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1. Introduction

Quantum mechanics of a given system 1s controlled by the group
of classes of closed loops (the funaamental group) of 1ts configuration
space {1) ana, of course, statistical mechanics will follow suit. The
configuration space of a system of N 1identical particles will have a
non-trivial fundamental group [2], that 15, will be multiply connected.
Let M be the configuration space of each particle and consicer the
set MY = fx = (x,, %p, ..., %), the cartesian product of manifold M by
itself N tiues. MV will be the configuration space of a gas of N
gistinguishable particles contained n M M Is wusually a 3-
dimensional Euclidean box whose volume V 1S taken to infinity at the
thermodynamica! limit. when the particles are indistinguishable, two
points x and x of MN are equivalent 1If the sets (x,, X,, ..., x\) and
Xy, Xy, ..., Xy) differ only by a permutation, a transformation
belonging to tne sSymmetric group Sy, and the configuration space
becomes the cuotient MN/S, Wnen M 1s incced Euclidean, and so
topoiogically trivial, the fungamental group, ingicated 1,[MN /Sy), 1s
Just Sy Space MM is then the universal covering of the configuration
space and tn2 N-particle wavefunction will belong in the carrier
space of some representation of Sy Wwhen the particles are also

impenetrable, coincident positions for them must be excluced. This is
done by defining the set

Br, = d0x, %, ., xy) sucn that x, = x; for some 1,j)
and taking 1ts complement in MN,
FyM= 1M\ D, . (1.1)

This would b2 the configuration space for N distinct impenetranle
particles. The r.ndamental group of this space, Py = T4[FyM), Is the



pure braid grous 13} 1L 18 in particular the fundamentel group fer the
configuration space of a classical hard-sphere gas.

Consiger further the particles to be Indistinguishable. Let Byt

be the space obtained by identifying all equivalent points, the quotient
Dy SNT

By M= FyM /Sy = MM DSy . (1.2)

Tie fundamentai group of this configuration space, b, = Mi(ByMi, 1s
the /u/] braid group, or simply braid group.

Summing up, FyM is the configuration space fc- a gas of N
impenetrable particles, ByM Is the configuration space for a gas of
N impenetrable ang identical particies and the pure and full braig
groups are the respective fundamental groups of such spales
Quantization 1s to be performed on such highly complicated, multiply-
conneced space [4]. We shall see below that braid groups concern
real, usual braigs and that, because bralds can De unwoven In Spaces
of three or more dimensions, all this is of possible prectical interest
only for two-dimensional systems. The quotient of the full braid group
by the pure braid group is the symmetric group:

BNIPN = SN- “3)

when dimM>2, the brald groups are extensions by Sy of [mnl,
wnen M 15 itself topologically non-trivial, 7y(M) will be some 0Oiscrete
group. wnen M s trivial, 1t reduces to the igentity. In the Euchdean
case M<=E3, 7y =1, By = Sy, MEMN/S) = Sy The classes of
loops, highly non-trivial on a punctured EZ2, become trivial 1n
puncture¢ ES, where each 10op may be continuously ceformed to a
point. Consequently, for dimM 2 3, statistical mechanics will be just
as usual, regulated by the symmetric group, with bosons and fermions.



Tne whole point 1s that this 1s not forcibly the case for dimM=2 A
gas at 2 dimensions may have a dtifferent statistics, governed Dby
brald groups, 3 &raid statistics. Such statistics Is expected to play
a, role In 2-dimensional condensed matter physics phenomena such
as the fractional quantum Hall effect and high temperature
superconductivity [5). Braid statistics has been the object of highy
sophisticated analysts [6), in comparison to which our approach Is
undoubtedly naive. Most treatments are concerned with particles
whose exotic statistics is due to their special structure, such 2s
Wilczek's anyons [7] In reality, manifestations of such exotic statistics
are to be expected as soon as Impenetradble particles are considered
in two dimensions [8), whatever their Internal structure {9).

it 1s our contention that the first step In the understanding of
a new statistics 1s to examine the corresponding fdeal gas. That Is
what we intend to do here, taking iInto account the fact that
impenetrability is enough to ensure the emergence of braid statistics.
Such a3 free g25 might come to model, up to interactions, the electron
gas iIn superconductors, In which the electrons are confined to the
surface. it is anyhow the starting point, to which dynamical effects
are to be adced In a deeper analysis. Dynamics has Deen extensively
studied, mainly In the line of Landau-Ginzburg models [10) A
complete knowledge of the ideal case will help to separate effects
of dynamical nature from those of purely statistical origin.

