}$ connected with original \mathcal{T} through

$$R_{\tilde{T}} = \sqrt{3}\log \tilde{T} = (P-1)\sqrt{\sqrt{5}d^2}.$$
 (5.1.22)
Then substituting this \tilde{T} into eq.(5.1.20) one gets $G^{\{T\}}$.

Let us define Green function at coincident points as log G (3,3) = lim [Jult (3/2 - 13) - log 13-3(2)] (5.1.23)

Counterterm is chosen to maintain two-dimensional covariance. In fact we have 1-1

The following metrics on Riemann surface are of special interest:

Bergmann metric:

$$\Im Boy(3) = \frac{1}{2ip} \frac{1}{ke} \frac{(1+1)}{(1+1)ke} = (5.1.25)$$

It is normalized so, that

$$\int \sqrt{9} e_{ey}(s) ds = 1.$$
 (5.1.26)

Arakelov metric, related to the Bergmann one, according to (5.1.22),

$$\begin{aligned} \mathcal{J}_{\text{Rery}}(3) &= \mathcal{J}_{A_2}(3) \quad \text{i.e.} \quad \mathcal{R}_{A_2}(3) &= \mathcal{J}_{\text{Rery}}(3) \\ \mathcal{J}_{A_2}(3) &= \left(\mathcal{O}_{+}(3)\right)^{4/p} \left(\frac{T}{2T} \prod_{i=1}^{n} S_{i-1} \prod_{i=1}^{n} S_{i-1}\right) \quad (5.1.27) \end{aligned}$$

$$\vec{A} = (n-1)\vec{A} = \vec{A}, \quad \vec{A} = \vec{P}$$
(5.1.28)

$$-1)\frac{1}{3}-\frac{1}{4}$$
; $\Delta_{\pm}=\sum_{n}^{\infty}R_{n}$ (5.1.29)

Singular metrics:

$$Q_{W}(\bar{s}) = |W(\bar{s})|^{2}$$
 (5.1.30)

which are squares of moduli of holomorphic or meromorphic 1-differentials $W(\xi)$. These metrics have zeroes and poles at some points Q_{a} , P_{a} respectively. Curvature is concentrated in these points,

$$R_{w} = 35\log g_{w}(z) = 2\pi i \left(\sum_{n=1}^{n} S(z, Q_{n}) - \sum_{n=1}^{n} S(z, P_{n})\right)$$
 (5.1.31)

There are constraints on Q and Pa:

$$N_Q - N_P = 2(P-1)$$
 $Z_Q^{-1} - \sum_{k=1}^{n_P} P_k = 2\Delta_* \quad \forall * \quad (5.1.32)$

As a consequense we have:

÷.

And a Million and

$$SR_w = 4\pi i(p-1)$$
 (5.1.33)

「「「「「「「「「「「」」」」

5.2. SCALAR FIELD ON RIEMANN SURFACE

5.2.1. Let us consider the functional integral

$$A\{k_{I}\} = \{D_{parp} | \frac{1}{k_{T_{i}}} \int [\overline{g} g^{ab} \partial_{a} \phi \partial_{b} \phi + \sum_{I=1}^{N} K_{I} \phi(\overline{s}_{I})]$$
 (5.2.1)

where $\phi(\xi)$ is a scalar field on the surface S_p . Integration over zero mode ϕ =const gives rise to condition $\sum_{k=1}^{N} k_{k} = 0$. Thus, we may use Green functions (5.1.13). One equally verifies, that this Gauss functional integral is equal to

$$A \downarrow K_{I} \rbrace = \left(\frac{d \downarrow N_{c}}{d \downarrow \Delta_{c}} \right)_{I < 3}^{1/2} \left[\left[G(\boldsymbol{z}_{I}, \boldsymbol{z}_{B}) \right]_{I=1}^{k_{I} k_{S}} \right] \left[\left(\sqrt{q}(\boldsymbol{z}_{I}) \right)_{I=1}^{-k_{I} 2} \delta(\boldsymbol{\Sigma}_{KI}) \right] (5.2.2)$$

Here

$$G(\mathbf{F},\mathbf{F}) = |E(\mathbf{F},\mathbf{F})|^{2} \exp[\mathbf{T} - \mathbf{I}_{m}(\mathbf{F},\mathbf{F})] = |E(\mathbf{F},\mathbf{F})|^{2} \exp[\mathbf{T} - \mathbf{I}_{m}(\mathbf{F},\mathbf{F})]$$

5.2.2. Consider now a slightly more complicated functional integral,

$$A_{\lambda} \{ k_{I} \} = \int \mathcal{D} \phi e \times p \left[\frac{1}{4\pi i} \int \sqrt{g} \left(g^{2} \partial_{u} \phi \partial_{v} \phi + 2\lambda R \phi \right) + \sum_{I=1}^{\infty} K_{I} \phi(\tilde{s}_{I}) \right]. \quad (5.2.4)$$

Integration over zero mode leads to the following condition:

$$\sum_{T=4}^{N} K_{T} + \frac{\lambda}{2\pi i} \int I_{q} R = \sum_{T=1}^{N} k_{T} + 2\lambda(p-4) = 0. \quad (5.2.5)$$

Strating and second second

. Later

It is usefull to shift variable $\phi \to \phi + \phi_c$, with ϕ_c being solution of the equation

$$\partial \overline{\partial} \phi_{\bullet} = \lambda \partial \overline{\partial} \ln g(x, \overline{z}) + \lambda (\overline{Z} K_{I} \delta(\overline{z}, \overline{z})).$$
 (5.2.6)

Let us introduce auxiliary singular metric $\Im_{\mathbf{x}}(\mathbf{x},\overline{\mathbf{x}}) = |\mathcal{U}_{\mathbf{x}}(\mathbf{x})|^{-1}$ with double zeroes at points $\mathbb{R}_{\mathbf{x}}^{*}$. We may rewrite (5.2.6) in the following way:

$$354(4, 5) = \lambda 35\log[3/g_{1}] + (\sum_{j=1}^{n} \xi_{1}(5, 5_{1}) + 2\lambda \sum_{j=1}^{n} \delta(5, 2_{1})(5, 2.7)$$

Solution of this equation looks like

$$\Phi_{0}(\bar{s},\bar{s}) = \lambda \ln \left[\frac{3}{3} \right]_{q_{*}} + \sum_{I=1}^{n} k_{I} \ln \left[\frac{G(\bar{s},\bar{s}_{I})}{\prod G(\bar{s},\bar{p}_{*})^{-1}} + F(\bar{p},\bar{s}_{I}) \right] (5.2.8)$$

Insertion of $F(R_{\alpha}, \mathfrak{F}_{T})$ makes the whole expression scalar at points $R_{\alpha}, \mathfrak{F}_{T}$ and is unessential in what follows.

Now it is easy to calculate functional integral (5.2.4):

$$A_{\lambda} \frac{1}{k_{I}} = \left(\frac{dut N_{o}}{dut \Delta_{o}}\right)^{\frac{1}{2}} \exp \left\{\frac{1}{4\pi} \frac{1}{1} \phi_{e\Delta} \phi_{o}\right\} \delta\left(\frac{2}{\lambda_{I}} k_{I} + 2\lambda(p-1)\right). (5.2.9)$$

Let us begin with evaluation of
$$(\Phi_0 \frac{1}{\Delta_0} \Phi_0)$$
:

$$\frac{1}{4\pi} \left((\Phi_0 \Delta_0 \Phi_0) = \frac{1}{2} \left(\lambda \ln \frac{9}{9\pi} + \sum_{I=1}^{\infty} K_I \ln \left\{ \frac{\mathcal{L}(\bar{s}, \bar{s}_I)}{\eta \mathcal{L}(\bar{s}, \bar{s}_I)} \right\}, F(\bar{t}_{s}, \bar{s}_I) \right\} \right) \left(\frac{1}{2\pi} \partial \bar{J} \ln \frac{9}{9} \right) \left(\frac{1}{2\pi} \partial \bar$$

$$+ \sum_{i=1}^{n} k_{I} \ln \frac{9}{g_{*}(z_{I})} + \sum_{I,3} \frac{k_{I} K_{3}}{z} \ln \left\{ \frac{G(z_{I}, \overline{z}_{3})}{\prod G(z_{I}, R_{4})^{2}}, F \right\} + \sum_{I,\alpha} k_{I} \ln \left\{ \frac{G(z_{I}, R_{4})}{\prod G(R_{4}, R_{4})^{2}} \right\}$$

Exponentiating this expression one vets:

$$A_{\lambda}[k_{I}] = a_{X}p\left[-\frac{\lambda^{2}}{4\pi i}S_{c}\left[\frac{9}{9}g_{*}\right]\right]\left(\frac{\Delta a_{k}N_{c}}{\sqrt{24^{2}\Delta_{c}}}\right)^{2} \cdot \left[\left[G\left(\frac{3}{3}_{I},\frac{3}{2}_{J}\right)^{X}\right]^{X}\right]$$

$$\times \left[\left[\left(\frac{g_{*}(\frac{3}{2}_{I})}{\left(\frac{1}{6}\left(\frac{5}{3}_{I},\frac{2}{4}\right)^{2}\right)^{2}}\right)^{-\frac{1}{2}}\int_{I}g\left(\frac{3}{2}_{I}\right)^{-\frac{1}{2}}\left[\frac{g_{*}(\frac{3}{2}_{I})}{\left(\frac{3}{2}_{L},\frac{2}{4}\right)^{2}}\right]^{\frac{1}{2}}\int_{I}g\left(\frac{3}{2}_{I}\right)^{\frac{1}{2}}\left[\frac{g_{*}(\frac{3}{2}_{I})}{\left(\frac{3}{2}_{L},\frac{2}{4}\right)^{2}}\right]^{\frac{1}{2}}$$
(5.2.12)

5.2.3. Consider now the scalar field $\not =$ which takes values in a circle of radius r: $\phi \cdot \phi + 2\pi Z$ On a non-simply-connected surface this field is not necessarily single-valued. Indeed, we have

$$\phi(\mathbf{x}, \overline{\mathbf{x}}) = \phi_{\mathbf{x}}(\mathbf{x}, \overline{\mathbf{x}}) + i\mathbf{T} \left[(\overline{\mathbf{w}} + \overline{\mathbf{u}} T) - \frac{1}{2} \overline{\mathbf{x}} - (\overline{\mathbf{w}} + \overline{\mathbf{u}} T) - \frac{1}{2} \overline{\mathbf{x}} \right] (5.2.13)$$

where $\phi_{s}(\bar{z}, \bar{z})$ is single-valued on S_{p} . The values of k_{I} are no longer arbitrary, instead

$$k_{1} 2 \pi 2 = 2 \pi i k_{1}$$
 $k_{1} \in \mathbb{Z}$. (5.2.14)

Functional integral now is an infinite sum, with each item related to a definite homotopic class of mapping of S_p into a circle, Mapping classes are labelled by two p-vectors

We obtain the result of integration over φ_3 , making use of (5.2.2) and the condition $\sum k_{I=0}$: $\left(\frac{det N_{c}}{det \Delta_{c}}\right)_{I=1}^{l_2} = \left(\frac{2W}{2} \left(I_{m} \frac{2}{2}\right)_{I_{m}T}^{-1} \left(I_{m} \frac{2}{2}\right) \left(\frac{1}{2} \left(\frac{1}{2}\right)_{I_{m}T}^{-1}\right) \left(\frac{1}{2} \left(\frac{$

The sum in eq.(5.2.15) is usually reffered to as instantonic contribution [4], because non-trivial solutions of equations of motion $\partial \overline{\partial} \phi = 0$ are known as instantons. Instanton contribution $I[\mathbf{z}, \overline{\mathbf{z}}]$ is calculated in Appendix to this subsection. According to eq.(A.3) from this Appendix, we have: $I[2,\overline{\mathbf{z}}] = \nabla \left(\det I_{u}T \right)^{1/2} \exp\left(-\frac{2\pi}{2^2} (I_{u} \overline{\mathbf{z}}) \frac{1}{I_{u} T} (I_{u} \overline{\mathbf{z}}) \right) \widetilde{I}(\overline{\mathbf{z}}, \overline{\mathbf{z}})$. (5.2.18) Taking into account, that det Im T = det N₁^(can), we obtain: $-\frac{k_{T}k_{3}}{I_{u}} = \frac{1}{I_{u}} \frac{1}{I_{u}} E(\mathbf{k}_{T}, \mathbf{k}_{3}) = \frac{1}{I_{u}} \sum_{i=1}^{N_{u}} \left(\int (I_{u} \overline{\mathbf{z}}) \int (I_{u} \overline{\mathbf{z}})$

·

In Appendix it is demonstrated, that whenever $\beta^{\frac{2}{2}-\frac{1}{2}}$ is rational number, the sum $\widetilde{\Gamma[z, z]}$ is finite bilinear combination of theta-functions.

