
f

.'..~«rf£^.« ;»*«4

I I N S T I T U T O D E F Í S I C A T E Ó R I C A

1TT/P-17/9O

TWO-DIMENSIONAL QUANTUM GAS
a*

R. Aldr ovandl*
Instituto de Física Teóricas

State Untversity oi 55o Paulo - UNESP
Rúa Parriplcna 145 - 01405 -São.Pauio S? - Brazil

s

o

Abstract

ícter,!;cal itnprnstfcile perlicles '.n a 2-diíiieosior4! ccnfíg-jralisn serra
fcrotá stetisti», Ihí&rír.a;i3'o beUv=eri bosons end

. sy.iMügiric croups fte r.ein properties of ao i j ^J j i s cl su-;-. ^
are presèTiiâl I tw/ CD iaterpolôte U*e prepertiçs et t5so.is erd If i fr.s but

cióssicai pyticles as a special case Restriction to 2 c .; *',ens
prscVjfcs l4.T»tcü points but ori-jic-sías fl pecv! -

. symmetry,responsible in particular for ths'icsrj , f i
- boson ft.il iernt:on specific h£c:!S.

. o
0

* With perttel «uppyl cí CMr
« Idex 11-31 370Uii'-.r 5^

.1fi!ôf«00 55 l l 36 i4«?
U£SP <• E?JA?£SP. tíí.MET



1.Introduction

Quantum mechanics of a given system is controlled Dy the group
of classes of closed loops (the fundamental group) or Us configuration
space i l l and, of course, statistical mechanics will follow suit. The
configuration space of a system of N identical particles will have a
non-trivial fundamental group [2], that is, will be multiply connected
Let M be the configuration space of each particle and consider the
set MN • |x • (x t, x 2 , . . . . xN)), the cartesian product of manifold M by
itself N tifiics. MN will be the configuration space of a gas of N
distinguishable particles contained in fi n is usually a 3-
dimensional Euclidean box whose volume V is taken to infinity at the
thermodynamica! limit. When the particles are indistinguishable, two
points x and x1 of MN are equivalent if the sets (x,, x 2 , . . . , xN) and
(x',, x'2, . . . , x'N) differ only by a permutation, a transformation
belonging to me symmetric group SN, and tne configuration space
becomes the çjotient M N /S N When M is inched Euclidean, and so
topoiogically trivial, the funaamentai group, indicated Ti j lnN /5N ) , is
just SH. Space MN is then the universal covering of the configuration
space and tne N-particle wavefunction will belong in the earner
space of some representation of 5N When the particles are also
impenetrable, coincident positions for them must be excluded. This is
done by defining the set

0 f ( - {<x,, x 2 , . . . , xN) sucn that x, = xJ for some i j )

and taking its complement in MN,

FNM« MN \DN . ( I . I )

This would u the configuration space for N distinct impenetrable
particles. The fundamental group of this space, Pw • I T I [ F H r,J, is the



pure úraiü group 13) it is tn particular the fundamental group ícr me
configuration spaa of a classical hard-sphere gas.

Consider further the particles to be indistinguishable. Let B^tt
be the space obtained by identifying all equivalent points, the quotient
by SN:

B N M-F N M/S N - I f 1 N \D N ) /S N . (1.2)

The íuuüamenuii group of this configuration space, t K • l i i lB N t t j , is
the full braid group, or simply braid group.

bumming up, F N M is the configuration space for a gas of N
Impenetrable particles. B N M is the configuration space for a gas of
N impenetrable and identical particles and the pure and full braid
groups are the respective fundamental groups of such spaces
Quantization is to be performed on such highly complicated, multiply-
connered space H). We shall see below that braid groups concern
real, usual Draiai and that, because braids can be unwoven in spaces
of three or more dimensions, all this Is of possible practical interest
only for two-dimensional systems. The quotient of the full braid grojp
by the pure braid group is the symmetric group:

B N / P N - S N , (1.3)

When dimM>2, the braid groups are extensions by Ss of I T Í I ( M ) ] N .

When M is itself topologically non-trivial, iT](ri) will be some discrete
group When M is trivial, it reduces to the identity in the Euclidean
case M « E 3 , J I i ( M ) - J , BN • SN, jr1lE3NXSNl - SN. The classes of
loops, highly non-trivial on a punctured E2, become trivial in
punctured E3, where each loop may be continuously wformed to a
point. Consequently, for dimM i 3, statistical mechanics will be Just
as usual, regulated by the symmetric group, with bosons and fermions.
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The whole point is that this ts not forctDly the case for dim I I - 2 . A
gas at 2 dimensions may have a different statistics, governed by
braid groups, a Oraid statistics. Such statistics ts expected to play
a { role in 2-dtmensional condensed matter physics phenomena such
as the fractional quantum Hall effect and high temperature
superconductivity 151 Braid statistics has been the object of htghy
sophisticated analysts [6], in comparison to which our approach is
undoubtedly naive, host treatments are concerned with 'particles*
whose exotic statistics is due to their special structure, such as
Wilczek s anyons [71 In reality, manifestations of such exotic statistics
are to be expected as soon as Impenetrable particles are considered
in two dimensions [8], whatever their internal structure (91

It is our contention that the first step In the understanding of
a new statistics is to examine the corresponding ideal gas. That is
what we intend to do here, taking into account the fact that
impenetrability is enough to ensure the emergence of braid statistics.
Such a free gas might come to model, up to interactions, the electron
gas in superconductors, in which the electrons are confined to the
surface. It is anyhow the starting point, to v/hich dynamical effects
are to be added in a deeper analysis. Dynamics has been extensively
studied, mainl/ in the line of Landau-Ginzburg models [10}. A
complete knowledge of the ideal case will help to separate effects
of dynamical nature from those of purely statistical origin.