As the Iist way to Introduce braid groups is through the
symmetric groups, and ailso because these would anyhow regulate the
case of Interpenetrable particles, we start by recalling in 82 the
ideal gas stetistical mechanics as ruled by Sy The canonical partition
function of a real gas of N particles 1s a certain Sy-invariant
polynomial, the cycle indicator polynonual. Furthermore, the symmetric
group maintains a bookkeeping role even for brald statistics, as it
counts the classical configurations in terms of which the quantum
partition function 1s uitimately written. The adopted pedagogical tune
seems unavoidadble because we want to stress some aspects to be
later adapted to the brald case. In particular, permutations are



introduced In a pictortal way specially conventent to generallzation.
The 2-dimenstonal case exhibits some characteristic symmetries,
lezding In pailiceier to the identity of boson and fermion Specl{ic
heat. In the bosonic case, although ground state crowding of particles
do occur at low enough temperatures, no lambda potint 1s found, so
that transiticn must proceed <smoothly. A more mathematical
interpretation of the usual realization of wavefunctiors tn terms of
distinguishable particles is given 1n §3. It helps clarifying what
happens when exchange symmetries distinct from Sy are at work. we
give a (necessarily very iIncomplete) introduction to bralds and thelr
groups In S4 ant proceed to <Study the corresponding statisticel
mechanics In S5. There 1s one brald statistics for each value of an

angular parameter @, with @ = O corresponding to bosons and @ = 7
to fermions. As It might be expected, intermediate values of @ leads
to intermediate behavior of the physical quantities, but this
“interpolation” goes through the classical case 2t @ = m/2, where a

Boltzmmann gas comes out. Some final comments, Including a
comparison to parastatistics, are made in § 6.

2. Symmetric group statistics

The role of the symmetric group [11] In Statistical Mechanics
Is best seen in the cluster decomposition [12] of the canonical
partition function, which happens to be an invariant polynomial of Sy

in order to see it, let us start by shortly reviewing some well
known facts about permutations.

A general permutation P of particles labelled xy, xp,. .., Xn-10 XN

%o, %o, - - - Yoy Yoy,
decomposed into the product of disjoint cycles, particular tail-biting

X1 X5 oo o X
15 usually Ingicated by P = [’ 27 " N x") and can always be



permutations of type (:;,’g ) ™is 15 @ cycle of length ,

or an r-cycle. it ts convenient [13} to attribute a vartable t, to a
cycle of length °r" and indicate the cycle structure of a permutation

by the monomial t‘:' t‘z’z t§3 t:' , meaning that there are vy 1-
cycles, v, 2-cycles, etc. Permutations of the same cycle type, that is,

with the same set (vj),go into each other under the action of any
element of Sy they constitute conjugate classes. To all permutations

of 2 fixed class will be attributed the same monomial above. In this
sense, Ssuch monomials are Invariants of the group Sy The total

number of permutations with such 2 fixed cycle configuration 1S
)
—I-—IN—N"——;] . The N-variable generating function for these numbers 1Is

the cycle indicator f:lynomial [14]

*
NI v;

Gy = Oyt s, = T g 40203 @)

iy 2 3

where the star (¥) recalls that the summation takes place over the
sets (v,) of ncn-negative Integers for which

QY .
x| |V| N.

Cycle indicator polynomials satisfy the relation [15)
N i

, CN (l,] = z m lm'l CN'm (t,] R (2.2)
m)



which may lead to recursion formulae when the t,.'s are known and
will be useful later on.

The canonical partition function oi a3 real non-relativistic gas

of N particles contained in a d-dimensional volume V s a cycle
indicator polynomial for the symmetric group Sy, with the

\J
(combinatorfally ~meaningless) ~variables t = Joy 75 giving the

contripution of the j-th order cluster integral:
- Lo i, 23)

wherep = 1/kT; 4 is the mean thermal wavelength, b, Is the J-th
cluster integral [16). For 3-dimensional igeal quantum gases, statistics
Is simulated by an effective Interaction for which the j-th cluster
Integral 15 b= («¥"1/())2 for Dposons (upper sign) and fermions
(lower sign). As seen below, bj=(:)"1/)2 in the 2-aimensional case.
Tne above result might lead to some academic speculations. Any

discrete finite group 1s isomorphic to some permutation group [17]
and to any subgroup G of Sy corresponds a cCycle indicator polynomial

[18}), which would provide the canonical partition function for an
Imaginary gas whose “statistics™ 1s governed by G. For G = Zy (the

cyclic group of order N), for example, Qu(f,V) = by fa (19] In reality,

Sy will remain in the background also in the case of braid statistics

and the indicator polynomial will retain its role, with only the
“comoinatorially meaningless® variables t; modified

Every cycle is a composition of elementary transpositions, cycles
of length 2, s0 that ultimately every permutation may be written as a
product of transpositions. That Is to say that transpositions generate
the symmetric group. Permutations with an even (odd) number of



transpositions are called even (00d) permutations. We shall use as
generator basts for Sy the set (S;) of elementary transpositions: S

exchange the 1-tn and the (i+1)-th entry

Xy X2. .. X X .- XN-y XN)
Si = . (2.9)
' ("l X2 - Koy Xy oo Xpeg XN

Each generator sy may be represented Dy a diagram of evident
conception, Indiczted tn fig. 1 for N=4

Fig 1: Disgrams of the S, gensrstors.

Elements of S are pictured as compositions of such graphs, product
being represented by downward concatenation, as in the examples in
fig. 2

85, 5182°3 82 = 1

Fi3 2. Elements of S4 ore cblained by concatsnation.