The most important result of consideration of sircle-valued scalars instead of ordinary scalar fields is the absence of non-holomorphic contributions like $\exp(\operatorname{Im} 2)^{T-1}_{T_mT}(\operatorname{Im} 2)$ in final enswers.

All this consideration is straightforwadly generalized to the case of a multiplet of scalar fields, taking values in a torus (see, for example, $\begin{bmatrix} 6 \\ 1 \end{bmatrix}$). The main new thing is the occurrence of lattice theta-function, associated with the torus C^n/r^1 (Γ - being a translation group),

$$\Theta_{r}(\vec{z}|T) = \sum_{\vec{\lambda}_{i} \in T} \left[i\pi(\vec{\lambda}_{i}^{T}T_{ij},\vec{\lambda}_{i}) + 2\pi i (\vec{\lambda}_{i}^{T}\vec{z}_{i}) \right]$$
(5.2.20)

APPENDIX

Let us consider the instantonic sum, depending on two real p-vectors $\mu_{i}^{\prime}, \mathcal{Y}_{i}^{\prime}$, one complex p-vector \mathbf{z}_{i}^{\prime} and two parameand Y: ters B $I_{\mu,\nu}[2,\overline{2}] = \sum_{m=1}^{\infty} \exp\left\{-\Im \beta^{2}(\vec{m}+\vec{n}\overline{\tau})^{T}\right\}_{T=\tau}^{T}(\vec{m}+\vec{n}\tau) - 2\pi\Im\left[(\vec{m}\cdot\vec{n}\overline{\tau})^{T}_{T=\tau}\overline{2} - (\vec{m}\cdot\vec{n}\tau)^{T}_{T=\tau}\overline{2}\right]$ and express it in terms of theta-functions when β^{+} is rational. Let as apply Poisson transformation w.r. to mi, $\Sigma f \{ m; j = \Sigma f \{ m; n; j = \Sigma' e^{2\pi i H; j j} (d) f e^{-2\pi i H; j j} f \{ j \} \}$ (A.2) mieZyni imizeZ? ANGE in order to obtain: $I_{\mu,\nu}[2,\overline{2}] = \beta^{-1} (det ImT)^{-\frac{1}{2}} exp\left[-\frac{4\pi T^{2}}{\beta^{2}} Im\overline{2} i \frac{1}{ImT} (Im\overline{2})\right] I_{\mu,\nu}[2,\overline{2}]$ $\widetilde{J}_{\mu,\nu}[\overline{z},\overline{z}] = \sum_{H_1 \in \mathbb{Z}} \exp(2\pi i \widetilde{H}, \widetilde{\mu}) \cdot \exp(\frac{i\overline{z}}{2} \left[\left(\frac{\widetilde{H}}{p} + p\overline{u} \right)^T T \left(\frac{\widetilde{H}}{p} + p\overline{u} \right) - \frac{i\overline{z}}{p} \right]$ (A.3) wie Z+ pi $-\left(\frac{\overline{H}}{\beta}-\overline{\beta}\overline{u}\right)^{T}\overline{T}\left(\frac{\overline{H}}{\beta}-\overline{\beta}\overline{u}\right)^{T},\exp\left[\frac{2\pi i\delta}{\beta}\left[\left(\frac{\overline{H}}{\beta}+\overline{u}_{g}\right)^{2}-\left(\frac{\overline{H}}{\beta}-\overline{u}_{g}\right)^{2}\right]$

If
$$\beta^2$$
 is rational,
 $\beta^2 = \frac{p}{Q}$ (A.4)

further simplifications arise: $\begin{aligned}
\widetilde{I}_{p,N} &= \sum \exp(2\pi i \overline{H^{T}} \overline{\mu}) \exp\left[\frac{i \underline{T} P Q}{2} \left(\frac{\overline{H}}{P} + \frac{\overline{H}}{Q}\right)^{T} \left(\frac{\overline{H}}{P} + \frac{\overline{H}}{Q}\right) + \\
& \times i \in \mathbb{Z} \\
& \times i \in \mathbb{Z}$

$$\frac{\dot{H}}{P} = \frac{\ddot{a} - \ddot{b}}{2} + \vec{c}, \qquad \frac{\ddot{h}}{Q} = \frac{\ddot{a} + \ddot{b}}{2} + \vec{c}_{Q} + \frac{\dot{\lambda}}{Q} \qquad (A.6)$$

where a_i and b_i are simultaneously even or odd, and components of p-vectors \in_{ρ} and \in_{Q} take values 0,1/F,...; (P-1)/P and 0,1/Q,...,(Q-1)/Q respectively: $\in_{\rho} \in \mathbb{Z}_{P}^{*}$ $\in_{Q} \in \mathbb{Z}_{P}^{*}$ $(\mathbb{Z}_{n} = \frac{1}{n}\mathbb{Z}(mod_{n})).$ (A.7)

Restrictions on a_1 and b_1 may be encoded by δ -function: $\sum \delta(a-l-w) = \frac{1}{2^p} \sum_{z \in \mathbb{Z}_2^p} \exp(2\pi i (\overline{a}-t)^T \overline{s}).$ (A.8) even w: The sum (A.5) now turns into $\sum \delta(a-l-w) = \frac{1}{2^p} \sum_{z \in \mathbb{Z}_2^p} \exp(2\pi i (\overline{a}-t)^T \overline{s}).$ (A.8)

$$\begin{aligned} & = \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n$$

$$x \exp\left(-\frac{i\pi PQ}{2}b + b - 2\pi i \partial Q b + 2\pi i (Q - b)(b + 2\pi i (Q - b)(b + 2\pi i (Q - b))(b + 2\pi i (Q - b)(b + 2\pi i (Q - b))(b + 2\pi i (Q - b)(b + 2\pi i (Q - b))(b + 2\pi i (Q - b)$$

Making use of the definition of theta-function,

$$\Theta[\frac{1}{2}](2|T) = \sum \exp(iT(\alpha+2)^TT(\alpha+2) + 2\pi i(\alpha+2)^T(2+\beta))$$
(4.10)

we get the final expression:

 $\widetilde{\Box}_{\mu,\nu} = \sum e^{-\Delta \pi i \epsilon_{g} S} \Theta \left[\frac{\epsilon_{g} + \epsilon_{Q} + \frac{\gamma}{4}}{S} \right] (3Q_{2} | \frac{p_{Q}}{2} | T) \Theta \left[\frac{\epsilon_{g} - \epsilon_{g} + \frac{\gamma}{4}}{S} \right] (-7Q_{2} | \frac{p_{Q}}{2} | A.11)$

5.3. CIRCLE-VALUED SCALAR FIELD WITH MODIFIED LAGRANGIAN

Let us consider now the functional integral $A_{\lambda}\{k_{I}\} = \int D\phi \exp\left[\frac{1}{4\pi i} \int \int g^{-1}(\Omega_{t} + \Omega_{t} + \lambda_{L} + \lambda_$

$$2\lambda z = in$$
; $K_{I} = \frac{ik_{I}}{z}$ $h_{i}k_{I} \in \mathbb{Z}$. (5.3.2)

Using these restrictions, we may write: $A_{\lambda}[k_{I}] = \int D\phi \exp\left[\frac{1}{4\pi}\int_{T} \frac{1}{4\pi}\int_{T} \frac{1}{4\pi}\int_{T} \frac{1}{4\pi}\int_{T} \frac{1}{2}\int_{T} \frac{1}{2}\int_{T} \frac{1}{2}\int_{T} \frac{1}{2}\int_{T} \frac{1}{4\pi}\int_{T} \frac{1}{4\pi}\int_$

$$A_{\lambda}^{\text{inst}} \downarrow k_{\mathrm{T}} = \sum \exp \left[\frac{1}{4\pi} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \right) \left(2 \sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \left(2 \sqrt{9} g^{\text{H}} \left(\sqrt{9} g^{\text{H}} \right) + \frac{1}{2} \left(2 \sqrt{9} g^{\text{H}} \right) + \frac{1}{$$

 A_{λ}^{\vee} has been already calculated in (5.2.12).Now we shall discuss the instantonic contribution. To begin with let us note, that (5.3.1) is not generically a proper formula. The field ϕ itself and not only its derivative enters (5.3.1). However, the field ϕ is not single-valued and does not take definite value at any given point. To make the field ϕ single-valued we cut the surface S_p (Fig.1) and define single-valued ϕ on this simply-connected surface S_p^c . Now A^{inst} is well defined, but it depends on the

の日本の一般の日日で

cuts. For example, in the case of p=2 (Fig. 2) small deformation of the cut change instantonic contribution as follows: (5.3.7)It deserves noting, that there is no difficulties of this kind with terms $\frac{1}{2} \sum e_T \varphi(\xi_T)$ because of conditions (5.3.2). To make (5.3.6) correct we should add some boundary term. It is easy to verify that proper expression is: $\tilde{S}[\Phi_{K,m}] = \frac{1}{4\pi i} \int_{C} (\partial \Phi_{K,m})^{2} \frac{1}{\pi i} \left[\sum k_{I} \Phi_{K,m} (s_{I}) + \frac{h}{4\pi i} \int_{C} (\partial S \log(g)) \Phi_{K,m} - \int_{S} \Omega \Phi_{K,m} \right] 5.3.8)$ where Q is defined from dQ = 1 03 log (g) - Z h S (3-Pa) (5.3.9) $D = \sum l_n(P_n)$ is any divisor of appropriate degree. It is and easy to show, that (5.3.8) does not depend on divisor D and metric g. Given a section $(\omega(z))$ of linear bundle, associated with D, we may write down explicit expression for Ω Ω= - + + dlog - g(2) 2. (5.3.10)If we change D for another divisor D' and section $\omega(2)$ for $\omega'(z)$, the difference is $\delta \vec{S} = \frac{1}{2\pi^2} \frac{1}{2} \frac{1}{2\pi^2} \frac{1}{2\pi^2} \left(\frac{1}{2\pi^2} \frac{|\omega(z)|^2}{|\omega(z)|^2} + \frac{1}{2\pi^2} \frac{1}{2\pi^2} \frac{1}{2\pi^2} \frac{|\omega(z)|^2}{|\omega(z)|^2} \right) \frac{1}{2\pi^2} \frac{1}{2$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

$$\widetilde{S}_{g'} - \widetilde{S}_{g} = \frac{m}{4\pi^2} \left(\frac{S(3\overline{3}\log[\frac{3}{g'}], \phi)}{\frac{3}{g'}} - \frac{m}{4\pi^2} \frac{\phi}{g'} \right) = \frac{m}{35^{c}} \frac{\phi}{g'} = \frac{m}{4\pi^2} \left[\frac{\phi}{g'} \right] = \frac{m}{4\pi^2} \left[\frac{\phi}{g'} \right] = 0. \quad (5.3.12)$$