As the test way to introduce braid groups is through the
symmetric groups, and also because these would anyhow regulate the
case of interper.etrable particles, we start by recalling in 82 trie
Ideal gas statistical mechanics as ruled by SN. The canonical partition
function of a real gas of N particles is a certain SN-invariant
polynomial, the cycle indicator polynomial. Furthermore, the symmetric
group maintains a bookkeeping role even for braid statistics, as It
counts the classical configurations in terms of which the quantum
partition function is ultimately written. The adopted pedagogical tune
seems unavoidable because we want to stress some aspects to be
later adapted to the braid case, in particular, permutations are



Introduced in a pictorial way specially convenient to generalization.
The 2-dlmenslonal case exhibits some characteristic symmetries,
leaciiny in pãUicüUr to the identity of boson and fcrmion specific
heat, in thebosomc case, although ground state crowding or particles
do occur at low enough temperatures, no lambda point Is found, so
that transition must proceed smoothly. A more mathematical
interpretation of the usual realization of wavefunctions In terms of
distinguishable particles Is given in S3. It helps clarifying what
happens when exchange symmetries distinct from SN are at work. We

give a (necessarily very Incomplete) introduction to braids and their
groups in S4 and proceed to study the corresponding statistical
mechanics In SS. There is one braid statistics for each value of an
angular parameter <p, with <p = O corresponding to bosons and <p c TI

to fermions. As It might be expected, Intermediate values of <p leads

to intermediate behavior of the physical quantities, but this

"interpolation" goes through the classical case at <p • n /2 , where a

Boltzmmann gas comes out. Some final comments, Including a
comparison to parastatlstics, are made in S 6.

2. Symmetric group stat ist ics

The role of the symmetric group i l l ] In Statistical Mechanics
is best seen in the cluster decomposition [12) of the canonical
partition function, which happens to be an Invariant polynomial of SN.
in order to see it, let us start by shortly reviewing some well
known facts about permutations.

A general permutation P of particles labelled X j ,x 2 , . . . , x N . , , x N

is usually indicated by P • I í 1 Í 2 " ' Í""1 J 1 ) and can always be

decomposed into the product of disjoint cycles, particular tatl-bitlng



permutations ot type ( I J 2 ' . ' . ' . X ' £ ) • TMS IS a cycle of length r,
or at r-cycle it Is convenient [131 to attribute a variable t r to a

cycle of length "r" and indicate the cycle structure of a permutation

by the monomial O 1 ? * 1 ! 3 ••• tVr • m e a n * n 9 *hat lher* a re v i 1"

cycles, v 2 2-cydes, etc. Permutations of the same cycle type, that Is,
with the same set (Vj), go into each other under the action of any
element of S k they constitute conjugate classes. To all permutations
of a fixed class wi l l be attributed the same monomial above. In this
sense, such monomials are invariants of the group 5N. The total
number of permutations with such a fixed cycle configuration is

N!
— — . The N-variable generating function for these numbers Is

the cycle Indicator polynomial [14]

where the star ( • ) recalls that the summation takes place over the
sets lv,) of ncn-negative Integers for wnicn

Cycle indicator polynomials satisfy the relation [151

N n
2 ^ N - m l t ) ) . ( 2 2 )



which may lead to recursion formulae when the tr's are known and
will be useful later on.

The canonical partition function oi a real non-relatlvlstlc gas
of N particles contained in a d-dimenslonal volume V is a cycle
indicator polynomial for the symmetric group 5N, with the

V
(combinatorially meaningless) variables tj * jbj TQ giving the

contribution of the J-th order cluster integral:

H CN( jb, ^ J (2.3)

where p • 1/kT; X is the mean thermal wavelength, bj Is the J-th
cluster Integral H6J. For 3-dtmensional ideal quantum gases, statistics
is simulated by an effective Interaction for which the J-th cluster
integral is bj- d ^ " 1 / ( j ) 5 / 2 for bosons (upper sign) and fermions
(lower sign). As seen below, b j = ( i ) ) " I / j 2 in tne 2-oimensiona) case.
The above result might lead to some academic speculations. Any
discrete finite group is Isomorphtc to some permutation group [17]
and to any subgroup 6 of 5N corresponds a cycle Indicator polynomial
[181, which would provide the canonical partition function for an
imaginary gas whose "statistics" is governed by 6. For 6 • ZN (the

cyclic group of order N), for example, QN(p,V) • bN rg [19). in reality,

SN will remain in the background also in the case of braid statistics
and the indicator polynomial will retain I t* role, with only the
"combmatonally meaningless" variables tj modified

Every cycle is a composition of elementary transpositions, cycles
of length 2, so that ultimately every permutation may be written as a
product of transpositions. That is to say that transpositions generate
the symmetric group. Permutations with an even (odd) number of



transpositions are called even (odd) permutations. We shall use as
generator basts for SN the set |S|] of elementary transpositions. St

exchange the i-tn and the d * l H h entry

x, x 2 . . . x, x l O . . . x N . , x N

x , x 2 . . . x H , x, . . . x N . , x N

Each generator si may be represented by a diagram or evident
conception, indicated in fig I for N = 4

Fig 1: Diagrams of tne 5 4 generators.