It 1s noteworthy that the sy's obey the algebraic relations



S S" S = S Ql s Sfl
) P V) ) ) ) 25)
Sy S =5 S for I1-j1 22,

as can be easily wverified by composing diagrams. Alsc, as In the
example at the right of fig 2, squaring a generator corresponds to
no exchange at all, refleting the property

(592 =1, (26)

typical of transpositions. Actually, (25) and (26} completely
cheracterize the symmetric group, in the sens:z that aiy group with
generators satisfying them will be isomorphic to Sy. A group
introduced in this way, by specifying generators and the equations
they satisfy, 1s sald to be given by 8 presentation.

To recall the import of 2all that In elemeriary Quantum
Mechanics, let us indicate all coordinates, spins, etc, of the N
particles by the collective variable x. Exchanges of particles are
given by the action of elements of SN on x. General permutations are
prooucts of elementary transpositions of two particles, each one given
by six, for some 1. For instance, if N=2 and x = (ry, r2), the only
exchange will be to (rz, ry)= syl(ry, r2)) States correspond to rays iIn
the Hilbert space of wavefunctions: the same state is represented by

W(x) and €'l Yix), with § an arbitrary phase. Symmetry under a group
will imply that wavefunctions respond to transformations according to
a unitary (or anti-unitary) representation of the group. Under a
permutation P the wavefunction will undergo a unitary transformation
UP) In Hildert space. The set {Ksy) of unitary operators will
constitute a basis for such a representation and will have to satisfy
conditions (2.5) and (2.6). There is, however, an additional condition: as



wavefunctions § are supposed to have values in a I-dimensional
complex space, this representation must be a I1-dimensional unitary
representation and consequently only phase facters appear: Yi(syx) =

WSy (x) = i Yix). It is immediate to see that (25) Imposes the

equality of all the phases, so that Ws) W) = e*® yox), with the
same @ for all 5. And that (26) imposes U%(s)) Yix) = Wsj2) Yix)

= e @y = yix), so that ¢P <21 There are only two I-

dimensional representations of Sy the totelly symmetric one, related
to bosons and with WP) = +1 for every permutation P; and the
totally antisymmetric one, In which fermions find their place, with
UP)= +1 when P 15 even and U(%) = -1 when P is odd The 1-
dimensional nature of Sy representations is responsible for the lack
of parastatistics observation. Notice that, once unitarity is supposed,
(2.6) Is equivalent to hermiticity.

Let usnsw proceed to Statistical Mechanics. As the statistical
aspects are very similar, we shall examine directly tre 2-dimensional
case and only recall from time to time the wusual 3-dimensional
results for comparison. Momenta being 2-dimensional vectors, we have
now, Instead c¢f 2n energy sphere, an energy circle. the number of
microstates for particles on a surface of area S with energy less
than or equal to € s Z(E)=4mmSE/MS and the corresponding
number of microstates with energy between E and E+ dE  will be
482mS

0z
gleycz = —=adk-= V)

aF dE . For example, if we want to

E
cnaracterize a Fermi temperature by kTp = Ef, we impose Jg(E) dc =N
h2

ang find E;p = 0w m ‘WD 9=3/N) or,in terms of a “critical”
2
h

thermal wavelength, lg . m = 2 0. Unlike the J-dimensional
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case, the state density 15 here constant This may be a reason for
the specific heat symmetry which will be found below.

The pressure ard the particle number density expressions in
terms of the fugacity z are

P - _ﬂl‘_'!‘.m: - e BE
ﬁ: T%I[\“:ZQBEJ‘* h2 Jd..ll\“.leﬂl (2.7)

! !
he Y —— == (i3 (28)
Z rldt g ¥

3

To see how (2.3) comes out In the present case, iet us examine
the partition function for N particles:

N
ONB.V) = i_‘ J dzp|02020203 e 02")“

2
)

}
$I —¢ 3 (29)
e ‘slzm plnp2r-"alep|ap21'-'Jph - .

All the statistical content lies In the normaltzation amplitude <py, Py,
oo PN}P1 P2y - ., Py>. The ket 1Py, P2, ..., Py> IS written as a sum
of ordered products of one-particle kets |py> normalized to delta, <pyf

P> = sz(p‘-p,), and the resulting amplitude i1s a certain sum of

deitas. We may look at the first, second, third, etc terms in each
ordered product as corresponding to the first, second, third, elc
particles, so that ultimately the physical ket is glven as a sum of
contributions of distinct particles, with coefficients fixed Dby
statistics. Consider the usual ket for case N=2:



1
1p1, 2> = 5 [P 1> 210> 1py> ] (2.10)
(upper sign for bosons, lower for fermions), from which
|
Pp.p21P1 P2 = 3 [ 820, - p)8%p; - py) « 8%p, - p)8%py - p))).