Let us choose metric to be $\Im_{\pi} = |\mathcal{V}_{\pi}(\Im)|^{\pi}$ for the sake of convenience. Then we obtain:

$$A^{(hsi}_{(k_{1})} = \sum \exp \left[\frac{1}{4\pi i} \int (\partial \Phi_{e,m})^{2} + \frac{1}{2} \left(\sum k_{1} \Phi_{e,m}(k_{1}) + h \sum \Phi_{e,m}(k_{n}) \right) (5.3.13)$$

This sum has been already calculated in (5.2.) The answer is bilinear combination of theta-functions (if $\sqrt[2]{2} = P/Q$, P,Q $\in 2$). In order to obtain a single theta-function with given characteristic $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, one should consider a more general boundary condition of the type

$$\varphi(\xi + A_{k}) = \varphi(\xi) + 2\pi 2(W_{k} + \frac{\partial k}{\partial \alpha})$$

$$\varphi(\xi + B_{k}) = \varphi(\xi) + 2\pi 2(W_{k} + \frac{\partial k}{\partial \alpha}).$$
(5.3 14)

HERE AND AND AND A DECEMPTION OF A DECEMPTION OF

Some linear combinations of $A(J_x, \beta_x)$, which arise in this case instead of (5.3.13), with different (d_x, β_x) are equal to a square of module of a single theta-function. However, in this case $\exp \frac{ik_I}{2} \phi(z_I)$ is not well defined. Also our discussion above, concerning the term $\int (\overline{g} R \phi)$ appear incorrect. The proper prescription for (5.3.8) in this situation is:

$$\Im_{=\frac{1}{4\pi i}} \int (\Im_{+})^{2} + \frac{1}{2} \int \Omega \wedge d\varphi \qquad (5.3.15)$$

where $d\Omega = \tilde{Z} K_{\Sigma} S(2-2\pi) + \frac{1}{2\pi i} \frac{h}{2} \Im_{-} \log(g)$.
This expression is obviously invariant with respect to the
shifts (5.3.14) and does not depend on any cut.

1.,

The second second second

5.4. b-c-SYSTEMS WITH ARBITRARY HALF-INTEGER SPINS .

In this section we reproduce the formulae for conformal blocks of Grassmanian b-c - systems with spins (j,1-j) for arbitrary $j \in \frac{1}{2}$. We shall use the following strategy. First, we obtain correlation functions in the simplest case of $j=\frac{1}{2}$, using local bosonization. Then, by a change of variables in functional integral we shall treat the case of arbitrary j.

5.4.1. Let us consider a special case of b-c-system: fermions $\widetilde{\Psi}(\xi), \Psi(\xi)$ with spins ½ and the following 0.P,E.:

$$\Psi(\bar{s}) + (\bar{s}') = \frac{1}{\bar{s}-\bar{s}'} + \bar{s}. + (5.4.1)$$

Stress tensor has the form of

ないのないので、「ないない」

$$T_{+} = \frac{1}{2} \left[\hat{+}(x) \partial + (x) - \partial \hat{+}(x) \right].$$
 (5.4.2)

On the sphere this theory may be easily bosonized in terms of one scalar field, which takes values in a circle of unit radius:

$$\Psi = \exp(-i\phi) \qquad (5.4.3)$$

$$\Psi = \exp(+i\phi) \qquad T_{+} = T_{\phi} = -\frac{1}{2}(\partial\phi)^{2}.$$

Indeed, let us compare correlation functions in the theory of fermionic spinors and in its bosonized version:

$$\left\langle \prod_{i=1}^{n} \left\langle 1 + 1 + 1 + 1 \right\rangle \right\rangle = \det_{(i,j)} \left(\frac{1}{2 - 2} \right)$$
(5.4.4)

$$\left< \begin{bmatrix} n & -i\phi(\xi_{i}) & +i\phi(\xi_{j}) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

It is easy to realize, that (5.4.4) and (5.4.5) possess the same zeroes and poles and thus coincide. Note also, that central charges of these fermionic and bosonic theories are the seme:

$$2(6j^2-6j+1)_{j=\frac{1}{2}} = (-\frac{1}{2})2(6j^2-6j+1)_{j=0}$$
(5.4.6)

(-% is due to the fact, that ϕ is real boson).

Let us consider now a couple of fermions on arbitrary Riemann surface. To define the theory on arbitrary surface, we have to choose phases, which fermions acquire when they move along non-contractable cycles. This freedom is fixed by the choice of some "characteristic", i.e. of two p-vectors \vec{e}, \vec{S} . When fermion is shifted along $A_k(B_k)$ cycle, it becomes multiplied by $e = p i \hat{F}(e_{k+1}); e = p i \hat{F}(S_{k+1})$.

Before we discuss, how to bosonize fermionic correlators one comment is in order. When functional integral in bosonic theory is calculated, one should integrate over momenta p of intermediate states $F(\Im) e^{ip\times}$. However, from (5.4.3) we see, that only integer momenta are allowed, if one wants to make correspondence to fermionic theory. This is exactly the reason, why we should consider Φ as a field, which takes values in a circle of unit radius, $\phi \sim \phi + 2\pi$.

We have already discussed in ss.5.2,5.3 how the correlators of circle-valued scalar fields are calculated. Thus we have:

 $A = \left\langle \prod_{i=1}^{n} \frac{\varphi(\xi_i)}{\varphi(\xi_i)} - \frac{\varphi(\xi_i)}{\varphi(\xi_i)} \right|_{z=1}^{z=1} \frac{|f| E(\xi_i, \xi_i) \prod_{i=1}^{n} E(\xi_i, \xi_i) \prod_{i=1}^{n} E(\xi_i, \xi_i) \prod_{i=1}^{n} \frac{|f| E(\xi_i, \xi_i) \prod_{i=1}^{n$

$$A = \sum_{i,e} |\langle \vec{n} + (i) \rangle \vec{n} + (i) \rangle |^2$$
(5.4.8)

Thus correlators in fermionic theory are:

$$\left\langle \prod_{i=1}^{n} \widehat{T}(\underline{s}_{i}) \prod_{j=1}^{n} E(\underline{s}_{i}; \underline{s}_{j}) \prod_{j=1}^{n} E(\underline{s}_{i}; \underline{s}_{j}') \bigoplus_{i=1}^{n} E(\underline{s}_{i}; \underline{s}_{j}') \bigoplus_{j=1}^{n} E(\underline{s}_{$$

It is easy to verify, that (5.4.9) has proper transformation properties under the shifts of z_i or y_j along A or B--cycles.

Fey's identity,

$$\frac{\left|\left[E(2;,2)\right]\right]}{\left[E(2;,2;)\right]} = \frac{\left(2\overline{2};-\overline{2}\right)}{\Theta_{e}(\overline{2};-\overline{2})} = \frac{\left(2\overline{2};-\overline{2}\right)}{\Theta_{e}(\overline{2})} = \frac{\left(2\overline{2};-\overline{2}\right)}{\Theta_{e}(\overline{2})} = \frac{\left(2\overline{2};-\overline{2}\right)}{\Theta_{e}(\overline{2})} = \frac{\left(2\overline{2};-\overline{2}\right)}{\Theta_{e}(\overline{2})} = \frac{1}{2} + \frac{1}{2$$

acquires a natural interpretation as Wick's theorem:

$$\left\langle \prod_{j=1}^{n} \widehat{\Psi}(\underline{x}_{j}) \prod_{j=1}^{n} \Psi(\underline{x}_{j}') \right\rangle = \int_{\mathbb{Q}} \int_{\mathbb{Q}} \frac{\Theta_{\varepsilon}(\underline{x}_{j}, -\underline{x}_{j}')}{\Theta_{\varepsilon}(\underline{\sigma}) E(\underline{x}_{j}, \underline{x}_{j}')} \cdot \frac{\Theta_{\varepsilon}(\underline{\sigma})}{(\Theta_{\varepsilon}, \Theta_{\varepsilon})^{1/2}}$$

$$\text{where } G_{\varepsilon}^{(V_{1})}(\underline{x}_{j}, \underline{x}_{j}') = \frac{\Theta_{\varepsilon}(\underline{x}_{j}, -\underline{x}_{j}')}{\Theta_{\varepsilon}(\underline{\sigma}) E(\underline{x}_{j}, \underline{x}_{j}')} \quad (5.4.12)$$

and
$$det \overline{\vartheta}_{1_2} = \frac{\Theta_e(\vec{o})}{(det \overline{\vartheta}_e)^{1/2}}$$
 (5.4.13)

are fermionic propagator end determinant.

- The State of the

5.4.2. Let us discuss now the case of arbitrary $j \in \frac{1}{2}$. The simplest way to work out the answer makes use of the change of variables [9]:

$$b(\bar{s}) = \Omega_{\bar{j}-\nu_2}(\bar{s}) + (\bar{s}) = \Omega_{\bar{j}-\nu_2}^{-1}(\bar{s}) + (\bar{s})$$
(5.4.14)

where $\sum_{j=\frac{1}{2}} j_{-\frac{1}{2}}$ is holomorphic $(j-\frac{1}{2})$ -differential with zeroes, located at points Q_1, \ldots, Q_{n_j} . $n_j = (2j-1)(p-1)$. It is obvious that 0.P.E. for b and c has correct form:

$$b(\xi)C(\xi) = \frac{1}{\xi - \xi} + \chi t.$$
 (5.4.15)

「「「「「「」」」

÷,

Ordinary norms of b and c correspond to the following norms for $\widetilde{\Psi}$ and Ψ :

$$\|S(\|^{2} = \|Sf\|^{2} |\Omega_{s-v_{1}}|^{2} = \|Sf\|^{2} |\Omega_{s-v_{2}}|^{2}.$$
(5.4.16)

The second s

Thus integration over regular b and c fields is equivalent to integration over \mathcal{F} possessing poles at Q_1, \ldots, Q_n and ψ possessing zeroes at the same points. Therefore we have the following relation between measures:

(5.4.17)

(5.4.18)

and we obtain the following equality:

 $\frac{1}{2}bDc = DFDT \prod_{i=1}^{n_i} \frac{f(Q_i)}{(\Omega_{i+1}^{\prime}(Q_i))^{\frac{1}{2}+1}}$

The action is:

where $\Omega_{j-Y_2}(z) = \Omega_{j-Y_2}(Q_j)(z-Q_j) + O((z-Q_j)^2).$

 $S = \left[d^{2}_{3}(+\Omega_{1-x_{2}}) \overline{O}(+\Omega_{1-x_{2}}) = \int d^{2}_{3}(+\overline{O}+) \right]$

 $\left\langle \prod_{i=1}^{n} b(x_i) \prod_{\mu=1}^{n} C(\Psi_{\mu}) \right\rangle = \left\langle \prod_{\alpha=1}^{n} \frac{\Psi(G_{\alpha})}{SZ_{j-\nu_{1}}(\Omega_{j})^{\frac{1}{2}}} \prod_{i=1}^{n} \Omega_{i-\nu_{1}}(x_i) \Psi(x_{i}) \prod_{\mu=1}^{n} SZ_{j-\nu_{1}}(\Psi_{\mu}) \right\rangle. \quad (5.4.19)$ The change conservation in fermionic theory leads to the

The charge conservation in fermionic theory leads to the following restriction: $m = n + n_j$, or

$$m - m = (2j-1)(p-1).$$
 (5.4.20)

The norms (5.4.16) are not exactly standard norms on the bundles of j and 1-j differentials, which have the form of

$$\begin{aligned} & \int \left| \int_{1}^{1} d^{2} = \int \left| \int_{2}^{1} d^{2} \right|^{2} \int_{1}^{1} d^{2} d^{2} + \int \left| \int_{1}^{1} d^{2} d^{2} \right|^{2} \int_{1}^{1} d^{2} d$$

