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ABSTRACT 

The free fields on a Riemann surface carrying spin structures live on an unramified »"-covering of 
the surface itself. When the surface is represented as an algebraic curve related to the vanishing 
of a Weierstrass polynomial, its r-coverings are algebraic curves as well. We construct explicitly 
the Weierstrass polynomial associated to the r-coverings of an algebraic curve. Using standard 
techniques of algebraic geometry it is then possible to solve the inverse Jacobi problem for the 
odd spin structures. As an application we derive the partitiou functions of bosonic string theories 
in many examples, including two general curves of genus three and four. The partition functions 
are explicitly expressed in terms of branch points apart from a factor which is essentially a theta 
constant. 

A. della Riccia fellow 
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1. INTRODUCTION 

In recent times we have witnessed a large number of applications of algebraic curves 
with abelian group of symmetry Z n in the framework of string theories, integrable models 
and conformal field theories on higher genus surfaces. In the case of string theories, the use 
of £n-symmetric cur*, es as an explicit representation of Riemann surfaces has led to some 
interesting physical results. Let us mention he re the proof that the cosmological constant 
vanishes up to genus two in superstring theory [1-3] and the method of [4] for the study 
of string? at very high energies. Moreover the first explicit derivation of four graviton 
amplitudes in perturbative superstriug theories implementing the modular invariance and 
checking the factorization properties, has been performed using the hyperelhptic curves 
[5]. 

In the sector of conformal field theories it is possible to express directly in terms of 
branch points the correlation functions for the minimal models and their supersymmetric 
generalizations on Riemann surfaces of genus one and two [6-7]. The problem of finding the 
correct paths of integration for the screening charges is in fact easily solved on algebraic 
curves once a basis of branch cuts and nontrivial homology cycles is known. 

Another interesting result consists in the proof done on hyperelliptic curves that the 
Beilinson Manin formula [8] is independent of the chosen odd spin structure [9,10]. Let 
us finally remember the Knizhnik's conjecture [11,12] that the sum over all higher loops 
in string theory is equivalent to a conformal field theory with the insertions of conformal 
operators, the socalled twist fields, which simulate the behavior of the Green functions 
near the branch points. 

As we have already stressed, all the wisdom about field theories on algebraic curves 
was mainly based on certain classes of curves with abelian symmetry group. Already for 
n > 2 the prouem of the spin structures was untouched apart from the Zn symmetric 
characteristics of refs. [13,14] which are however very peculiar. Only recently the explicit 
form of the Green functions for the free scalar fields and the b-c systems on general alge­
braic curves has been obtained [15,16] as a first step toward the non abelianess. A first 
application was the confirmation of the Knizhnik's conjecture also for "general" curves of 
genus 3 and 4. With "general" we mean here a curve depending of a number Zg — 3 of 
branch points spanning a portion of the moduli space which is not of measure zero. The 
procedure followed in [15,16] has the advantage that it is easily generalizable to any curve. 
Another proof of the Knizhnik's conjecture for a non abelian curve of genus 1 appeared in 
ref. [17] where a different approach was adopted. 

The second natural step in the scheme outlined above is represented by the construc­
tion of the Green functions for the ferrnionic fields of superstring theory. The aim is to 
detect the presence of twist fields in the amplitudes also in the supersymmetric case. We 
succeeded in doing this just for the Rhmann surfaces of [4] due to their intrinsic rela­
tionships with hyperelliptic curves [18]. Despite of their simplicity, these curves are very 
significative because they can be imagined as the world sheet of strings at any genus g 
when very high energies are involved. The extension of the results contained in ref. [18] to 
any curve is a challenging task since one has to cope with the inverse Jacobi problem (IJP) 
[19] emerging also in the language of theta functions. To solve the UP on a algebraic curve 
is almost impossible because it implies a set of complicated nonlinear algebraic equations 
[20]. 
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Another topic which is still not very much developed is the construction of the partition 
function of string theories on algebraic curves. This is an eld problem of string theory 
which was solved in [21,22) on Riemann surfaces of genus two and three using an explicit 
parameterization of the moduli space by the period matrix. However the form of the 
integration measure when p — 4 is still a conjecture due to the Schottky problem [11]. On 
a "general" algebraic curve the difficulty arises when computing the chiral determinants. 
The stress energy tensor method [23],which is successful in the case of Zn symmetric curves, 
leads in fact to a system of partial differential equations which is in practice impossible 
to solve [15]. One way in order to overcome the problem, consists in the use of the 
Beilinson Manin formula [8] as in [24]. In doing this we need however many ingredients. 
The first i gredient is a holomorphic half differential u^{z)dz1^2 corresponding to an odd 
spin structure *. The second are the positions on the curve of its zeros which solve the 
UP for the spin structure *. Finally we require a basis for the holomorphic differentials 
and the holomorphic quadratic differentials normalized as explained in [25]. Regarding 
the abelian differentials we can apply the algorithm of [15] provided we know a basis of 
homology cycles. In the case of quadratic differentials the situation is more complicated. 
We have to rely heavily on the work of [26], choosing the branch points to parametrize the 
moduli sp ice. After that, exploiting the variational formulas of [26], it is possible to repeat 
the procedure developed on [9] for the hyperelliptic curves and to derive the normalized 
holomorphic quadratic differentials. 