Elements of SN are pictured as compositions of such graphs, product
being represented by downward concatenation, as in the examples in
fig 2

6 t82
S182S3

F;;_ 2: Elements of S 4 ore obtained by concatenation.

It Is noteworthy that the s,'s obey the algebraic relations



SJ + 1 S, • S J + , Sj S , M

12.5)
Sj • Sj Sj for ll-JI i 2,

as can be easily verified by composing diagrams Also, as In the
example at the right of fig 2, squaring a generator corresponds to
no exchange at alt, reflet Ing the property

(si)2 - 1 , (2.6)

typical of transpositions. Actually, (2.5) and (2.6) completely
characterize the symmetric group, in the sens* that any group with
generators satisfying them will be isornorpnic to SN A group
introduced In this way, by specifying generators and the equations
they satisfy, is said to be given by a presentation.

To recall the import of all that in elemer.iary Quantum
Mechanics, let us indicate all coordinates, spins, etc, of the N
particles by the collective variable x. Exchanges of particles are
given ^ the action of elements of SN on x. General permutations are
products of elementary transpositions of two particles, each one given
by SJX, for some i. For instance, if N • 2 and x • (r j , rç), the only
exchange will be to ( r ç . n ) - siKn.rç)] States correspond to rays m
the Hilbert space of wavefunctions: the same state is represented by

\J/{x) and e"l l|Kx), with i\ an arbitrary phase. Symmetry under a group

will imply that wavefunctions respond to transformations according to
a unitary (or antt-unitary) representation of the croup. Under a
permutation P the wavefunction will undergo a unitary transformation
U(P) in HtlDert space. The set llKsj)) of unitary operators will
constitute a basis for such a representation and will have to satisfy
conditions (2.5) ami (2.6). There is, however, an additional condition: as



wavefunctions y art supposed to nave values In a 1-dimensional
complex space, this representation must be a 1-dimensional unitary
representation and consequently only phase factors appear. y(S)x) •

IXSjHjttx) - e*?iy(x). It ts Immediate to see that (25) imposes the

equaltty of all the phases, so that U s j ) y ( x ) • e*P l|i(x), with the

same <p for all sj. And that (26) imposes U2(Sj)l|f(x) * IKSJ2) \ |KX)

«e l 2 ^V| i (x )« y(x) . so that e*P - ± l . There are only two l -

dimensional representations of S» the totally symmetric one, related
to Dosons and with IKP) = • ! for ever/ permutation P; and the
totally antisymmetric one, in whicn fermions find their place, with
U(P)« * l when P ts even and U(P) - - I when P is odd The 1 -
dimensional nature of SN representations ts responsible for the lack
of parastatistics observation. Notice that, once unttarlty ts supposed,
(2.6) ts equivalent to hermlticlty.

Let us now proceed to Statistical Mechanics. As the statistical
aspects are very similar, we shall examine directly the 2-dtmensior.al
case and only recall from time to time the usual 3-dimensional
results for comparison. Momenta being 2-dimensional vectors, we have
now, instead of an energy sphere, 3n energy circle, the number of
mtcrostates for particles on a surface of area S with energy less
than or equal to E Is 2(E) e 4 n m 5 E/n2, and the corresponding

number of microstates with energy between E and E • dE will be
d l A * m 5

g(E) GE = ^r d E * 2 — d E . For example, if we want to

cnaracterize a Fermi temperature by kT f »E F , we impose fg(E) d£ = N

h2

and find Ec • O T (with o - 5 / N ) or, In terms of a "critical"

2 h2

thermal wavelength, X{ • jnrnkf" " 2 ° Unllke the 3-dimensional
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case, the stale density Is here constant This may be a reason for
the specific heat symmetry which will be found below.

The pressure ard the particle number density expressions In
terms of the fugactty z are

CO

£ « T 2 tal I 7 »-*J - T T T JdE tail T ze*l (2.7)
E ^ 6

T"l | |

/ x Z"1^ 7 I *
3 In(lTZ) (2.8)

To see how (2.3) comes out In the present case, lei us examine
the partition function for N particles:

P2. • • • • PN> - ( 2 9 )

All the statistical content lies In the normalization amplitude <Pj, p2>

. . . , p N | P i , p 2 , . . . . P N X The ket I p , , p 2 . . . . , P N > is written as a sum

of ordered products of one-particle kets |pj> normalized to delta, <ptl

Pj> - P i p j - p j ) , and the resulting amplitude is a certain sum of

deltas. We may look at the first, second, third, etc terms in each
ordered product as corresponding to the first, second, third, etc
particles, so that ultimately the physical ket is given as a sum of
contributions of distinct particles, with coefficients fixed by
statistics. Consider the usual ket for case N - 2:
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IP|.P2>' 5 IlP|>tp2> i l P 2 > I P | > l (2.10)

(upper sign for bosons, lower for fermions), from which

2 i8 2 (p , -p , )8 2 lP2-p 2 ) i 8 2 (p , -p 2 )6 2 (p 2 -P i ) ] .