103
Thus we obtain the following answer for correlators of
b, c-systems in metric
$$g=1V_{*}(x)^{4}$$

 $\left\langle \prod_{k=1}^{n} b(x_{k}) \prod_{k=1}^{n} (Q_{k}) \right\rangle_{k}^{k} = \prod_{k=1}^{n} E(2x_{k}x_{k}) \prod_{k=1}^{n} E(3x_{k}y_{k}) \prod_{k=1}^{n} E(3x_{k}y$

=

 $\Theta[\frac{1}{2}](\frac{1}{2} + \frac{1}{2} + \frac{1$

「「「「「「「「」」」」」」

 $\langle \vec{n} \stackrel{\text{He}}{=} \frac{1}{2\pi} \left[\frac{1}{2\pi} \frac{1}{2$

Let us comment also on the case of j=1. When h=0 and j=1 theta-function in (5.4.28) vanishes. This just indicates, that when j=1, there is an additional zero mode of the field b(z) and that of c(z). In this case the least possible N is $n_1+1 = p$, and instead of (5.4.28) one may upe: $\binom{n+1}{n} \binom{n+1}{n} = \frac{nE(2a,2a)}{nE(2a,3b)} \frac{n(2a+2a)}{n(2a+2a)} \frac{n(2a+2a)}{n(2a+2a)} \frac{n(2a+2a)}{n(2a+2a)}$

$$C = \mathcal{V}_{*}^{1-2_{3}} e^{-i\phi(i_{3})}$$
 (5.4.30)

We may obtain these formulae directly from (5, 4.3) by the following shift of the field $\Phi(1/2)$ in (5.4.3):

$$\Phi_{(j)} = \Phi_{(1/2)} - i(2j-1)\log |V_*(\xi)|^2. \quad (5.4.31)$$

۶

After this shift in the functional integral over \mathcal{P} we get: $\left\langle \prod_{i=1}^{n} b(z_i) \prod_{j=1}^{n} C(y_{j}) \right\rangle = \left\{ 34 e^{-\left[\prod_{i=1}^{n} b(z_i) \right]^{2(i-1)} \prod_{j=1}^{n} e^{-i(\varphi(y_{j}))} -\frac{2(2j-1)}{11} e^{-i(\varphi(y_{j}))} \right\} = \left\{ 34 e^{-i(\varphi(y_{j}))} + \frac{2(2j-1)}{11} e^{-i(\varphi(y_{j}))} \right\}$

where shifted action

$$\tilde{S}[4] = \frac{1}{4\pi} \left\{ d_{s}^{2} \left[N_{s} + 1^{2} - i(2_{s} - 1) \frac{1}{2} R(N_{s} + 1) \frac{1}{2} + (2_{s} - 1)^{2} R(N_{s} + 1) \frac{1}{2} R$$

Keeping in mind, that integration is over fields, which take values in a circle, we obtain the following answer:

$$\left| \left\langle \prod_{i=1}^{n} |B_{R_{i}}\rangle \prod_{j=1}^{n} |D_{i}|^{2} \right| = \int D_{i} e^{\sum_{i=1}^{n} |D_{i}|^{2} \left(2\sum_{i=1}^{n}\right) \Phi(B_{i}^{-1})} \\ = \int D_{i} e^{\sum_{i=1}^{n} |D_{i}|^{2} \left(2\sum_{i=1}^{n}\right) \prod_{j=1}^{n} \frac{e^{-i \left(\frac{1}{2} \left(2\sum_{i=1}^{n}\right) \Phi(B_{i}^{-1})}}{\left|D_{i}\right|^{2} \left(2\sum_{i=1}^{n}\right) \left(2\sum_{i=1}^{n}\right)$$

z์≈

where $\int_{L} \left[|\lambda_{1}|^{4} \right]$ stands for Liouville action, and the coefficient $2(G_{3}^{2}-G_{3}+1)$ (the central charge for j-differentials) is composed of two pieces:

$$\frac{(2j-1)^2}{46\pi i} - \frac{1}{2} \frac{2}{48\pi i} = \frac{2(6j^2-6j+1)}{48\pi i} = \frac{2Cj}{48\pi i} .$$
 (5.4.35)

The second term on the l.h.s. comes from the general formula

$$det \Delta_{i} = |det \overline{\partial_{i}}|^{2} exp \frac{2C_{i}}{48\pi_{i}} S_{c}[g]$$
 (5.4.36)

in the case of j=0.

Taking (5.4.36) into account one sees, that (5.4.34) is in agreement with (5.4.23).

In conclusion it is usefull to stress, that bosonization prescription, discussed in ss.5.4.3 works well with <u>eny</u> metric g on Riemann surface (not obligatory singular).

1000-

5.5.3-T-SYSTEMS WITH ARBITRARY SPINS je % Z

§-Y-systems are the analogues of b-c-systems, but with opposite statistics. They are bosonic fields. Up to now β -Y-systems arised as superghosts in the theory of NSR superstring [41] (in that case j=3/2). We believe, however, that free β -Y-systems are important in the study of general conformal theories, and above we demonstrated that they really arise in bosonization of WZWM (in this case j=1). The theory of these objects in the case of arbitrary spin is discussed in [12,43,14]; in what follows we present a brief extraction of these results.

5.5.1. To begin with let us discuss the general properties of §7-systems and their conformal blocks. Because the only difference as compared to b,c-systems is opposite statistics, determinants of §-7-systems are inverse of those for b,c-systems. To be more precise, the following quantity is unity: $\int \sqrt{37 + \sqrt{3}} c$

 $\int \mathcal{D}_{\beta} \mathfrak{W} \mathcal{D}_{\beta} \mathcal{D}_{c} e^{-\beta} = \int \{b(z_{i})\} \int \{\beta(z_{i})\} \cdots \\ \int \{b(z_{i})\} \int \{b(z_{i})\}$

$$S(b(z_i)) = \frac{1}{2} \int dee^{ieb(z_i)} = b(z_i)$$

we obtain the following answer for determinant of β -system: $\int D\beta \partial T e^{-\int_{\beta} \overline{\partial T}} \left\{ \left(\beta(\overline{z}_{i}) \right) \dots \left(\beta(\overline{z}_{i}) \right) = \frac{1}{d_{i} d_{i} d_{i} d_{i} \beta(\overline{z}_{i})} \left(\frac{1}{d_{i} d_{i} \overline{\partial J}} \right) (5.5.1)$ where $\left\{ b_{i} \left(\overline{z}_{i} \right) \right\}$ stands for a basis of holomorphic j-diffe-

rentials, and $duf\overline{a}_{j}$ - for determinant of b,c-system. From (5.5.1) we see, that central charge of $g.\chi$ -system is opposite to that of b,c-system.

Note, that occurrence of zero modes of bosonic fields makes functional integral infinite in contrast with fermionic case, where it became vanishing. Generically, when all z, in (5.5.1) are different points on Riemann surface, determinant of zero-modes, arising in denominator, is non-vanishing. But if it vanishes, the functional integral diverges. This may be in fact interpreted as appearance of appropriate meromorphic (1-j)-differential, which is a zero-mode of $\mathcal{T}(\mathcal{F})$ Sometimes these poles are reffered to as "unphysical" (since) they are not implied by local O.P.E., which accounts only for singularities at coincident points). It should be easy to express all functional integrals and correlators of $\boldsymbol{\xi}_1, \boldsymbol{\delta}$ -fields in terms of b, c-ones, but unfortunately we have nothing in b,c-system, what can be interpreted as B, V fields themselves. In what follows we present a direct computation of correlators in β , γ -system in the simplest case of j=%. Then by changing variables (as we have already done in the case of b,c-systems), we derive the answers for arbitrary j.

5.5.2. Let us compute correlators in the case of j=%. We shall use the notation $\beta = \widehat{\gamma}$, $\gamma = \overline{\gamma}$ in this case. The basic fields of the theory are:

tields of the theory are: +; $\widehat{+}$; $\widehat{s(t)} = \int \frac{dp}{2\pi} e^{ipt}$; $\widehat{s(t)} = \int \frac{dt}{2\pi} e^{ipt}$.

One easily verifies the following 0.P.E.: $\Psi(z)$. $S(\Psi(w)) \sim (z-w) \Im (\Psi(w)) + \cdots$ (5.5.2)

$$S(4(2)) \cdot S(4(w)) \sim (2-w) \cdot 1 + \cdots$$
 (5.5.3)

$$H(\hat{\tau}(z)) \cdot \tau(w) \sim \frac{1}{(z-w)} \delta(\hat{\tau}(z)) + \dots$$
 (5.5.4)

where additional field, built with the help of Heavyside step function, is introduced:

$$H(f(z)) = \frac{1}{2\pi} \int_{P+i0}^{dp} e^{ipf(z)}$$

(in the case of superghosts fields of this kind enter the picture changing operator). Combining (5.5.3) and (5.5.2) one obtains: $\widehat{\Psi}(2) = \Im_2 \mathbb{H}(\widehat{\Psi}(2)) \ \mathcal{S}(\mathbb{H}(2)).$

Thus to find all correlators we need only to know those of H(F(z)), S(H(z)), H(z). Let us calculate the correlator $\langle \prod_{i=1}^{n} H(y_i) \prod_{i=1}^{n} S(H(w_i)) \prod_{k=1}^{n} H(F(x_k)) \rangle_{2}$. (5.5.5)

It is easily expressed in terms of Green function for fields $\widehat{\Psi}, \widehat{\Psi}$, which is absolutely the same as that in the case of fermions, $G_e^{(X_2)}(\widehat{\Psi},\widehat{\Psi}) = \frac{G_e(\widehat{\Sigma}-\widehat{\Psi}')}{G_e(\widehat{O})E(\widehat{\Psi},\widehat{\Psi}')}$. One should only use integral representation of $S(\widehat{\Psi})$ and $H(\widehat{\Psi})$: $\langle \prod_{i=1}^{n} \widehat{\Psi}_i [e^{i\widehat{\Psi}(\widehat{\Psi})\widehat{\Sigma}_i}]_{i=1}^{n} (\frac{dq_e}{2\pi} e^{i\widehat{\Psi}(x_e)q_e}) = \frac{dq_e}{2\pi} [e^{i\widehat{\Psi}(\widehat{\Psi})\widehat{\Sigma}_i}]_{i=1}^{n} (\frac{dq_e}{2\pi} e^{i\widehat{\Psi}(x_e)q_e}) = \frac{dq_e}{2\pi} [[2q_eG_e^{(K_1)}(\widehat{\Psi}_i, X_e)) \cdot \prod_{i=1}^{n} [2q_eG_e^{(K_1)}(\widehat{\Psi}_i, X_e)] \cdot \frac{d}{d_e\widehat{\Psi}\widehat{\Psi}_i}]_{i=1}^{n} (5.5.6)$ $= \int_{q_e} \frac{dq_e}{10} [[2q_eG_e^{(K_1)}(\widehat{\Psi}_i, X_e)) \cdot \prod_{i=1}^{n} [2q_eG_e^{(K_1)}(\widehat{\Psi}_i, X_e)] \cdot \frac{d}{d_e\widehat{\Psi}\widehat{\Psi}_i}]_{i=1}^{n} (5.5.6)$ Let us integrate out all q_e besides q_o . The answer is: $\prod_{i=1}^{n} [(G_e^{(K_1)}(\widehat{\Psi}_i, X_e)) - Z G_e^{(K_1)}(\widehat{\Psi}_i, X_e)] G_e^{(K_2)}(\widehat{\Psi}_i, X_e)] \cdot \frac{d}{d_e\widehat{\Psi}\widehat{\Psi}_i}]_{i=1}^{n} (5.5.7)$ $\prod_{i=1}^{n} [(\widetilde{\Sigma}_i G_e^{(K_1)}(\widehat{\Psi}_i, X_e)] - G_e^{(K_2)}(\widehat{\Psi}_i, X_e)] \cdot (d_e\widehat{\Psi}_i, Y_e) \cdot d_e\widehat{\Psi}\widehat{\Psi}_i]_{i=1}^{n} (5.5.7)$