This amplitude is actually a decomposition into cycles: the {irst
factor gives the contributions of the two possible 1-cycles, the

second the contribution of the only 2-cycie. Because of the
integrations in  Qu(B,V), it does not matter which momentum IS In

each place: only the number of cycles of each lype is important. we
can iIntroduce the notation 8, = Sz(p, - py) for a 1-cycle contributien,

& = &y D;)sz(pj -py) for a 2-cycle contributton, 85 = §%p; - p)6%p,
- Py 52(0;'01) for a3 3-cycle contribution, etc, so that

1 ,-
P1, 0210y, P = 5 (8,2 £ 8. (211)
For N=3, we take

f

|
IPy, P2, P32 * '3"!'[|D|) Ip22 Ip3> £1p2> [py> Ip3> 219> Ip3d Ippd
$1p3> 102> Ipy> + 1) p3d 01>+ 1p3> 19> Ipy> ] (212)

and find

P . .
P10, P3P P2, P>+ 1B 13880 285). 213

11



In reality, the numerical factors just count how many permutations
there are of the corresponding cycle configuraticn and  the
amplitudes behave as cycle indicator polynomials:

| -1
P12 BNIPL P2 B> = i Oyl ) (2.14)

Notice that an amplitude 15 not really a cycle Indicator polynomial: it
only behaves like one under the multiple integration sign, which puts
all momenta on an equal footing. Taking (2.14) into (2.9), the final
expression of the partition function Is easily obtained:

oNB.V) = Gyl ——j—fg ) (2.15)

In last resort, the partition function is written as the sum of
contributions of all configurations of distinct garticles, with
coefficients fixed by statistics. In the present case, there 1S a one-
to-one correspondence between such configurations and the elements
of Sy We may start from the configuration |py> Ip2> ... Ipy),
corresponding to the identity element and then get the remaining
configurations by apllying all the group elements. For this reason, the
partition function for an ideal quantum gas will have a form
analogous to that of a ‘real” classical gas, the statistical effects

being simulated by an effective interaction represented by non-2ero
"configuration integrals”.

Actually, the amplitude normalization for the two-particle case
fixes the higher cases:as the t's (= ()1 &) are known in tne

present case, (2.2) leads here to a recursion,

12
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(pln020'-'|pN|p"p25'>'opN)'
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In terms of the fugacity, the expressions for the density and pressure
will involve, instead of the famihar Bose and Fermi functions gs,o(2),

93,2(2), f5,2(2) and f3,(2) of the 3-dimensional case, the dilogarithm
g2(2) = Lip(2) and the logarithm g,(z) = - In(1-2), which are specially
simple. The formal “configuration Integrals™ are

-1
(2) for { bosons } (2.17)

by = 37 fermions

«©
and tne grand-canonical partition function will be & = Z_'& W

e -
The pressure 1S then obtained from := = In & and the density as z

kT
o -
32 In &:
A S S @, 92(2)
kT ]?l Dj z j 2t = '2(2) = - gz('Z) '
i

N2 2 (s)" 9,(2)
S 2ine 2 ] z) - {r,(z) = - gy(-2) ]

3= J=1
NAZ A2 T
Notice that M2 = —— = 723" % —fT— . Compactly written,
A
F
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MZ=2gy(z 2= 5 In(152) (2.18)

PAZ/KT =2 gpz2) =2 L2 2) . (2.19)

Quantum effects are to be expected, of course, for large e As a
consequence of (2.18) the fugacity for bosons s directly given Dy
2= l-e"‘lz and the eg.ation of state iIs

p
Whasas * 27 9010 (220)

For the fermion gas, the fugacity is zf=e"7‘2-l and the equatien of
state is

L ! ) 2
okT Mermions = = 57 92" = 73 g (1-e™%) . (221)

These equations of state are qualitatively similar to those appearing
in the 3-dimensional case and are shown in fig. 9 as particular cases

labelled ¢ 1. For boson and fermion gases of the same temperature,
mass and density (same value of mA2) 1t follows from (2.18) that

4 Z
e I .
z‘ '_zb ) ZD ‘ *21 . (2-22)

Notice also that, both for bosons and fermions, the internal energy isU
= PS. The constant-surface specific heat is

14



15

Cs Ly 1q2P3)
Nk Nk‘'aT INS "Nkt oT NS -

For bosons, we find

C s
(ﬁki)m =2 —nif gz(l-e‘""z) -2 (1/(e" 2 -1 (2.23)

One verifies that no derivative singularity occurs in this 2-
dimensional case (curve labelled [¢ 1] in fig 10). The Jow temperature

trend is linear with coefficient 2 §(2) = R%/3. The ground state
occupancy is

P4
(Oghosns * T = 7 * e (224)

for lower ang lower temperatures tne ground state gets more and
more crowded, byt with no singularity.

For fermions,

c
(-,f; ormins ® - 2 E'E gt 1-e™2)+ A2 (17672 - 1) (2.25)

The occupancy ¢f the ground state 15 now
Z -ni

A peculiar symmetry appears in the 2-dimensional case, due %o
(2.22) plus a very special property of the dilogarithm [20],
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16
go(1-x) + gol1=1/x) = ~(1/2)(Ix)2, (2.27)

Expressions (2.23) and (2.25) are of the form

2 - U
f(u) = g g1 -e™Y) - prperil (2.28)

with u = + A2, It comes immediately from (2.27) with x =e™Y that
f(u)=f(- u). We fin¢ then, for each fixed value of nA2,

Po
s~ O mis = 5 12 (229)

and the rather surprising resuit

C
ﬁ%)m * (ﬁi' )Iermions : (2.30)

Bosons and fermions have consequently the same respcnse to local
energy concentrations, as the energy fluctuations are <2 - <E»2 =
kT2C5 Only to check how general IS this property, we may examine

another fluctuation, for example the isothermal compressibility:

m2
er - | 4
(xl)bosons 022kT = A ZKT (2.31)
e

» s L B -
Xiocmions * 22207 * 22T 2,,” - 2Ny (232



Consequently, the number fluctuations are different,

2y - N2 2
[(N ><N:N> ]bosons' nka'l * A2 (2.33)
&N -2 y4
[ N> ]rarmlons" "kaI = "'nif (2.34)

We see that, although the symmetry still shows itself, the equality

for bosons and fermions 1Is a special characteristic of energy
fuctuations.