This amplitude is actually a decomposition into cycles: the first
factor gives the contributions of the two possible 1-cycles, the
second the contribution of the only 2-cycle. Because of the
integrations in QN(p,V), it does not matter which momentum is in
each place: only the number of cycles of each type is important, we

can introduce the notation 6j = ^ ( P j - p , ) for a 1-cycle contribution,

fy • fftPj - Ppfi^Pj - Pj) for a 2-cycle contribution, 63 - {ftpj - Pj)82(pj

- pk) 8
2(pk - Pj) for a 3-cyde contribution, etc, so that

<Pi .P 2 IP | .P2>* ! t « i 2 ± y . (2.11)

For N • 3, we take

t |p3>lp2>lPj>MP2> |P3> IPi> • IP3> |p|> IP2> 1 (2.12)

and find

<Pl.P2.P3IPl.P2.P3> * 3j l61
3 t38,82*2â3 ] . (2.13)
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In reality, the numerical factors Just count how many permutations
there are of the corresponding cycle configuration and the
amplitudes behave as cycle Indicator polynomials.

<Pl.P2 PN>Pl-P2 PN> " N Í C N I < Í

Notice that an amplitude is not really a cycle indicator polynomial: It
only behaves like one under the multiple Integration sign, which puts
all momenta on an equal footing. Talcing (2.14) Into (2.9), the final
expression of the partition function Is easily obtained:

(2-15)

in last resort, the partition function is written as the sum of
contributions of all configurations of distinct particles, with
coefficients fixed by statistics. In the present case, there is a one-
to-one correspondence between such configurations and the elements
of SN We may start from the configuration I pj> Ip2> . . . lpN>.
corresponding to the identity element and then get tne remaining
configurations by apllylng all the group elements. For this reason, the
partition function for an ideal quantum gas will have a form
analogous to that of a "rear classical gas, the statistical effects
being simulated by an effective interaction represented by nonzero
"configuration integrals".

Actually, tne amplitude normalization for the two-particle case
fixes the higher cases: as the tj's (• (t)*"1 i j ) are known In the
present case, (2.2) leads here to a recursion,



P2 • f>N I Pt- P2

In ierms of the fugacity, tne expressions for the density and pressure
wil l involve, instead of the familiar Bose and Fermi functions g5 /2(2),
g3 /2(z), f5 / 2(z) and Í3/2(z) of the 3-dimensionai case, the dllogarlthm
g2(z) * Ll2(z) and the logarithm g,(z) - - Inii-z), which are specially
simple. The formal "configuration integrals" are

it}'1 , f bosons] ,„ ,_ , ,
T ~ I fermlonsr

and tne grans-canonical partition function will oe S - Y! Q^

The pressure is then obtained from -^ - In 3 and the density as z

d , ~

CO

^*1 i I 9 2 ( 2 )

" T Z ) = lf2cz> -2- 92(-z>
JaJ

0 0

f 9|«2) |

, 9 NX2 1 A2 l TF
Notice that rJl* - -JT~ * 2 ~2 * 2 T ' CornPac t ly written,

A F

13
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(2.18)

Quantum effects are to be expected, of course, for large nX2. As a
consequence of (2.18) the fugacity for Dosons Is directly given by
zD« l-e"1* and the equation of st3te is

(2.20)

For the fermion gas, the fugacity Is zf * e ^ - 1 and the equation of
state is

( 2 2 1 )

These equations of state are qualitatively similar to those appearing
In the 3-dimensional case and are shown in fig. 9 as particular cases
labelled i 1. For boson and fermion gases of the same temperature,
mass and density (same value of nX2) it follows from (2.18) that

< 2 2 2 )

Notice also that, both for bosons and fermtons, the internal energy Is U
- P S . The constant-surface specific heat is



rdUi I yd P SJ r d U i I y
kit- l aT i N S = m, l

For Dosons, we find

2 ^2 fl2(l-«"nl2>-|A2(l/(eft<l2"l))- í 2 2 3 )

One verifies that no derivative singularity occurs in this 2-
dimensiona) case (curve labelled U t] in fig. 10). The low temperature
trend is linear with coefficient 2 Ç(2) • R 2 / l The ground state
occupancy is

< n 0 W * ' 1 ^ s Zf s e ^ 2 - I (2.24)

For lower ana lower temperatures tne ground state gets more and
more crowded, Djt witn no singularity

For fermions,

- 2 - p g2
( l "e > * ™ (' / (e - ' » (2 25)

Tne occupancy of tne ground state is now

• zh - l - e ^ 2 . (2.26)

A peculiar symmetry appears in the 2-dimenslonal case, due to
(2.22) plus a very special property of the dilogarlthm [20],