時にはないとないのでです。

Together with the familiar Fay's identity (5.1.9), $det \| \mathbb{G}_{e}^{\binom{V_{2}}{2}}, \mathbb{W}_{j} \| = \mathbb{G}(2, -2\pi) \mathbb{W}_{e}, \mathbb{W}_{a})_{a} \frac{\| \mathbb{E}(2; 2\pi) \| \mathbb{E}(\mathbb{W}_{j}, \mathbb{W}_{j})}{\| \mathbb{E}(2; 2\pi) \|} \frac{\mathbb{G}_{e}(\overline{12, 2\pi})}{\mathbb{G}_{e}(0)} (5.5.9)$

this leads to the following result:

$$\left\langle \prod_{i=1}^{n} \frac{Y_{i}(y_{i}, y_{i})}{y_{i}} \prod_{k=0}^{n} \frac{Y_{i}(\varphi(x_{k}))}{k} = \frac{\prod_{i=1}^{n} G(X_{0}, X_{i}) + Y_{i}(W_{i}, W_{n})}{\prod_{k=0}^{n} G(X_{0}, X_{k}, X_{k}) + X_{i}(W_{n})} \frac{1}{dat_{0}} \right\rangle$$
(5.5.10)

It is usefull to express this result in a slightly different form, making use of the relation between determinants,

$$(det \overline{\mathfrak{D}}_{0})^{\frac{1}{2}}(det \overline{\mathfrak{D}}_{2})_{e}^{2} = \Theta_{e}(\overline{\mathfrak{O}})$$
 (5.5.11)

The final answer is:

$$\langle \prod_{i=1}^{n} (4_{i}) \prod_{j=1}^{n} S(t_{i}(w_{j})) \prod_{k=0}^{n} (4_{i}(t_{k})) \rangle = \prod_{i=1}^{n} (4_{i}(t_{k})) \sum_{j=1}^{n} (4_{i}(t_{k})) \rangle = \prod_{i=1}^{n} (4_{i}(t_{k})) \sum_{j=1}^{n} (4_{i}(t_{k})) \sum_{k=0}^{n} (4_{i}(t_{k})) \sum_{i=1}^{n} (4$$

 $\mathcal{L}_{\beta, \mathcal{K}} = \frac{1}{2\pi i} \left(\beta \overline{\partial} \mathcal{X} = \frac{1}{2\pi i} \right) \left(\frac{1}{2} \overline{\partial} \mathcal{X} + \frac{1}{2} |\partial \phi|^2 \right). \quad (5.5.14)$

Relation between \mathcal{F}, \mathcal{K} -systems and those of fields $\mathcal{I}, \mathcal{F}, \mathcal{F}$ is known under the name of "bosonization" of bosonic $\mathcal{F}, \mathcal{F}_-$ -systems. In terms of these new fields eq.(5.5.12) has the following form:

$$\langle \prod_{i=1}^{n} \overline{S}(X_i) \prod_{j=1}^{n} h[Y_j] \prod_{i=1}^{n} e_{X_i} P[q_{k} e_{k}(\overline{z}_{k})] \rangle =$$

$$= \underbrace{\prod_{i=1}^{n} \Theta_{e}(\overline{Y_i} + \overline{\Sigma} \overline{X_i} - \overline{\Sigma} \overline{Y_e} + \overline{\Sigma} q_{k} \overline{Z_e}) \prod_{i=1}^{n} \underbrace{E(X_i, X_i)}_{i \in i} \prod_{i=1}^{n} \underbrace{E(Y_i, Y_i)}_{i \in i} (\overline{\Sigma} \overline{Y_e} - \overline{\Sigma} \overline{Y_e} + \overline{\Sigma} q_{k} \overline{Z_e}) \prod_{i=1}^{n} \underbrace{E(X_i, Y_i)}_{i \in i} \prod_{i=1}^{n} \underbrace{E(Y_i, Y_i)}_{i \in i} \prod_{i=1}^{n} \underbrace{E(X_i, Y_i)}_{i \in i} \prod_{i=1}^{n} \underbrace{E(X_i, Y_i)}_{i \in i} \prod_{i=1}^{n} \underbrace{E(Y_i, Y_i)}_{i \in i} \prod$$

As in the case of b,c-systems we shall use the change of variables in functional integration:

$$\beta(z) = \widehat{\psi}(z) \Omega_{(j-v_2)}(z) = \widehat{\gamma}(z) = \frac{1}{2} \widehat{\Omega}_{(j-v_2)}(z) \quad (5.5.16)$$

where holomorphic $(j-\frac{1}{2})$ -differential $\Re_{j-\frac{1}{2}}$ possesses zeroes at points $Q_1 \dots Q_{n_j}$, $n_j = (2j-1)(p-1)$. The integration measure looks as follows:

$$D_{S}D_{T} = D_{T}D_{T} \prod_{i} S(H(Q_{i})) [\Omega_{(i-v_{i})}(Q_{i})]^{2i+1}. \qquad (5.5.17)$$

Thus we obtain the following expression for correlator for β, γ -system with arbitrary j (we take $\prod_{j=\frac{1}{2}} \gamma_{+}^{2j-1}$ as in the case of h c-system):

and the second second

in the case of b,c-system):

$$\begin{pmatrix} \prod_{i=1}^{n} \mathcal{D}(y_{i}) \prod_{j=1}^{n} S(\overline{\sigma}(w_{j})) \prod_{k=0}^{n} H(B(x_{k})) \\ = \langle \prod_{i=1}^{n} \gamma(y_{i}) P(y_{i}) P(y_{i}) \rangle \\ \times \prod_{i=1}^{n-(2_{i}-1)} P(w_{i}) P_{*}(w_{j}) P(y_{i}) P(y_{i})$$

$$= \frac{\prod_{j=1}^{n} \Theta_{e}(Z \times e^{-y_{j}} - Z w_{j} - (2j - i)\Delta_{x})}{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}} - X_{i} - Z w_{j} - (2j - i)\Delta_{x})} \cdot \frac{\prod_{i=1}^{n} E(X_{i}, X_{i}) \prod_{j=1}^{n} E(y_{i}, w_{j})}{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}} - X_{i} - Z w_{j} - (2j - i)\Delta_{x})} \cdot \frac{\prod_{i=1}^{n} E(X_{i}, y_{i}) \prod_{j=1}^{n} E(w_{j}, w_{j})}{\prod_{i=1}^{n} E(X_{i}, y_{i})} \times \left[\frac{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})}{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})} + \frac{\prod_{i=0}^{n} E(Q \times e^{-y_{i}})}{\prod_{i=1}^{n} \Theta_{e}(Z \times e^{-y_{i}})} + \frac{\prod_{i=0}^{n} E(Q \times e^{-y_{i}})}{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})} + \frac{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})}{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})}} + \frac{\prod_{i=0}^{n} \Theta_{e}(Z \times e^{-y_{i}})}{\prod_$$

*

こうできたいでしていたとうというないというできましたがあったがある

Note, that $\mathfrak{F}, \mathfrak{F}$ -systems may be "bosonized" in terms of free Grassmanian fields $(\mathfrak{h}, \mathfrak{F})$ with spins (1,0) and free scalar field with the Lagrangian

$$\mathcal{L} = \frac{1}{2\pi i} \int \left(\frac{1}{103} + \frac{1}{2} \int \left(\frac{1}{104} \right)^2 + \frac{1}{2} \left(\frac{1}{25} - 1 \right) \int \left(\frac{1}{5} \right) \left(\frac{1}{5} - \frac{1}{5} \right) \int \left(\frac{1}{5} - \frac{1}{5} \right) \int \left(\frac{1}{5} - \frac{1}{5} \right) \int \left(\frac{1}{5} \right) \int \left(\frac{1}{5} - \frac{1}{5} \right) \int \left(\frac{1}{5} \right) \int \left(\frac{1}{5} - \frac{1}{5} \right) \int \left(\frac{1}{5} \right)$$

in the case of arbitrary j. (In variance with b,c-systems the coefficient before curvature in (5.5.19) is <u>imaginary</u>.) Bosonization rules are:

$$\begin{split} \beta(z) &= \Im z e^{-\phi} (Y_{+}(z))^{2j-1} \quad \Im(z) &= \gamma e^{+\phi} (Y_{+}(z))^{1-2j} \quad (5.5.20) \\ \text{or} \quad z_{j}(z) &= H(\beta(z)) \quad e^{-\phi} Y_{+}^{2j-1} \delta(\beta(z)) \\ \gamma(z) &= \Im \Im(z) \delta(\Im(z)) \quad e^{-\phi} Y_{+}^{1-2j} \delta(\Im(z)) . \quad (5.5.21) \\ \chi(z) &= \Im \Im(z) \delta(\Im(z)) \quad e^{-\phi} Y_{+}^{1-2j} \delta(\Im(z)) . \quad (5.5.21) \\ \text{It is straightforward to recover } (5.5.18) . \text{starting from} \end{split}$$

It is straightforward to recover (5.5.18), starting from (5.5.19) and (5.5.20).

6. MULTILOOP CORRELATORS IN WZW THEORY

6.1. GENERAL FORM OF CONFORMAL BLOCKS

In this section we shall discuss the implications of bosonization prescription for WZWM in the case of arbitrary closed Riemann surfaces. Note, that bosonized version of a theory contains more irreducible representations of KM algebra, than the WZWM itself. Thus to obtain conformal blocks of WZW theory one should design some linear combinations of conformal blocks of its bosonized version in such a way, that additional fields are projected out. On the sphere (genus 0) these linear combinations are contour integrals of certain dimension one operators, arising after bosonization. In the case of higher genera besides these contour integral insertions one should take linear combinations of conformal blocks, corresponding to different "boundary conditions" (thete-characteristics).

Naive calculation of multiloop correlators of WZWM, relying upon bosonization prescription gives the answer like $Z'(z_i) = \int \int \left[\frac{1}{2} \left$

surface has punctures at points $\{z_i\}$. All these conformal blocks, entering r.h.s. of (6.1.1) were already discussed in Section 5.

Note, that through $\mathcal{F}(W_A, \chi_A)$, Θ -functions naturally arise in denominator of formulae for multiloop characters in WZWM.

In the spirit of usual relation between chiral and non-chiral versions of the theory, we conjecture the following form of chiral conformal blocks in WZW theory:

 $\begin{aligned} \mathcal{F}_{\text{W2W}}^{\lambda}(\mathcal{F}_{1}...\mathcal{F}_{k}) = & \left\{ \begin{array}{c} \sum_{e} \left\{ X_{e}^{\lambda} \mathcal{F}_{e}(\mathcal{F}_{e}^{\lambda};\mathcal{F}_{e};\mathcal{U}_{e}^{\lambda}) \right\} \\ \text{where } K_{e}^{\lambda} & \text{are some characteristic-dependent coefficients,} \\ \text{and } C_{1}^{\lambda},\ldots,C_{m}^{\lambda} & \text{are some non-contractable cycles on punctured} \\ \text{Riemann surface. (Note, that } W_{k,1}X_{k} & \text{are periodic because they} \\ \text{are related to single-valued KM currents.) Actually conformal \\ \text{blocks of WZWM arise only for some special choices of } K_{e}^{\lambda} \\ \text{and } C_{1}^{\lambda},\ldots,C_{m}^{\lambda}. \end{aligned}$

In what follows we are going to illustrate this general suggestion in the case of genus 1 (torus). In this case, we have an alternative way to obtain some correlators (including partition functions), using well known characters of Kac-Moody algebras [45]. We shall find a complete agreement with (6.1.2).