3. Covering spaces

in orae” to s<e whal happens when exchange groups distinct
from Sy are in/o0lved, we shall need a more detailed understanding of

the meaning cf decompositions ltke (2.10) and (2.12). The configuration
space for N identical inierpenetrable particles is E2N/Sy. E24 is the

universal covering, as the fundamental group &, is Sny. A covering

space of a s;zce X s another space which is locally nomeomorphic
to X, an unfolcing of X breaking some equivalence between its points.
Every space hz3 a unique universal covering, which is simply-connected

(has X, = (igentity)) and whose folds, or sheets, are in one-to-one

relatioship witn the elements of L, Tne different wvalues of a

multivalued function ¥ on a multiply-connected Space are obtained
through a representation of a group, the “monodromy group™ of ¥, in

general a subyoup of Ky. A functlon becomes single-valued on a
covering whose sheets are in one-to-one relationship with tne

17
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elements of its monodromy group. All functions become Ssingle-valued
on the universal cevering.

Consider again, to fix the ideas, the case N=2. Suppose that
positions are sufficient to describe the particles and call x; and Xxp

the position vectors of the first and the second particles. The
covering space E9 Is the set ((x;, x)). The physical configuration
space X would be the same, but with points (xy, xo) and (xp, Xy)
Identified. Point (x,, ;) is obtained from (x;, x;) Dby the action of
the transposition sy: (xp, x;) = §;(xy, x2). A complex function ¥(x,,
X2) (say, the wavefunction of the 2-particle system) will be single-
valued on the covering space, but 2-valued on the configuration space.
E4/5, involves a cone[21) and is rather difficult to picture. To make
a drawing easler to look at, we consider instead the ccvering related
to the function \E whose group, the cyclic group Z,, is 1somorphic to
So. The scheme in fig. 3 shows how ¥(x;, x,) is single-valued on E9,

E4
Y 4 {/- . 4
/(x xp) /"‘-.
L AL Tl tredsiiiii2
S PYixy,x,)e s WX, X,)
81(/ o (x,, %) / G 2% vz

'..’-'."'.',._.-.-:-',"-' ~v , v(x" xa) ) U( s ‘)

4 R — oo
E / sz ".:;1" ? .’,.'.,.'.- " w
. '-'-Z'.'.'.} P ATIET L R
.(‘" KQ)- 93,1')

Fig 3: Scheme of the covering space for N =2,

where (xq, x3) = (x, x;), and double-valued on X, where the two
values ¥(xy, xp) and ¥(xp,x,) correspond to the same point (xy, o) =
(X2, Xq). ¥lxg,xy) = ¥lsy(x),xp)] = Usy) ¥lxy, xo) = £ ¥(x,, x;) s obtained
from ¥(x,,x;) by the action of an operator Ws;) representing S, on

18



the Hiibert space of wavefunctions. There are two sheets because S,

applied twice Is the Identity. Commonly used wavefunctions are
taken on the covering Space, where they are single-valued, and on
which, in our scheme, particles are supposed to Dbe distingulshable.
Here the monodromy group 1Is the whole group Sp and two sheets
appear, one for each distinct group element, 1 and s;. This means
that in (2.10) we sum over all distinct sheet contributions. An

analogous treatment may be apllied to the N=3 case (2.12), In which
6( =3i= number of elements of S3) contributions come out, one for

each sheet. The academic example of the °Zy-gas” mentioned below
equation (2.3) would show no difference In the N =2 case because
groups Z, and S, are isomorphic, but would exhibit quite a different
covering for N=3, as the monodromy group Zz would require only 3
sheets. we learn in this way what 1S really cone when “physical’
kets or wavefunctions are written In terms of distinct-particle
contributions: a superposition of all the values Is taken. In the
analysis of the Aharonov-Bohm effect, superposition of contributions
coming from two sheets are usually considered, although only at that
point where tne Interference 1is supposed to be detected (22) In
reality, the (iczal) configuration space 1s infinitely connected angd the
usual treatment is to be seen as an approximation, as contributions
from infinite paths belonging to all distinct homotopy classes should
be taken into account. Infinite-connected cases are in general fairly
complicated. Wwe shall see below that braid statistics does require
infinitely-folded covering spaces, yet normalization eliminates all but
two of the Infinite contributions.