All the above motivations compel to the study of spin structures and their general­
izations living on a r-sheeted unramified covering of a Riemann surface. Particular care 
is devoted to the solution of the UP for the odd spin structures. We realize that the 
r-coverings of algebraic curves def« . *d by the spin structures are again algebraic curves 
determined by two groups. The first is the monodromy group of the underlying Riemann 
surface. The monodromy properties of the Green functions of free field theories in presence 
of spin structures seem therefore very likely to be simulated by the twist fields as in Knizh-
nik's conjecture. Nearby the monodromy group, we have however also an abelian group 
of symmetry since the r-covering of a curve related to a Zr spin structure has an intrinsic 
cyclic symmetry ZT. The g points z,, which solve the UP for a given ZT spin structure, 
are degenerate branch points of the r-covering. Due to the fact that an r-covering should 
be realized in an unramified way, the points Zj do not introduce any new ramification. 
This characteristic of the degenerate branch points is well explained in [27]. What matters 
here is that the behavior of Green functions near the points ZJ is very difficult to realize in 
terms of confcrmal operators and probably the Knizhnik conjecture fails in the case of field 
theories carrying spin structures. Also in the simple case of Zn symmetric spin structures, 
in which the points Zi coincide with the branch points of the curve, the Green functions 
show a very complicated structure which seems impossible to reproduce using the twist 
fields [28]. 

As an application of the spin structures we discuss in this paper the partition functions 
of bosonic string theory in the language of algebraic curves. In many examples, including 
two "general" surfaces of genus 3 and 4, we derive the partition function in terms of branch 
points apart from a factor which is essentially a theta constant. This fact does not represent 
a problem in our context. In principle the theta constants can be expressed through the 
elements of the period matrix. The latter has a direct expression in terms of branch points 
once the abelian differentials and the non trivial homology cycles are known. Therefore the 
Schottky problem is absent on algebraic curves. Of course it would be important to have 
a more compact form for the theta constants. Unfortunately the evaluation of the theta 
constants, especially for the odd spin structures which are complicated by the presence of 
zero modes, is an old problem of algebraic geometry which was never solved completely 
[29]. 

3 



Let us notice however that the motivation for studying free fields on algebraic curve 
does not merely consist in constructing the amplitudes of string theories loop after loop. 
The goal is instead to provide an explicit meaning to the rather abstract geomeric formula­
tion of string theory, involving for example quantities likke the chiral determinants. When 
it is possible to put these quantities in a relatively simple form as in the case of hyperelliptic 
curves or of the curves discussed here, one can give a glance inside the structure of confor-
mal field theories on higher genus surfaces to understand them better. Otherwise there is 
always the support of numerical methods as it happens in many other physical theories. 
Between the various possible applications of algebraic curves beyond strings, we remember 
the Riemann pro^'eni, whose solution is tied to the solution of the UP [30,31], and the 
connections with the multistring amplitudes on non-abelian orbifolds [32-35]. Moreover 
the conformal field theories on the complex plane are intimately related with the b-c sys­
tems on Riemann surfaces [36,37]. Finally the Coulomb gas representation method allows 
the construction of more complicated conformal field theories on algebraic curves [[6,7]. 