And the second second

6.2. CHARACTERS OF KAC-MOODY ALGEBRAS [15]

Let us consider vacuum conformal block on a torus, which is associated with irreducible representation of KM-algebra with the highest weight λ :

$$J^{\lambda} = T_{r,H_{\lambda}} e^{2\pi i \tau (L_0 - \frac{c}{24})}$$
 (6.2.1)

where ∇ is modular parameter of the torus,

H is irreducible representation of KM algebra,

: is central charge of associated Virasoro algebra,

$$c = \frac{k \dim G}{k + C_V}$$
(6.2.2)

we shall show, that (6.2.1) is a value of character on the special element exp(w) of KM group.

To begin with, let us present a brief review of KM algebras and their characters [15]. Let us start with current algebra L_{ij}^{O} . Elements of L_{ij}^{O} are Laurent seria with coefficients in O_{ij}^{O} . There is a bilinear symmetric form on them:

$$(X, Y) = \overline{Z} X_{n} Y_{-n}$$
 if $X = \overline{Z} X_{n} Y_{-} Y_{-n}$ (6.2.3)
in order to get central extension of current algebra, one

should add central element c and modify commutation relati-

$$[(TX_{+}+\lambda c)(TY_{+}+\lambda c)] = T[X_{+},Y_{-}]+ + C \operatorname{les}_{+}(dX_{+}+Y) \quad (6.2.4)$$
Is we add one more element - derivative $d = \frac{1}{4}ddt$

$$[d, (Zx_{u}t^{u} + \lambda c)] = Zu X_{u}t^{u}$$
 (6.2.5)

we obtain KM algebra Oj with non-degenerate bilinear symmetric form

115 Cartan sub-algebra of Ox 18 h=hoccord (6.2.7)where h stands for Cartan sub-algebra of Oj . Let us introduce the dual space \mathcal{K}^{+} , h= hto chocs (6.2.8)so, that the following relations hold: $\Lambda_0(C) = S(d) = 1$ (6.2.9) $\Lambda_0(d) = S(c) = 0$ it deht => dic)= did)= 0. Root decomposition for the algebra $\dot{\mathfrak{S}}_{\lambda}$ looks like ĝ=te ∑the Ether Ethornia (6.2.10)

where root subspaces are defined by the conditions:

$$[h_i, g_a] = a(h_i)g_a$$
 $h_i \in h, a \in h^*$. (6.2.11)

Elements $l \in h^*$ are reffered to as roots, and dim $\mathcal{J}_a =$ = mult, are their multiplicities. For algebra Oy we have the following root system:

$$\Delta = \left\{ (d+hS) \quad (h \in \mathbb{Z}, d \in \Delta) \quad \text{mull}_{dmS} = 1 \right\}$$

$$\left\{ (hS) \quad (h \neq 0; h \in \mathbb{Z}) \quad \text{mull}_{hS} = \pi \right\} \quad (6.2.12)$$

where 'L is rank of G and \triangle - the root system of O_{λ} . (6.2.12) is a direct consequence of (6.2.10) and the fact, that for finite O_{λ} all mult_d = 1.

For a system of simple roots in Tt* for basis in the root space) we choose the following roots:

$$a_{i}=a_{i}$$
 $(i=1..., k)$ $a_{0}=., k-a_{0}$ (6.2.13)

where d_i are simple roots of O_i and $d_o = \sum_{i=1}^{n} d_i$ is long root. Thus all positive roots are:

$$\Delta_{+} = \{ \sum_{n \ge 0} h(a_{1}) \hat{s} = \{ (n-1) \hat{s} + d \} | n \hat{s} - d \} h \hat{s} | h \hat{s} | d \in \hat{\Delta}_{+} \}. \quad (6.2.14)$$

Discuss now the Weyl group of algebra 0_1 . Affine Weyl group is generated by reflections L_1, T_2

$$\chi_i(\lambda) = \lambda - (\lambda, d_i) d_i$$
 $(d_i^* = \frac{2d_i}{(d_i, d_i)})$ (6.2.15)

with respect to simple roots $d_i \in \Delta$. Because of the relation $(S, d_i^{\vee})=0$ we have $Z_i(S)=S$. Therefore W acts on a factor-space $\hbar^{\vee}/(S$. It is easy to prove, that on the hyper-plane $E = \{\lambda \mid (\lambda, S)=K ; \lambda \in \hbar^{\vee}/(S)\}$ the action is affine. Shifts along dual roots d_i^{\vee} are generated by elements

$$t_{d_{j}} = T_{d_{j}} T_{S-d_{j}}.$$
 (6.2.16)

On the whole space \mathcal{K}^{*} these generators look like

$$t_{d_{j}}^{v}(\lambda) = \lambda_{j} \lambda_{j} \lambda_{j} + \lambda_{j} \lambda_{j} + \lambda_{j} \lambda_{j} + \lambda_{j} \lambda_{j}^{2} + \lambda_{j} \lambda_{j}^{2} \lambda_{$$

Let ty be a shift operator acting on th*

$$t_{\mu}(\lambda) = \overline{\lambda} + m \Lambda_{0} + m \mu - \frac{1}{2m} (|\lambda|^{2} - |\overline{\lambda} + m \mu|^{2}) \delta$$
 (6.2.18)

where $\mu \in H = \sum_{i=1}^{n} d_i^2$. For simply-laced algebras M coincides with the root lattice. Operators $-l_{\mu}$ have the following properties:

$$t_{\mu}, t_{\mu n} = t_{\mu + \mu n} ; \quad avt_{\mu} av' = t_{av(\mu)} \quad (6.2.19)$$

where $w \in W$ and w is the Weyl group of finite-dimensional algebra O_{2}^{-} . Thus $T = \{t_{j_{n}}\}$ is a free abelian group, which is a normal subgroup in W. It is not difficult to realize, that W is a semidirect product $W = W \times T$. In fact $W \cap T = A$ because W is a finite group, and T is a free abelian one. W is generated by $t_{1} \dots t_{2}$ (3.5.1), and W contains an additional generator t_{0}^{-} , which is expressed through the shift $t_{d_{1}}^{-}$:

Using the properties of Weyl group it is easy to obtain generalized formula for characters of Kac-Moody algebra:

$$T_{R} \overset{h}{\mathcal{R}} = \begin{bmatrix} \dim V_{R} & \mathcal{R} & \mathbb{P} \\ \lim_{\lambda \to \infty} V_{R} & \mathcal{R} & \mathbb{P} \\ \lim_{\lambda \to \infty} V_{R} & \mathcal{R} & \mathbb{P} \\ \lim_{\lambda \to \infty} V_{R} & \mathbb{P} \\ \lim_{\lambda \to \infty}$$

$$(g.a.i) = 1$$
 $(0 \le i \le k)$; $(g.k_c) = 0.$ (6.2.21)

Let us use the fact, that Weyl group is half-direct product of finite Weyl group and the group of translations, and rewrite the numerator in the following form: $\sum_{\substack{k \in \mathbb{N}\\ k \in \mathbb{N}}} \sum_{\substack{k \in$

where theta-functions are introduced through

(these are in fact lattice theta-functions, corresponding to Cartan torus, of the level, proportional to (q + k)).

In (6.2.22) the following notation is used: $\lambda(c)=k$; $\beta(c)=g; \lambda$ and $\overline{\beta}$ are projections of λ and g on h^{*} , k is the central charge of associated central extension of current algebra, and g is dual Coxeter number, which coincides with C_v , $C_v=g$. For simply-laced algebras dual Coxeter number coincides with Coxeter number h and we may also

use the formula

Coxeter numbers are listed in Table.

Let us choose the following parametrization of Cartan elements:

$$T_{2} e = exp \left\{ -2\pi i t \left[\frac{|\overline{\lambda} + \overline{p}|^{2}}{2i(q+\kappa)} - \frac{|\overline{p}|^{2}}{2q} \right] \right\} \left[\frac{1}{2} det(w) + \frac{1}{2i(q+\kappa)} - \frac{1}{2q} \right] \right\} \left[\frac{1}{2} det(w) + \frac{1}{2i(q+\kappa)} - \frac{1}{2q} det(w) + \frac{1}{2i(q+\kappa)} - \frac{1}{2q} det(w) + \frac{1}{2i(q+\kappa)} - \frac{1}{2q} det(w) + \frac{1}{2i(q+\kappa)} de$$

is Dedekind function.

Let us remind that we would like to celculate the following quantity:

$$e^{\operatorname{Trit}(\Delta_{\lambda} - \frac{C}{24})} = \frac{2\operatorname{Tritd}}{\operatorname{Tr}e}$$
(6.2.29)

Conformal dimension and central charge are given by

$$\Delta_{\lambda} = \frac{(\lambda + 2p, \lambda)}{2(q+\kappa)} \qquad C = \frac{\dim G \cdot \kappa}{\kappa + C_{\nu}} \qquad (6.2.30)$$

Taking into account the Freudental's"strange"formula,

$$\frac{1\overline{p}1^2}{2q} = \frac{24}{24}$$
 (6.2.31)

we obtain the final answer:

1991年、1992年代の学校になる。中国学校には国際には学校の特徴が同じなどには多ななでのないでした。

$$T_{2} e^{2\pi i \tau (L_{0} - \frac{\tau}{24})} \underbrace{Z \det(w)(\mathcal{D}_{2})^{|\mathcal{L}_{1}|} \Theta_{w}(\overline{a} + \overline{p}), \underline{g} + \underline{k}(\underline{0}, 0, \overline{c})}_{h(\tau) \dim G} (6.2.32)$$

It is also easy to calculate conformal blocks of the

form of

$$\langle \exp \sum \phi H(z) = \sqrt{2} \exp \left(2\pi i T \left(L_0 - \frac{C}{24}\right) + \sum_{a=1}^{2} H_0^a z^a \right)$$
. (6.2.33)
Using eq.(6.2.26) with the element

$$g = exp - 2\pi i (Td - Zh 2^{a})$$
 (6.2.34)

we obtain the following relation:

119

$$\langle e_{xp} \sum_{a=1}^{2} \phi H(s) 2^{a} ds \rangle = \sum det(w) \Theta_{w(\overline{\lambda}+\overline{p})}(2a,0,T) / e^{\pi i \sum d(\lambda^{a}) 2^{a}} x$$

$$\times \prod (1 - e^{2\pi i \tau})^{-e} e^{-\frac{i \epsilon T}{42} dim G} \prod (1 - e^{2\pi i \tau} 2\pi i \sum d(\lambda_{a}) 2^{a})^{-1} =$$

$$= \sum det(w) \frac{\Theta_{w}(\overline{\lambda}+\overline{p})}{\eta(\tau)^{2}} \frac{e^{-\epsilon i \epsilon T}}{\eta(\tau)} \prod \left[\frac{\eta(\tau)}{\Theta_{x}(2d(\lambda_{a}))^{2^{a}}}\right]$$

$$= \sum det(w) \frac{\Theta_{w}(\overline{\lambda}+\overline{p})}{\eta(\tau)^{2}} \frac{e^{-\epsilon i \epsilon T}}{d\epsilon \epsilon^{2}} \prod \left[\frac{\Theta_{x}(2d(\lambda_{a}))^{2^{a}}}{\theta(\tau)^{2^{a}}}\right]$$

In this derivation the product formula for theta-function, $\Theta_{*}[2] = (SinT2)e^{iTT/4} \prod (1-e^{2\pi inT})(1-e^{2\pi inT}e^{2\pi in2})(1-e^{2\pi inT}e^{2\pi inT})(6.2.36)$

is applied.