4. Brald groups

Mathematicians have several definitions for braid groups [23),
althought they seem to prefer that sketched In the Introduction
because It holas for any manifold M and consequentl; lends ftself
more easlly & generaiizations. In the most suggestive of such

19



19

definttions, real, usual bralds are concerned and thelr theory 1S
inCluded in the (still In progress) study of general weaving patterns,
which also encompasses knots and links. it is customzry to call
braids, when Introduced in this way, geometrical obraios end ihe
corresponding groups, Artins groys after their creator. A braid Is
seen [24] as a family of N non-intersecting curves (Yy, Ya.....YN) On
the cartesian product E2 x[0,1) with

Yi(0) = (P;,0) for j=1,2,....N
Yj(1) = (Pgj). 1) for j=1,2,....N

where O is an index permutation. By historical convention, the strings
are to be considered as going from top to bottom. Bralds are
multiplied by concatenation: given two braids A and B, AB Is obtained
by drawing B below A The brald group By consists now of all such
compositions of path meshes. Fig 4 depicts some simple braids of four

/7
/ |/ \ D
1 2834 12 34 123 4 12 3 4
(o) (b) (c) (d)

fig 4 Some simple examples of braids with 4 strings.

strands. Choosing on the plane E2 four “distinguished” points and
taking two copies of such punctured plane, a braid will result by
linking two by two the distinguished points of the two coples with
strings. Notice that in the drawings the plane E2 is represented by a
line only for tre sake of faciiity. in 4a, the line from 2 to | goes
down Dehind that from | to 3. The opposite occurs In 4b. These

20



braigs, like those of 4C and 40, are Gifferent because they are
thought to be drawn between two planes, so that the extra dimension
needed to make strings go behind or before each other 1S avatlable.
Fig 50 shows the trivial 4-brald, with no interiacing of strands at all.

/ /
( = t 3 Q

\ /

(o) {0) (c)

Fig S: Colored braids: (8) s equivelent 1o the icentity (b), while (c) is not.

It is identical to 53 (which can be unwoven, continuously deformed
into it) but quite distinct from Sc. The 1atter cannot De unwoven or,
more formally, reduced to the trivial braid by any continuous family
of aeformations (1sotopies) of E2 Experiment shows that it would be
possible o aisentangle it If the space were E3. Actually, any braid
on E> may be uioralged ... as witnessel Dy millema of practice with
hair Draids. Hair braids reduced to E? can be simulated by gluing
together their extremities, thereby eliminating one degree of freedom.

Bralds not leading to real exchange of end-points, such as those
of 1195, are cailed coulored braids. The strings may be seen as time-
trajectories of particies in E2, on which "passing behind” and “passing
before” correspond to gistinct motions. Colored braids will correspond
to closed paths on E2, wherefrom the role of P4 as the fundamental
group of the punctured space F4(E?E?) wren further the O1stinguished
points are 1gentiited Dby supposing Lhal their exchanges have no
consequence, By appears as the fundamental group of the
identification space F4(E2xE2)/S, In the multiplication of the identity

into tnfinite possibilities lays the essential difference béetween Draid
groups and symmetric groups.
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Fig 6 shows the basic, elementary steps of weaving for N= 4,
the simplest nontrivial bralds. Thelr inverses are shown 1f fig. 7. Thelr

/ / /
/ / /

(Jl (J2 05
Fig 6:8, generators corresponding 1o the S4 generetors of fig 1.

respective composition yfeld the trivial braid, which 1s the neutral
identity element, which changes nothing when multiplied by any braid.
The product 1s clearly non-commutative. Any braid of 4 strands may

be obtained by succe: .ive multiplications of the elementary braids O,

O, Oy and their inverses. Such elementary braids are consequently
sald to generate the 4th braid group, B4 The procedure of bullding

\ \ \
\ \ \

-1 -1 -1
o, o, o,

Fig 7: Inverses 1o the generaslors, also corresponding to those of fig 1.

general bratas by proaucts from elementary braios may be used
indefinitely. The brald group is consequently of infinite order.

Impenetrability s obviously essential. If strands could traverse
each other at will, all colored braids reduce to the trivial braid,



Figure 6 would be the same as Figure 1, 43 would be tdentical to 4b,
4 to 40 and the group would be simply Sq, with O = s,

All this can be easlly generalized to the N-th bratd group By,
whose elements are bralds v/ith N strands. Real experiments with a
few strings are very helpful to give the feeling of it.

In the passage of Sy (0 By, any permutation of points becomes

multiform. A colored geometrical braid 1s a representative of a class
of loops on FEZ, that 1s, an etement of 14(FNE?L Including exchanges

of points, a ganeral geometrical braid 1S a representative of a class
of loops on BAEZ, an element of 14[BxE2). In more precise language,
the correspondence between By and Sy IS a homomorphism of the

DF310 group Into the symmetric group,
KBy - Sy . 41)

The center of this homomorphism (that 1s, the elements of By going
Into the 1gertity of Sy) 1S composed Dy the colored braids. This
homomorphism “erases™ the differences coming from strings going

behind or befcre each other. Compare f1gs.6 and 7 with fig I:both O;

-1
and O, correspond to s, For the N-strand group, we may use as

basis the set (O} of (N-1) generators which generalize the above N =
4 case. Such generators are led Dy this homomorphism into the
elementary transpositions: hO;) = s;. Tney obey relations (2.5),

Oi Omdi-omoio,., 1= ‘,2,...,N'2;

Oidi- G,O, for "'Jllz . (42)
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These relations provide a presentation of the brala group and can be
used as an alternative definition of En.