The material presented in this paper is divided as follows: In section 2 we show how 
to compute the non trivial homology cycles for two relevant classes of Riemann surfaces. 
We discuss the way in which the modular group acts on algebraic curves. In section 3 we 
develope the general formulation of the Z n spin structures on algebraic curves, showing 
that the related r-covcrings are again algebraic curves. We also discuss a generalization 
to non abelian coverings in analogy with [38]. An algorithm to solve the UP on algebraic 
curves is derived is section 4 and applied to the Zn symmetric characteristics and to the odd 
spin structures. In section 5 we exploit the Beilinson Manin formula [8] and the variational 
formulas of [26] in order to derive the partition function of bosonic string theory on generic 
algebraic curves of any genus. The example of a Z% symmetric curve is fully worked out 
and the expression of the theta constants for an odd spin structure derived through a set of 
linear equations. Finally section 6 is dedicated to the evaluation of the partition functions 
on general algebraic curves of genus 3,4 and 5. Unfortunately the curve of genus 5 depends 
only of 2g — 4 moduli and therefore is not "general". A nice method due to Baker to find 
the Weierstrass polynomial for an algebraic curve with given genus and number of sheets 
is also introduced. 

2. EXPLICIT CONSTRUCTION OF RIEMANN SURFACES 

In this paper we represent the closed and orientable Riemann surfaces in terms of 
algebraic curves associated to a Weierstrass polynomial of the kind: 

F(z,y) = yn + P n - j W " 1 + Pn- 2 (*)y n ~ 2 + . . . + P 0(*) = 0 (2.1) 

where y and z are complex variables. A particular interesting and simple case [10-14,37,39] 
is provided by the Zn symmetric algebraic curves associated with the equation: 

yn = -P*{*) (2.2) 

The Pi{z) are rational functions of the variable z € CP\'. 

W - -J? ; (2.3) 
E 1h',iZh' 
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The branch points aj , i = 1 , . . . , nt?t are defined as the solutions of the system of equations: 

p(*,y) = o ( 2 4 ) 

The number of branch points at finite values of z can be derived eliminating the variable 
y in eqs. (2.4). To this purpose we can use for example the algorithm of Sylvester [40]. It 
yields the polynomial equation D(z) = 0, where D(z) is the resultant of the two eqs. (2.4). 
The rootd of D(z) specify the positions of the branch points when z < oo. The degree of 
D(z) provides the number of finite branch points. The branch points at z = oo can be 
detected using the technique explained in [15]. When eq. (2.4) is fulfilled for a given value 
of z together with the relation: 

dzF{z,y) = Q 

then z is called a singular branch point. We will suppose throughout this paper that 
all branch points are regular. At some branch point F(z,y) can vanish together with its 
derivatives of order v — 1 in the variable y. In this case v is called the multiplicity of the 
branch point. 

Solving eq. (2.1) in y, we get a multivalued function y(z). The branches of y(z) are 
denoted by y^(z), I — 0 , . . . , 1 and are the roots of the oolynomial (2.1): 

F(y,z) = Y[(y-yw(z)) 

When y(z) is transported along a closed small cycle surrounding a branch point a of mul­
tiplicity (/, the branches of y undergo a permutation of order v. If we form a vector out 
of the branches of y: yW{z) = (y ( o J (*) , . . .^"-^(z) ) , then we can express such permuta­
tions by means of a matrix Ma, the so called monodromy matrix (see [15] and references 
therein). A Riemann surface £ t 1' can be constructed in terms of sheets and branch points 
demanding that the function y(z) is one-valued on £ . The details on how the Riemann 
surface is actually constructed are contained in classical textbooks on the subject such as 
[27,40-42] etc. 

The explicit construction of an algebraic curve in terms of sheets and branch points is 
a difficult technical problem. The usual strategy [27,40] consists in drawing a set of branch 
lines joining the branch points and in cutting the sheets along these lines. After that the 
sheets are joined at the edges of the cuts. It is clear that the choice of the branch lines 
is not arbitrary. It should respect the monodromy properties of y(z) providing the exact 
sequence with which the branches are interchanged at the branch points. In a general case 
we do not know exactly such a sequence either because y(z) has a too complicated analytic 
continuation or simply because eq. (2.1) is not analytically solvable in y. Fortunately, 
most of the quantities entering in the amplitudes of free fields o- a Riemann surface can 
be constructed out from the Weierstrass polynomial of eq. (2.1). An example is provided 
by the Green functions of the b-c systems [16]. However the two point functions of the 
free scalar fields, also entering in string theories, and moreover the discussion on the 
spin structures, require the knowledge of a canonical basL of homology cycles [15] and 
therefore of a system of branch lines. Only in this case, in fact, we can use the method of 
regularization of [14,41] which reduces the algebraic curve to the canonical polygon with 
4g sides of fig.l. The canonical polygon is of course intersected by the branch lines. It 

(*) The phrasee Riemann surface, algebraic curve or simply curve will be used interchange­
ably from now on. 
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is therefore simple to draw the homology cycles on the polygon and to see in which way 
they cross the branch lines in the original algebraic curve. An algorithm to construct a 
canonical system of branch lines exists just for the following two classes of algebraic curves: 

a) the function y(z) generating the curve is realized in terms of radicals: 

y(*)= VPI(*) + • ,V£(*)+... + . . .± Vp*f*) + —+ ••• 

and all the points at which the roots of order vj, vanish are branch points. In this 
case the branch points of multiplicity i/fc associated to each root are connected by the 
branch lines as on a Zn-symmetric algebraic curve. It is easy to proof that for such 
Riemann surfaces the ratios ^, (* = 1 , . . . , ntot), of the number of sheets divided by 
the multiplicity of the branch points is always an integer. 