Now let us comment, how these formulae arise in WZW theory. Cartan currents look like (4.3.),

$$H^{a}(z) = -\sum d(h^{a}) w_{d} \chi_{d} + i q \cdot \partial \ell^{a}$$
 (6.2.37)

So the l.h.s. of (6.2.33) has the form:

 $\left[\begin{array}{c} \left\langle \exp \overline{L} d(k^{2}) \overline{L}^{4} \varphi W_{n} \chi_{k} \right\rangle \cdot \left\langle \exp \overline{L} i q \overline{L}^{4} \int \partial k^{q} \right\rangle \right] \\ dC \Delta_{+} \\ \text{These correlators are easy to calculate (see s.5), and the result is:} \\ \left\langle \exp \overline{L} \varphi H^{4}(k) \overline{L}^{4} dk \right\rangle = \left[\left[\begin{array}{c} \frac{h(t)}{\Theta_{+}(Id(k_{+})\overline{L}^{4})} \right] \\ \Theta_{+}(Id(k_{+})\overline{L}^{4}) \end{array} \right] \\ \left\langle \Theta_{+}(Id(k_{+})\overline{L}^{4}) \right\rangle \\ \frac{h(t)}{h(t)} \\ \end{array} \right]$ (6.2.39)

in complete accordance with (6.2.35) and the general expectations about the relation between W2W conformal blocks and their bosonized prototypes (6.1.2). الأرابحة المحمد ستوسطه تعرد الرواري والرواري

121

7. Conclusion

We presented here a rath r detailed discussion of "bosonization" /1/ of Wess-Zumino-Witten model, which represents it in terms of free fields. In variance with other proposals (like /16/) this scheme seems realy self-consistent description of WZWM, since Sugawara's stress tensor and WZW action appear quadratic in these fields.

We demonstrated, that this type of bosonization is applicable for all simple KM algebras with arbitrary central charges K (Sect4) The number of free fields is equal to dimension D of the group, and this is very natural from the point of view of Lagrangian approach, if one wants to have a unified description for all K, since as $K \rightarrow \infty$ WZWM turns into a theory of D free fields. For some low values of K in the strong coupling domain other consistent bosonizations may arise with fewer free fields (as it happens for K=1 or K=2 /17/), but they hardly can be naturally generalized for all K.

We demonstrate, that the bosonization prescription reproduces all known answers for correlators at genus 0, which may be expressed in terms of generalized hypergeometric functions (sects. 2.3, 4.4). relating these hypergeometric functions to elementary Integrals, [(= = =)" naturally appear as integrals ones like over insertions of dimension - 1 operators /6/, required to project out the extra degrees of freedom, which arise in the theory of free bosons, - that is to project on irreducible representation of chiral algebra. In the case of WZWM, which possesses explicit Lagrangian formulation, one can interpret new insertions as a result of change of variables, needed to make Lagrangian quadratic, and this allows one to find out the form of relevant dimension-1 operators from the first principles. This should be a proper way

and the state of the second second

to derive an analogue of Felder's prescription [18] from Lagrangian approach. Note that since all non-trivial rational conformal theories are believed to be coset models, related to WZWM [19], these results suggested that all correlators at genus 0 in all RCFT are expressed through generalized hypergeometric functions. We believe, that this suggestion may be verified from the study of monodromy properties on the lines of refs. [20].

Important advantage of free field representation of any conformal theory (leaving aside its more "philosophical" implications) is that it provides one with a constructive technique for calculation of conformal blocks on arbitrary Riemann surfaces with handles and punctures. We have demonstrated this technique in calculations at genus 0 (sect.2.4). We have showed also how one-loop characters of Kac-Moody algebra and WZWM are reproduced and how the multiloop conformal blocks look like (sect.5,6). Of course a more detailed study of Felder's reasoning [18] is necessary in multiloop case.

A new important news in the crucial role of $\beta\delta$ system of free bosonic fields [11] in bosonization of WZWM. Thus far $\beta\delta$ systems arised only in the Neveu-Schwarz-Ramond approach to superstrings, but now it seems that they may play a much more important role.

The most trivial explanation of the bosonization prescription [1] comes from the coadjoint orbit approach. The WZW action is nothing but d^{-1} of the Kirillov form on a coadjoint orbit of Kac-Moody group [24]. The Gauss product expansion of group elements diagonalizes the Kirillov form (sect.4.3, 4.5) and a simple change of variables is required to make it quadratic. This choice of the coordinates (Gauss expansion) breaks explicitly G-invariance of Kirillov's form (invariant form is d (WZW action) itself, and it is non-quadratic), but dynamics is of course G-invariant, and this

CALL BOOK

guarantees that the currents have proper Kac-Moody commutational relations. Reduction of Kac-Moody algebra on generic orbits, naturally leads to bosonization of arbitrary coset models. Note that an immediate application of the construction /1/ is description of parafermions, since WZWM is decomposed in free scalar and parafermionic fields /22/.

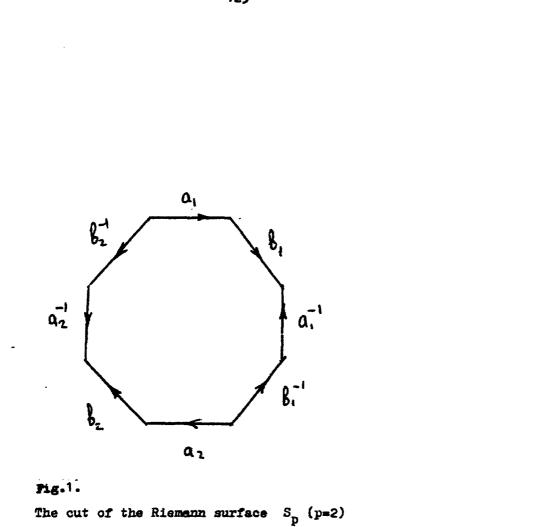
We are going to return to all these questions in another publication.

We are deeply indebted to A.Alekseev, Vl.Dotsenko, L.Faddeev, V.Fateev, B.Feigin, V.Fock, E.Frenkel, A.Gorsky, D.Lebedev, A.Losev, A.Mironov, G.Moore, A.Rosly for enlightening discussions.

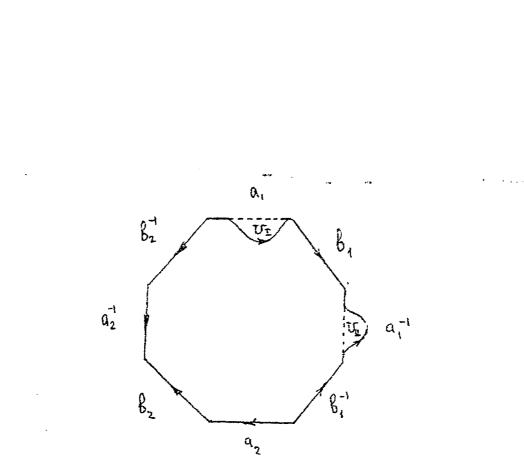
北京大学の教育などのないのであるとないのである

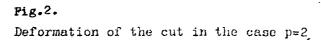
Meson and the state of the second

Table


J

متركب والمستعدية كمرز فالمسابر المراقع مراور


Coxeter numbers h and dual Coxeter numbers g of Lie algebras


G	A ⁽ⁱⁱ⁾	8 ⁽⁴⁾ DE	C ⁽¹⁾	D ⁽¹⁾	E ₆ ⁽⁴⁾	E ⁴¹	E.8	F4)	G ⁽¹⁾
h	2+1	26	22	22-2	12	18	30	12	6
g	l+1	22-1	L+1	22-2	12	18	30	9	4

·

ينبير يويري والمحاطية ومحدث المحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والمحاطية والم

いたいであるないないないのない

REFERENCES

- Wakimoto M.//Comm.Math.Phys., 1986, 104, 605.
 Feigin B., Frenkel E.//Usp.Mat.Nauk, 1988, 43, No.5, 227.
 Dotsenko V., Fateev V., Zamolodchikov A. Preprint ITP 17/89.
 Morozov A. M., Preprint ITEP, 1989, N 43-
- 2. Gerasimov A. et al. M., Preprint ITEP, 1989, N 64.
- 3. Knizhnik V.//Phys.Lett., 1986, B180, 247.
- 4. Alvarez-Gaume L. et al.//Comm.Math.Phys., 1987, 112, 503.
- 5. Verlinde E., Verlinde H.//Nucl.Phys., 1987, B288, 357.
- 6. Dotsenko V., Fateev V.//Nucl.Phys., 1984, B240, 312.
- 7. Fay J. Theta Functions on Riemann Surfaces. Berlin: Springer, 1973.
- 8. Olsnanetsky M. et al.//Nucl.Phys., 1988, B299, 389.
- 9. Iengo R., Ivanov B.//Phys.Lett., 1988, 203B, 89.
- 10. Quillen D.//Funk.Anal. i ego Priloz, 1989, 19, 31.
- 11. Friedan D., Martinec E., Shenker S.//Nucl.Phys., 1986, B271,93.
- 12. Verlinde E., Verlinde H.//Phys.Lett., 1987, B192, 95.
- Atick J., Sen A. Preprint SLAC-PUB-4292.
 Semikhatov A. Lebedov Inst.Preprint 29/89.
 Morozov A.//Nucl.Phys., 1988, B303, 343.
- 14. Kac V. Infinite Dimensional Lie Algebras. Camb.Univ.Press., London/NY, 1985.
- Li K., Warner N. Preprint CERN-TH.5047/88. Griffin P., Nemeschansky D. Preprint SLAC-PUB-4666/88. Kiritsis E. Preprint CALT-68-1508, 1988.
- 16. Witten E.//Comm.Math.Phys., 1984, 92, 455.
- 17. Felder G. Preprint ETH, Zurich, 1988.
- 18. Moore G., Seiberg N. Preprint IASSNS-HEP-89/6.
- 19. Fateev V., Lukyanov S.//Int.J.Mod. Phys., 1988, 3A, 507.

「「「「「「「」」」」

5 -----

127

Construction of the second second

20. Alekseev A., Paddeev L., Shatashvili S.//Journ. of Diff.Geor 1989, 111, 74.

and the first state of the second state of the

Alekseev A., Shatashvili S. Preprint LOMI E-16-88.

21. Zamolodchikov A., Fateev V.//ZhETP, 1985, 62, 215.

1.11

А.Герасимов и др. Модель Весса-Зумино-Виттена как теория свободных полей. 4. Многопетлевые вычисления. Работа поступила в ОНТИ 6.04.89 Поллисано к печати 24.04.89 ТІОбІЗ Формат 60х90 І/Іє Офсетн.печ. Усл.-печ.л.2,75. Уч.-изд.л.2,0. Тираж 290 экз. Заказ 74 Индекс 3649 Цена 30 коп. 見 ませせい