Notice the absence of a condition corresponding to (2.6): unlike
the elementary exchanges of the symmetric group, the sjuare of an

elementary braid is not the identity, as tllustrated by ©)% in Fig 5c.
Going back to Quantum Mechanics, a2 basis for a unitary I-adimensional
representation of a braic group will be given by operators U(T;)

acting on wavefunctions according to W0)) Yix) = e"Pj Y(x).
Conditions (42) enforce the identity of all the phases. Now there IS no
constraint enforcing W@52) = 1,50 that U0 Yx) = UG Yo =

¢'29 Yix), U3 Yix) -9 WY(x), etc. The representation is now, like

the group, infinite. The boson and fermion cases are attained when @
=0 and 7, respectively.

S. Brald statistics

As sald below (29), all the statistical content lies In the
amplitude (D|, Dz, .. PN l P pz, ‘e DN) in order to obtaln the

convenient representations for the physical kets in terms of ordered
products of one-particle kets, analogous to (2.10) and (2.12), we must
proceed to an analysis similar to that cf fig 3. Take again the case
N = 2. The covering space has now infinite sheets (see fig 8). The

physical ket will have the general form 1P, P> « (@) Ipy) ipyd <

0@ 1p2> | py>. Contributions along 1p)ipo> will come from all colored
elements, those which ultimately do not exchange the particles, such
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351,012, 01°2, 014, 045, ..., 0420, ..., O-2m For Instance, we

may take 1(@) = 10e2P ¢ 2P 41, 1Py  As to g@), 1t
will receive all particle exchanging contributions, those coming from

......... ’ "
(7 :
!
[} (530“‘) V. :
/ Shpxd P » #39W0x, %))
/ gx) g 4 » of2¢ ¥ix, x,)
yars x) » o 9W0e, x)
/ » \i'(x‘, '2)
*/: ........... e ) v Yo, x,)
-i2¢
/ .(xv '9)'4(’2"') . ’ a v(x" xﬁ)

Fig. 8. The nfinite unfolding of the 2-parlicie configuration space for brasd statistics.

the odd powers of Oy g(@) = P +e P +eB3P + -3 + | =

1(@). Actually, there is an arbitrariness in the choice of starting

sheet, that corresponding to the 1dentity element 1In the infinite
follation. This arbitrariness is reflected in the indeterminacy of the

series (@) and g(@). We may, for instance, recoliect the terms in

such a way that also (@)= e'P gi@). The important fact remains
that we can always choose for () some real though indeterminate

series keeping with g(@ the relation g@) = P 1. As a
consequence,

1p), P> = 1@V Ipy Ipp> + & 1@ ipyd 9y,
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26
which can be normalized to become

19y,P2 = ';‘ [ipy>Ipp> *e"plpp Ipp>) . (5.1

The indeterminacy has been eliminated. Of course, this reduces to
(2.10) when @= 0 and m and we fall back into the penetrability

case sz= I. An analogous though far more Involved analysis leads to

1
1Py, P2, P3> = 3 Lipy dlppdipgd ¢ P 1p,51p)lpz> + € 1pydlpzdlp, ¢
+ P (p2dip,dip;> + 2P o3| p3dip ) ¢
+ e 1pdlpphd |, (5.2)

generalizing (2.12). In this way a realization of the physical kets in
terms of products of distinguished-particle kets is obtained, with the
symmetric group still selecting the terms. The coefficients are, after

normalization, simply products of terms e'P corresponding to the

number of transpositions. Because such a realization is still feasible,
the symmetric group will keep 2 fundamental role and the general

lines of § 2, with cycle decompositions and indicator polynomials, will
remain valid.

As a consequence of (5.1),

.
<Py p21P1, P>+ 5 (824 cos@B)), (5.3)

and of (5.2),



R | ,- . .
<Py, P2:P31Py. P2, 03 = 580 e 3cos@ihye 2c0s? @5l A

.

<Dj. 0 -2 Py | P1. P2, DD

. J *

The Sum over distinct classical configurations is restored, with a
generaltzauon of the “effective statistical interaction™ with respect

to the boson and fermion cases, the signals are replaced by cos . we

» see In this way that the purely combinatorial aspects remain the
-same. as- for Sy, the amplitudes keeping their cycle decomposition

cnaracter The canonical partition function will follow eastly and only
the b_, tn (23, 15) will change. We may obtain <py, Pa, ..., Pyl Py, P2, .

g -_. N’ by using the recursion relation (2.2). The general result is

e AL .
- f:?”ﬁ,[(cos(p)“ e ¢Zl (cos @MV By <Dy, D .. P | P Pph - -, DY)
’ : s ‘ $=

(5.5)

. ang'a simple rule results: in order to obtain the formal configuration
“integrals stariing from those of the symmetric group, it s enough to
‘make the- supstitution (¥ = cos! @

L cod”!
ONBVI = cN[ J =2 ), (56)

3 simple 1Inceed generalization of (215). The pressure, calculated

through the grand canonical partition function & will have the
following equivalent expressions:
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kff =n & = sequEE: {1 - cosP z ePE) -

= secQ ﬂﬁlzm JGE i1 -cos P ze Pt -

- is-f sec 2 IIQ (zcos Q) = _153 sec@ 9,2 cos Q)
1

The number concentration will be

! 1
ne= z T o " 32 sec@ gy{zcos ),
E

from which

M2cos@ = gy(zcos Q) = - In(1- 2 cos ),

or

2c05Q = - e -

Notice the ground state occupancy:

4

Ny & ——— (5.10)

I-2cos @
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(5.8)
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Strictly speaking, condensation only appears in the bosonic case, but
a high ground-state concentration of particles canbe attalned whenever
cos ¢ approaches the value +1.