15
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g2(l-x)*g2(l-l /x)»-(l/2)(lnx)2 (2.27)

Expressions (2.23) and (2.25) are of the form

« f g2n - e"u) - ~ , (2.28)

with u • • rA2. It comes Immediately from (2.27) with x • e"ü that
f(u) * f(- u). We find then, for each fixed value of nfc2,

P Ov , P j K Ĵ  2

kT 'bosons* IkT 'iermions * " 2 i 2'29)

and the rather surprising result

íermions (2.30)

Bosons and fermions have consequently the same response to local
energy concentrations, as the energy fluctuations are <E2> - <E>2 •
kT2C$. Only to check how general is this property, we may examine
another fluctuation, for example the isothermal compressiDtiity:

(2.32)
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Consequently, tne number fluctuations are different,

Jb
Ü2% _ Í K I - . 2

•bosons" n k T* ' ' "~^> ( 2 3 3 )

> -<N>21 v

W—Jfermions* n k T M "

We see that, although the symmetry still shows itself, the equality
for bosons and fermions Is a special characteristic of energy
fluctuations.

3. Covering spaces

in orae: to see what happens wnen exchange groups distinct
from SN are involved, we shall need a more detailed understanding of
the meaning cf decompositions like (2.10) and (212). The configuration
space for N identical interpenetrate particles is E 2 N / S N E 2 M IS the
universal covering, as the fundamental group Jl, is SN- A covering
space of a s;2ce X Is another space which is locally homeomorphic
to X, an unfolding of X breaking some equivalence between its points.
Every space r.ss a unique universal covering, which is simply-connected
(has ft, - (identity}) and whose folds, or sheets, are in one-to-one

relatioship wttn the elements of 31, Tne different values of a
multivalued function ¥ on a multiply-connected space are obtained
through a representation of a group, the "monodromy group" of * , in

general a subgroup of ftj. A function becomes single-valued on a

covering whose sheets are In one-to-one relationship with tne
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elements of Us monodromy group. All functions become single-valued
on the universal covering.

Consider again, to fix the Ideas, the case N • 2. Suppose that
positions are sufficient to describe the particles and call x, and x2

the position vectors of the first and the second particles. The
covering space E* is the set ((x,, x2)). The physical configuration
space X would be the same, but with points (x l f x2) and (X2, x t )
identified. Point (x2, xj) is obtained from (Xj ,x2 ) by the action of
the transposition s,: (x2, x t) « Sjixj, x2). A complex function ¥ (x , ,
x2) (say, the waveiunction of the 2-particie system) will be single-
valued on the covering space, but 2-valued on the configuration space.
E*/S2 involves a cone 121] and is rather difficult to picture. To make

a drawing easier to look at, we consider instead the covering related
to the function Vz, whose group, the cyclic group Z ^ is isomorphic to
S2 . The scheme in fig. 3 shows how ¥ ( x j , x2) is single-valued on E*.

E V S , M
Fig. 3: Scheme of the covering space for N « 2.

where (xt, x2) » (x2, Xj), and double-valued on X, where the two

values ¥(Xj,X2) and "f(x2,x,) correspond to the same point (x1;x2) *

(x2(x,). *(x2,x,)« *ls,(x,,x2)] •U(s,)f(X| lx2)«í í í(x, )X2) <$ obtained

from *(x,,x2) by the action of an operator Wsj) representing Sj on
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the KtiDert space of wavefunctions. There are two sheets because s (

applied twice is the Identity. Commonly used wavefunctlons are
taken on the covering space, where they are single-valued, and on
which, in our scheme, particles are supposed to De distinguishable.
Here the monooromy group ts the whole group S2 and two sheets
appear, one for each distinct group element, 1 and Sj. This means
that in (210) we sum over all distinct sheet contributions. An
analogous treatment may be apllled to the N= 3 case (2.12), in which
6 ( • 31 • number of elements of S3) contributions come out, one for
each sheet. The academic example of the "ZN-gas° mentioned below
equation (2.3) would show no difference in the N « 2 case because
groups Z2 ana S2 are isomorphfc, but would exhibit quite a different
covering for N * 3 , as the monodromy group Z3 would require only 3
sheets. We learn in this way what is really cone when "physical"
kets or wavefunctions are written in terms of distinct-particle
contributions: a superposition of all the values is taken, in the
analysis of the Aharonov-Bohm effect, superposition of contributions
comtng from two sheets* are usually considered, although only at that
point where tne interference is supposed to be detected [22]. In
reality, the (iaeal) configuration space is infinitely connected and the
usual treatment is to be seen as an approximation, as contributions
from infinite paths belonging to all distinct homotopy classes should
be taken into account, infinite-connected cases are In general fairly
complicated We shall see below that braid statistics does require
infinitely-folded covering spaces, yet normalization eliminates all but
two of the infinite contributions.