Отпечатано в ИТЭЭ, 117259, Москва, Б.Черемушкинская, 25

ИНДЕКС 3624

•	
·····································	ουματικός Α. Α. Α
	3 x 2 4 4 4 4 4 4 9 9 4 4 4 4 7 5 4 5 6 4 8 6 6 9 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ម្មប្រ និងក្រុមហើងដែរស្រែងស្រែងស្រែង សេចក្រុម និង ប្រភព អាមាន ដែលប្រាស់អាមានអាយាសារាមអាមានអាយាអាមានអាយាអាយាអាយា ក្រុមប្រ និងការអាយាយដែរប្រើអ្នះអ្នះអ្នះអ្នះប្រូវជានេះ ។ សេចការ ប្រ និងការអាមានអាយាសារាមអាមានអាយាយអាយាយអាយាអាយាអ	
「キャッシュ」、「クローメット」、「キャンシュー」では、1995年に、「アンシー」、シンシーンのないないないないないのであるない。	
διμιδοτική το δεργοριστα ματολογό το	
10000 - 1000000000000000000000000000000	Sama and a shake so see s
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
「「「「「」」」」」、「」」」、「」」、「」」、「」」、「」」、「」」、「」」	
「「「「「」」のないでは、なけっておりないないないないない」、「ショット」」「「「」」「「」」」「「」」」」の「」」」」」」」」」」」」」」」」」」	
- 「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」	94 34 8 9 8 9 9 8 8 9 8 8 8 8 8 8 8 8 9 9 8 9 9 8 8 9 8
やいりおくはえてにしてかり、なませたほかがわり行いかにたとの。 しいかい望るの驚流のもみのな母母母母のよ	เกรี <u>ต</u> พอกออลอะจะเจะประเทณต่องกรรษสส
"你们,你不会这么?你?你你你你你你你你的你们你们你?"你你你你吗?""你们你你你的做 <mark>好"毕竟你你的你能要</mark> 要你?"	D 4 A 2 A D 4 E 4 A D 4 E 4 A A A B 2 A E 4 A A B 2 A E 4 A A B 4 A A A A A A A A A A A A A A A
અને દેશાં દેશ વિવર્ગ ને ને ને મારે ઉપરાંગ હતું વિવર્ગ વિવર્ણ તે છે. આ ગામ દેશાં વિવર્ષ વિવર્ષ વિવર્ષ વિવર્ષ વિવ	, as a cada a cada o paga a cada a cada a c
- 「「「「「」」」」」の「「」」」」」」」」」」」の「「」」」」の「「」」」、「」」」のないない。「」」」のない、「」」」」のない、「」」」」」」。	180490470470047094084900240 <u>8</u> 20889
	020032323281C485G28208249928
2.7 ····································	1 1 2 2 2 2 4 4 6 9 <i>4 6 9 7 8 9 8 9 8 9 6 9 6 6 7 7 9 8</i>
ាល់សីសីអាអាអាអាអាអាអាអាអាអាអាអាអាអាអាអាអាអា	/ ^] ¥ 5 8 9 8 9 8 9 8 9 8 9 9 8 8 9 9 8 8 9 9 8 8 9 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9
មណ្ឌានាកាត់តាត់តាត់គេសង់។ ហេដូ។ ហេដូ។ ដែលស្អាតដ៏ស្រុះ ដែលស្អាតសង្គាល់ សមានសង្គាត់តាត់តាត់។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ សង្គាត់តាត់តាត់តាត់គេសង្គាល់ ដែលសង្គាល់ ដែលសង្គាល់ សង្គាល់។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។ ។	
でし、「「」」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」」」では、「」」」」では、「」」」では、「」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」」では、「」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」では、「」」」」では、「」」」」では、「」」」」」では、「」」」」」」	сертинициссищиениениениениено соволяхиелиссищиение и личеро
- 「「」」は、コンジンでは、「アインシンシンティー」を見たが、「アンジンキャンシン」がなったかかったかったからなかがある。	
- ションション・ションのサイドションディー・ション(1)(1)(1)(1) デジョンクサイン(1)(1)(1) サイト・アク・チャック サイン・ション しょうしょう しゅうしょう しょうしょう	
27 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	APTT FTERMENTER STRATE A A A &
37.0000505050500000000000000000000000000	
3 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 :	(A
	* 1 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
コービンとなるななななななななないをつう アンチロションのないならなるない かなみひゃののみのなかる 動物所 内容調合	838 MAR & REF & R. R. & S. M. B. & R. & S. & S. & S. & S. & S. & S. & S
អ្នកព្រះ ក្រស់និងការមកនេះ ទំហើងផ្លើង ម៉ាំង ខេត្តធ្លារដ្ឋនេះ ប្រជាជាទីនេះ ជាទំនាំងជាជាជាងជាមេ ធ្លើាមើងផ្លើង ម៉ា អ្នកព្រះ ក្រស់និងការមកនេះ ទំហើងផ្លើង ម៉ាំង ខេត្តធ្លារដ្ឋាយ នេះ ប្រជាជាទីនេះ ជាជាមេនាជាជាងជាជាមេ ហើយដែលផ្លើង អំ អំពីមួយ ដែលមួយ នេះ ដែលមួយ ដែលមួយ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ ដែលមួយ ដែលមួយ ដែលមួយ ដែលមួយ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ ដែលមួយ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ ដែលមួយ នេះ អំពីមួយ នេះ ដែលមួយ នេះ ដែលមួយ ដែលមួយ នេះ	440 mm 1 # 4 2 # # # # # # # # # # 3 3 n # 5 4 # 2 55
ေ ျပင္းခဲ့ရည္းနေရးကိုးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးခဲ့သို့ ကိုေက်ာင္ရမီးလိုင္ရမီးလို႔ရဲ႔ မီနီးရားစားနားမ်ားများမွာ ျမန္မာ့ေျမးနားမ်ိဳးများသူ႔ မီန္းျမန္းေျမးနားသူ႔ မီနီးရားမ်ိဳးသူ႔ မီနီးများနား အေျပးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳးမ်ိဳ	HE CONTRACTOR OF TO PERSON A DO DE TO P
୍ର ୬୦୬୬ ମୁସିନେଜନନାନ୍ତି ନିର୍ମନ୍ଦ୍ର ୧୫ଟେନ୍ଟର୍ମ୍ବରେ ମିନ୍ନର୍ମନ୍ଦର୍ମନ୍ଦର କରୁ ଦେବଳର ଭିନ୍ନନାନ୍ତି କରୁ ଜନନ୍ନର୍ମ ନ୍ତ କରୁ	989655777755888888888888888888888888
ំ ដងមេស៊ីច្បាស់ទីលោកបោះជា ក្រក់ដែះដែលជនក្រុមស្ថាន ខ្មែងក្រុមស្ថានស្ថានសារ អ្នកស្រីអានដែលស្ថាននេះ ស្ត្រីនិងមេសស	
1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
ម្មាស់អាចតាមស្ថាម ស្ដែលស្រុង ខេត្តា ការកម្ម ស្រុងស្រុង ហេសា ស្លារាស្រ ពេល ស្រុង ស្រុងស្រុងស្រុង ស្រុងស្រុង ស្រុ ក្នុងស្រុងស្រុងស្រុងស្រុងស្រុងស្រុង ស្រុងស្រុងស្រុងស្រុងស្រុងស្រុងស្រុងស្រុង	
ୁର୍ଦ୍ରାଳୀରୁ କରାବିକ୍କର୍ବରେ ଅନ୍ତିରେ କରାବିକ୍ରରେ କରା କରେ ଅନ୍ତିରେ ଅନ୍ତିରେ ଅନ୍ତିରେ ଅନ୍ତିରେ ଅନେକ୍ରରେ ଅନେକ୍ରରେ ଅନେକ୍ର ଅନ୍ତିର ଅନ୍ତିରେ କରାକ୍ଟ୍ରିକ୍ରି ଅନ୍ତିରେ ଅନିକ୍ରର ଅନେକ୍ଷିକରେ ଅନ୍ତିରେ ଅନିକ୍ରରେ ଅନିକ୍ରରେ ଅନେକ୍ରରେ ଅନେକ୍ରରେ ଅନେକ୍ର	<pre>drucesusesusesusesusesusesusesusesusesuses</pre>
ана али и караникан ини каралан кики и каралар каралар каралар и караланикан кики караланикан каралар каралар к Каралар каралар каралар каралар каралар и каралар каралар каралар каралар каралар каралар каралар каралар карал	0.4 R H H H H H H H H H H H H H H H H H H
ала стала стала и стала на стала стала Стала стала стал	
ι εινό του	3 C.B.S.R. K.B.A.R. T.C.C.S.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
	160 *** 1000 ***************************
· · · · · · · · · · · · · · · · · · ·	
· · > • • • • • • • • • • • • • • • • •	***************************************
· · · · · · · · · · · · · · · · · · ·	***************************************
и наявляние собрать и польки стальных собрать и полька в на полька на	
<u>, </u>	8257775284848538653 % 68888 8888 6
ំ ដែលម្លានដល់ស្ថាន មាន នេះ ស្ថាន ស	***************
୍ମିର୍ଡ୍ବରେମ୍ମ୍ର୍ଙ୍କର୍ବରେମ୍ମ୍ରମଙ୍ଗର୍ଶ୍ରର୍ଥ୍ୟାର୍ମ୍ କର୍ମ୍ଭର୍ଶ୍ର୍ମ୍ବର୍କ୍ରିମିହେର୍କ୍ରିମାନ୍କର୍ବର୍ଭ୍ୟାଳ୍କିକ୍ର୍ଭିକ୍ର୍ ଭାଷା	8 + 5 8 8 5 4 8 1 1 + 4 1 × 2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×
್ಯ ಕ್ಷಣ್ಣ ಸ್ವಾಶ ಸ್ವಾಶ ಸಂಭಾತ ಸಂಭವ ಸಂಭಾನ ಸ್ವಾಭಿಗಳ ಸಂಪರ್ಶ ಕಾರ್ಯನ್ನು ಭಾರತ ಗಳ ಸಂಭಾಗ ಸ್ವಾಭ ಮಾತ್ರ ಸ್ವಾಶ ಸ್ವಾಶ ಸ್ವಾಶ ಸ್ವ	
់ ដែលត្រូសគ្នាដ្ជជន៍ដឹងក្រកាក់១៣៦៥សមានសេស៊ីតែខារមុខដត្តផ្តែការមេទ្រី។មេទង ដែលអាក្រភាភ ដែលដែល អាមិណី អ្នីអាមិណី។ ក	0.0.0.6.5.5 0.0.0.5.5.4.6.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8
LIBBARATINA DEGISERIANE NE PAPERANANANANANANANANANANANANANANANANANANAN	
្ត្រាមមកក្រុមក្រុមក្រុមប្រជាជាន្ត្រាមក្រុម ដែលស្រុកដែល ដែលស្រុកដែលស្រុកដែលស្រុក ដែលស្រុកដែលស្រុកដែលអ្នកដែលអ្នក ស្រុកមកក្រុមក្រុមក្រុមក្រុមប្រជាជានិត្ត ដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុកដែលស្រុក	
аланын каралык киралар алар алар алар жаран кинето карлуу биралык алар жаран карлуу биралык алар жаран жаран к Карлуу кинетик аралык киралык карлуу карлуу карлуу кинето карлуу биралык алар карлуу карлуу карлуу карлуу карлу	

i na kana kana kana kana kana kana kana	CONTRACTOR AND
- こうかうかいであるとない、いたいというなどがなってなられたすべきのないになるがない、「おおおやちなどをする」	
IS A TEPESSON ALLOW FOR WITH THE APPENDENCE AND A CONTRACTOR AND A TEAMAGE	***************************************
1000 1 4 4 4 4 5 5 5 5 4 4 5 5 5 5 5 5 5 5 5	
្ល៍ ករតិត្តមក្សតុត្តក្សតុល្អ 式 🕫 ជាមួយ 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹	6.5. Go 2.5 C 6 C 6 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8
алан ан а	F.9. ∰3,65,5 x 3 + x 8 2 + x 8 3 ,6 x 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8
្ត្រំនេះ មេខងលេខងងធំតុមាន ២នាមដណ្តែល មាសនាទានក្នុងស្អែល មណ្ឌា ស្រុងដែល មេខាមែល ស្គ្រាល ប្រាយ ប្រាយ ប្រាយ ប្រាប	● x ¥975 x + # x 16697 + # x 4975 x + + # # # <u># #</u> # # []
- 💱 กระวัทธุรรรรรรรรรรรฐกระวัญหลุดจะประวัติจะชังกระวัติจะสายและกระวัติจะสายจะกระวัติจะสายจะกระวัติจะกระวัต	····································
каневиськань на	1 - 5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

ୁ ଦେଇନ୍ମ୍ଭାନ୍ତାନ୍ତାନ୍ତ୍ର ମୁକ୍ଳିକ୍ଳ୍କାନ୍ତାନ୍ତ୍ର ମଧ୍ୟରେ ଅନ୍ତର୍ଭ ପ୍ରାନ୍ତାନ୍ତ୍ର କରିକ୍ଳିକ୍ଳିକ୍ଳିକ୍ଳିକ୍ଳିକ୍ଳିକ୍	3 & 5 & # # # # # # # # # # # # # # # # #
	- 1
	1
F. ·	

М., Препринт ИТЭФ, 1989, № 74, с.85-128

1.44