The equation of state becomes

P | [ -2
. |- g~ M @] (5.11)
T mM2c0s @ %

g

O - -

' -+ (nA2)"!
8.5 1. 1.5 2. 25 3.

Fig S.General irend of the equations of state for different vaiues
of cos @ (notice verigble scale).

This Includes as extreme cases both the bosonic (cos @ = 1) and the
fermionic case (cos @ =-1). In reality, also the Boitzmann case f{s
Includec (cos@ = 0). Fig. 9 shows how the equation of state changes
progressively with the value of cos @, with the remarkable
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intermediale classical case n:T = |. Actually, all the physical quantities

interpolate in a very simple way thoseof § 2. The specific heat 1s of
special Interest, as the eventual presence of a lamba structure could

signal condensation and the onset of superfluldity. The internal energy
1s

e | < . S kT - -nlzcosQ
U [ap In ]z,s PS kzcos(pgzh e-Mws@] (512

By calculating Cg = (%%)N_s . (ap S)Ns we find

. —2 - -nlzcos(P n2 ! '
( )‘P mZcos @ 9, ! |- s (eMies @ -

(5.13)
This expression IS of the form (228), now with u = rA%os @, As a

consequence, the symmetries found in S 2 reappear here: ( )q)

the same for cos @ with cpposite signs. As Icos @l tends to zero, the

C
2-dimensional Dulong-Petit limit (ﬁ% = | 15 approached. Figure 10

depicts for cos@ = t1, 05, : 0.2 and 0. There is no sign of lamba
point even In the bosonic case. Consequently, even {f some
condensation come to take place for cos @ = -1, no abrupt transition

IS to be expected. Detailed numerical analysis confirms the trend
shown in the figure: starting from the fermionic case, the specific

heat curve s continuously deformed as cos@ tends to zero, reaches

30



]

1.0 (nay"!
0.9

0.8

0.24|| N

" J/

Fig 10: Specific heat curves, icentical for opposite velues of cos (.

the straignt norizontal line at this limit and then retraces back Its
way down tc the boscnic case, fdentical to the starting point.

6. Final comments

There 15 a different statistics for each value of the angular
parameter @, which Is In principle totally arbitrary. Notice however

that @ = 0 23 @ = 1 correspond to penetrable particic.. On the
other hand, traid gases Interpolate between bosons and fermions in
such 3 way tnat Boltzmann particies stay in the middle, @ = n/2, a
curious iIntermediate case with distinguishable, classical particles.
Taking some risk in forwarding an Interpretation, we might take @
as a measure of ‘"penetrability” and, consequently, of topological
“puncturedness™ the more @ departs from the extreme values, the

less are the particles allowed to penetrate each other, utmost
impenetrability standing In the middle. Quantum effects (llke, say,
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degeneracy) come precisely from forced superposition of individual
particle wavefunctions. Highest impenetrabliity  forbidding  such

superposition, it would be natural to find it related to classical
behavior,

we might inquire into possible relationship to that other well-
known case of exotic statistics, parastatistics. Parastatistics is also
characterized by a parameter, its order. The grand canonical partition
function for a parafermion ideal gas of order r is given by [25]

I
NE =X n[D e bir] (514
E n=0

The order r is the maximum occupation number per state. Fermions
correspond to r =1, bosons to r= oo In this way, parastatistics
interpolates between fermions and bosoris for r Integer in the interval
{1, 00). Nevertheless, the gases remain quantal at all Intermediate

values of r, while the interpolation given by @ ncluges @

Boltzmmann case. Parastatistics involves well-defined representations
of the symmetric group, which is not the case for braid statistics.
The two interpolations are so of different characters.

As a final point, let us recall that, in the case of wusual
superconductivity, 1t was London's remark about the lambda structure
in ideal boson gas which triggered the 1dea that some Kind
“bosonization” played a fundamental role in the phenomenon. However,
the absence of a lambda point by no means excludes the possibility’
of phase transitions in real cases when Gynamics Decome gominant. In

reality, there seems to be a good theoretical evidence (26) In favor
of 1ts presence.
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LEGERDS

Fig 1:Diagrams of the 5S4 generators.

Fig 2:Elements of 5S4 "¢ obtained by concatenation
Fig. 3: Scheme of the covering space for N=2.

Fig 4: Some simple examples of braids with 4 strings.

Fig. S: Colored braids: (a) 1s equivalent to the identity (b), while () is
not.

Fig. 6:B4 generators corresponding to the S4 generators of fig.l.
Fig 7:Inverses to the generators, also corresponding to those of fig |I.

Fig. 8: The Infinite unfolding of the 2-particle configuratich space for
braid statistics.

Fig 9:Ceneral trend of the equations of state for different values of
cos@ (notice variable scale).

F1g. 10: Specific heat curves, identical for opposite values of €oS Q.