4. Braid groups

Mathematicians have several definitions for braid groups [23],
althought they seem to prefer that sketched In the Introduction
because It holds for any manifold M and consequently lends Itself
more easily to generalizations, in the most suggestive of such
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definitions, real, usual braids are concerned and their theory Is
included In the (still In progress) stud/ of general weaving patterns,
which also encompasses knots and links. It is customary to call
braids, when Introduced In this way, geometrical braids and the
corresponding groups, Artin's groups after their creator. A braid is

seen 124] as a family of N non-Intersecting curves (Y1.Y2 OfN) on
the cartesian product E2x [0,1] with

Yj(O) - (Pj.O) for j - 1,2 N

- (Po(j>. D for i - 1 . 2 N

where o ts an index permutation. By historical convention, the strings
are to be considered as going from top to bottom. Braids are
multiplied by concatenation: given two braids A and 3, AB Is obtained
by drawing B below A. The braid group BN consists now of all such
compositions of path meshes. Fig. A depicts some simple braids of four

1 2 24 1 2 3 4 t 2 5 4 1 2 3 4

, 2 54 12 «4 1 2 8 4 12 1 4

(o) (b) (c) (d)
fig. A. Some simple examples of braids with 4 strings.

strands. Choosing on the plane E2 four "distinguished" points and
taking two copies of such punctured plane, a braid will result by
linking two by two the distinguished points of the two copies with
strings. Notice that in the drawings the plane E2 is represented by a
line only for tre sake of facility, in 4a, the line from 2 to 1 goes
down behind that from 1 to 3. The opposite occurs in 4b. These
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braids, like those of 4c and 4d, are different because they are
thought to be drawn between two planes, so that the extra dimension
needed to make strings go behind or before each other is available.
Fig. 5b shows the trivial 4-bratd,with no interlacing of strands at a l l

(a) (b) (0

5: Colored braids: (e) is equivalent to the identity (b), while (c) Is not

it is identical to 5a (which can be unwoven, continuously deformed
into it) but quite distinct from 5c. The latter cannot be unwoven or,
more formally, reduced to the trivial braid by any continuous family
of deformations (isotopies) of E2 Experiment shows that I t would be
possible to disentangle it if the space were E3 Actually, any braid
on E3 may be u-araioea . . a s witnessc: oy millema of practice witn
hair braids, hair braids reduced to E2 can be simulated by gluing
together thetr extremities, thereby eliminating one degree of freedom.

Braids not leading to real exchange of end-points, such as those
of f ig.5, are cãiled colored braids. The strings may be seen as time-
trajectories of particles in E2, on which 'passing behind" and "passing
before" correspond to distinct motions. Colored braids will correspond
to closed paths on E2, wherefrom the role of P4 as the fundamental
group of the punctured space F<l(E

2xE2) When further the distinguished
points are identified t>i supposing that their exchanges have no
consequence, B4 appears as the fundamental group of the
Identification space F4(E2xE2)/54. In the multiplication of the identity
into infinite possibilities lays the essential difference between Draid
groups and symmetric groups.
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Fig 6 shows the basic, elementary steps of weaving for N e A,
the simplest nontrivlal braids. Their inverses are shown if fig. 7. Their

7

Fig 6: B 4 generators corresponding to the S 4 generators of fig.1.

respective composition yield the trivial braid, which is the neutral
identity element, which changes nothing when multiplied by any braid.
The product is clearly non-commutative. Any braid of 4 strands may
be obtained bysuccei we multiplications of the elementary braids O, ,

C 2 , C3 and their inverses. Such elementary braids are consequently

said to generate the 4th braid group, B* The procedure of building

vA y
A

y
A

-1 «-1 *-l
2 8

Fig 7: inverses to tne generotors, also corresponding to those of fig 1.

general braids Dy products from elementary braios may be used
indefinitely. The braid group is consequently of Infinite order.

Impenetrability is obviously essential. If strands could traverse
each other at wi l l , all colored br3tds reduce to the trivial braid,
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figure 6 would be the same as Figure 1,4a would be identical to 4b,

4c to 40 ana the group would be stmply S*. with O, « s,

All this can be easily generalized to the N-th braid group BN.
whose elements are braids with N strands. Real experiments with a
few strings are very helpful to give the feeling of tt.

in the passage of SN to B^ any permutation of points becomes
multiform. A colored geometrical braid is a representative of a class
of loops on FHE2. that is. an element of 1f I IFNE21 Including exchanges
of points, a general geometrical braid ts a representative of a class
of loops on BNE2, an element of ITI IBNE2 ! . In more precise language,
the correspondence between BN and 5N is a homomorphlsm of the
braid group into the symmetric group.

M
(41 )

The center of this homomorpnism (that is, the elements of BN going
into the ioer.iity of SN) IS composed t>y the colored braids. This
homomorphism "erases" the differences coming from strings going

behind or before each other. Compare figs. 6 and 7 with fig. I: both (7,

ar.3 0 correspond to st. for the N-strand group, we may use as

basis the set ÍCJj) of (N- l ) generators which generalize the above N *
4 case. Such generators are led Dy this homomorphism into the
elementary transpositions: hUJj) * Sj. They o&ey relations (2.5),

. 2.

for|l-jU2 . (4.2)



23 2*

These relations provide a presentation of the bralo group and can be
used as an alternative definition of &N

Notice the absence of a condition corresponding to (2.6). unlike

the elementary exchanges of the symmetric group, the square of an

elementary braid is not the Identity, as Illustrated by O\2 in Fig. 5c.

Going back to Quantum Mechanics, a basis for a unitary 1 -dimensional

representation of a braic group wil l be given by operators U(Oj)

acting on wavefunctions according to UXCJj) l|i(x) * e"Pj \jf(x).

Conditions (42) enforce the identity of all the phases. No* there Is no

constraint enforcing IKOj2) « I, so that U2(Oj)y(x) • U O j 2 ) ^ ) «

e129y(x). U(Oj3)\jf(x) -e t5$l|Kx).etc. The representation is now, like

the group, infinite. The boson and fermlon cases are attained when Ç

*O and TT, respectively.

5. Braid s tat is t ics

As said below (2.9), all the statistical content lies In the

amplitude <p,, p2 pN | p (, p 2 , . . . , pN>. in order to obtain the

convenient representations for the physical kets in terms of ordered
products of one-particle kets, analogous to (2.10) and (212), we must
proceed to an analysis similar to that cf fig 3. Take again the case
N * 2. The covering space has now infinite sheets (see fig. 8). The

physical ket wil l have the general form IP|,P2> - fUp) lp,> IP2> •

g<4»lp2>IPi>- Contributions along lp,)IP2> wil l come from all colored

elements, those which ultimately do not exchange the particles, such



as I , O i 2 . O r 2 . O i 4 , O i 6 , . . . , O t 2 n , . . . . O r 2 m . For Instance, we

may take f(Ç) • i * e 1 2 9 * e " 1 2 9 *eW • e " 1 ^ * . . . . As to g(q», tt

wil l receive all particle exchanging contributions, those coming from

r

<7

»(«2,*t)

VA. . . / / • • '
•••yw.v.v ••• •

• 8

l
I

Fig. 8. The infinite unfolding of the 2-particic corifiguration space for braid statistics.

the odd powers of O\ g«p> • ê P • e"1^ + e13<P + e"1 3^ + . . . =

f«J». Actually, there is an arbitrariness in the choice of starting

sheet, that corresponding to the identity element in the infinite

foliation. This arbitrariness is reflected in the indeterminacy of the

series fttp) and g«f». We may, for instance, recollect the terms in

such a way that also f(Ç) • e*? gíÇ). The important fact remains

that we can always choose for f(<(» some real though indeterminate

series keeping with gttp) the relation g«p) • e*P f«p). As a

consequence,

!P|,P2> - fttp>IPi>IP2> • e*Pf«p)lp2>|p|>,
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which can be normalized to become

. P 2 > * \ llPi>IP2> • e M P i p 2 > | P j > ) • (5.1)

The Indeterminacy has been eliminated. Of course, this reduces to

(2.10) when <p = 0 and TI and we fall back Into the penetrability

case <J?* 1. An analogous though far more involved analysis leads to

. P2. P3> • 5 | I IP|>lp2>lp3>* e*? lp2>|Pi>lp3> • e1? IP|>IP3>!P2> •

Ip3>lp2>lp,> • e12? |p2>| P3>lp,> •

* e l 2?ip 3>|p,>!p 2>l , (5.2)

generalizing (2.12). in this way a realization of the physical kets in
terms of products of distlngulshed-parttcle kets is obtained, with the
symmetric group still selecting the terms. The coefficients are, after

normalization, simply products of terms e*^ corresponding to the
number of transpositions. Because such a realization Is still feasible,
the symmetric group will keep a fundamental role and the general
lines of S 2, with cycle decompositions and Indicator polynomials, will
remain valid.

As a consequence of (5.1),

<P|,P2IPj»P2> " 5U| 2 + cos<py, (5.3)

and of (5.2),
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<Pl.P2.P3IPj.P2.P3>

The:sum over distinct classical configurations is restored, with a
generalization of the "effective statistical interaction*, with respect
to the boson and fermion cases, the signals are replaced by cos<p. We

see In this *ay that the purely combinatorial aspects remain the
same as for SH, the amplitudes keeping their cycle decomposition
character. The canonical partition function will follow easily and only
h j ; tn (23.15) will change. We may obtain <pj, p 2 , . . . , PNI P|. P2, •

b^ using the recursion relation (2.2). The general result is

: * N-l
Ç N s w p2 PS |P,, P 2 , . . . , Ps>)

^ . ...... , $«1
- - " ^ ' i - ' (5.5)

and a.simple rule results: in order to obtain the formal configuration
integrals starung from those of the symmetric group, it is enough to
make the- suDsutution ( t ) ! ' 1 -• cos1"1 <f>

j ( cos1"1© s ,
uJ C N l — p 1 ^ } , (5.6)

a simple inased generalization of (2.15). The pressure, calculated
through the grand canonical partition function S wi l l have the
following equivalent expressions:
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rz • In E = sec 9 2 H l " cos9
KI E

00

- 4nrn f _ . ,. ^ «ftp,
• sec9 T5~ JdE In[l-cos9 2^ p 1 "

oo

72 sec9 \ - j (zcos9)i • 7f sec9 92(ZCOS9) • (5.7)

The number concentration will be

\T* 1 t
n * > TTc " TO sec9 g,(zcos9), (5.8)

ZJ Z " 1 ^ - COS9 ^

from which

nX2cos9e
 9J(ZCOS9) • - ln( 1 - z cos9),

or

ZC0S9 " i - e ' ^ 2 " 8 ^ (5.9)

Notice the ground state occupancy;

No • (5.10)
I- z cos 9
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Strictly speaking, condensation only appears tn the bosonic case, but
a high ground-state concentration of particles can be attained whenever
costp approaches the value +1.

The equation of state becomes

rvl2cos
(5.1D

(r»X2)'• i

0.5 I . t.S 2. 2.5 3.
f ig 9. General trend of tne equations of state for different values

of cos (j>( notice variable scale).

This includes as extreme cases both the bosonic (cos(f) • l ) and the

fermionlc case (cos<(> • - ! ) . In reality, also the Boitzmann case Is

included ( C Q S Ç - O ) . Fig. 9 shows how the equation of state changes

progressively with the value of cos <p, with the remarkable
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p
intermediate classical case ^ • 1. Actually, all the physical quantities

interpolate in a very simple way those of S 2. The specific heat is of
special interest, as the eventual presence of a lamba structure could
signal condensation and the onset of superfluidity. The internal energy
is

U - - ^ m E L - - PS - , 9 2 U - e - ^ C 0 5 y j . (512)
UP Jz-S X2cos <p

/dU\ id? S\
By calculating Cs • VJYVS * ^ T T V S •we ilnd

nA2cos -n

(5 13)

This expression is of the form (2.28), now with u • nX2cosÇ. AS a

conseqijence, the symmetries found in S 2 reappear here. \j^ )$ is

the same for cos<p with cpposite signs. As Icoscpl tends to zero,the

2-dimenstonal Dülong-Petlt limit \j^ ) « I is approached. Figure 10

depicts for cos(p * t l , t0 .5 , tO.2 and 0. There is no sign of lam&a

point even In the bosontc case. Consequently, even if some

condensation come to take place for c o s < p « - l ( no abrupt transition

is to be expected. Detailed numerical analysis confirms the trend
shown In the figure: starting from the fermionic case, the specific

heat curve is continuously deformed as cos Ç tends to zero, reaches
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1.0

0.9

0.8

0.7

0.6

iO: Specific heat curves, identical for opposite values of cos (p.

the straight Horizontal line at this limit and then retraces back its
way down tc me Doscnic case, identical to the starting point.

6. Final comments

There is a different statistics for each value of the angular

parameter Ç, which is in principle totally arbitrary. Notice however

that <p * 0 and Ç * n correspond to penetrable particle >. On th:

other hand, oraid gases interpolate between bosons and fermions In

such a way tnat Boltzmann particles stay in the middle, Ç • n/2, a

curious intermediate case with distinguishable, classical particles.

Taking some risk in forwarding ar. interpretation, we might take Ç

as a measure of 'penetrability" and, consequently, of topological

"puncturedness': the more Ç departs from the extreme values, the

less are the particles allowed to penetrate each other, utmost
Impenetrability standing in the middle. Quantum effects (like, say,
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degeneracy) come precisely from forced superposition of individual
particle wavefunctions. Highest impenetrability forbidding such
superposition, it would be natural to find It related to classical
behavior.

We might inquire into possible relationship to that other well-
known case of exotic statistics, parastatistics Parastatistics is also
characterized by a parameter, its order. The grand canonical partition
function for a parafermion Ideal gas of order r ts given by [251

r
lnS * X in [ 2 zne"PEn] . (5.14)

* n=0

The order r is the maximum occupation number per state. Fermions

correspond to r s l , bosons to r • ©o. In this way, parastatistics

interpolates between fermions and bosons for r integer in the interval

[ l , oo]. Nevertheless, the gases remain quantal at all intermediate

values of r, while the interpolation given by <p includes a

Boltzmmann case. Parastatistics involves well-defined representations
of the symmetric group, which is not the case for braid statistics.
The two interpolations are so of different characters.

As a final point, let us recall that, in the case of usual
superconductivity, it was London's remark about the lambda structure
in ideal boson gas which triggered the idea that some Rind
•bosonization" played a fundamental role In the phenomenon. However,
the absence of a lambda point by no means excludes the possibility'
of phase transitions in real cases wnen dynamics become dominant. In
reality, there seems to be a good theoretical evidence [26] In favor
of Its presence.
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LEGENDS

Fig 1: Diagrams of the S4 generators.

Fig 2: Elements of S4 r e obtained by concatenation

Fig 3: Scheme of the covering space for N • 2.

Fig 4 Some simple examples of braids with 4 strings.

Fig. 5: Colored braids: (a) Is equivalent to the Identity (b), while (c) Is
not.

Fig 6:B4 generators corresponding to the S4 generators of fig.l.

Fig. 7: Inverses to the generators, also corresponding to those of fig. 1.

Fig. 8: The infinite unfolding of the 2-particle configuration space for
braid statistics.

Fig 9; General trend of the equations of state for different values of

cos Ç (notice variable scale).

Fig 10: Specific heat curves, identical for opposite values of cosç.