An example of a multivalued function which does not fit in group a) is: 

»(*) = y/Po{z) -i- VUzf + Pi(z)3 + y/Po(~<)-yPÖ(z)2 + Pi(*)3 

satisfying the algebraic equation. 

yi + 3P1{z)y-2P0{z) = 0 

The points in which the two cubic roots vanish are zeros of order three and therefore 
cannot be branch points. In this case the analytic continuation of y(z) on the sheets 
becomes difficult and it is not very easy to find a system of branch lines. 

b) General algebraic curves in which all the branch points are simple: All the branch 
points have multiplicity two and we can apply the Luroth-CIebsch theorem [40]. Con­
sequently the surface can be taken in such a form that there is a single branch line 
between consecutive sheets connecting just two branch points and between the last 
two sheets there are g -f- 1 branch lines joining the remaining 2g — 2 branch points 
pairwise. 

In figs. 2,3,4 we show a canonical system of nontrivial homology cycles for the hyper-
n ( - \ elliptic curves, the Z3 symmetric curves y3 = J] )'°ik [43] and for the surfaces of class 

»=i v* ° 
b) [27] respectively. The relevance of the curves of class b) lies in the fact that a general 
algebraic curve and therefore each abstract Riemann surface is conformally equivalent to 
one in which the branch points are simple. 

We discuss now the modular transformations on algebraic curves. On £ the integrals 
over the nontrivial homology cycles of differentials can be reduced to definite integrals 
having the branch points as extrema (see also figs. 2,3,4): 

<p u>i(z)dz = S_\ I u>i(z)dz 

As a matter of fact, all the nontrivial homology cycles are closed paths surrounding two or 
more branch points. If we interchange the branch points in the equation above, then we get 
another homology cycle. This is clear on the surfaces belonging to group b) because they 
strongly resemble the hyperelliptic curves. It is possible to use now the free parameters 
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ßk.it lk',i in eq. (2.3) to specify the positions of seme of those branch points. In fact we 
can reduce eq.(2.1) to the following form: 

F(z,y) = Y/cr<.y
rz' 

The coefficients cTi, are computed from the determinant: 

(2.5) 

F{z,y) = det 

yn zyn~l » n _ 1 

nyZ;1 (n-l)aiy2;2 ( » - 1 ) ^ 

z 1 
«i 1 
0 0 

(2.6) 

Obviously on a general algebraic curve some terms of the kind y'zT may not appear. It is 
nevertheless clear that using the determinant form of F(z,y) it is possible to fix a number 
A; of predetermined branch points a\,... ,at satisfying eq. (2.4). k depends of the number 
of different monomials y*zr appearing in eq. (2.5) which, for a curve of genus g, is given 
by the Baker's method. Unfortunately this way of specifying the positions of the branch 
points requires two parameters of the curve for each branch point. One parameter specifies 
the branch point atj ?.nd the other the value of y at atj. Thus in general the k branch points 
obtained will be just a subset of the whole set of branch poir.ts. 

THE GENERAL FORMULATION OF THE INVERSE JACOBI PROBLEM 
ON ALGEBRAIC CURVES 

Let us consider a flat line bundle L\ on a algebraic curve E defined by the character­
istic: 

u L*(3 i ) . . . ? ( f l , ) 

The sections of L\ are the functions fa(z) which, when transported along the non trivial 
homology cycles Ai, Bi, (z = 1 , . . . ,g), pick up phases of the kind: e^Ai\ e^Bi^ respec­
tively. Here we restrict to the case in which: 

u — uT = 
ffci 

21 
L r >' ' r 

where r, ki and qi are integers. The characteristics üT will be called the Zr characteristics 
or alternatively the Zr spin structures. The usual spin structures occur when r = 2. The 
function faT(z) = ft, carries two indices and it is onevaluer4. on a r-cyclic covering of £ 
A r (S ) . The index / = 0 , . . . ,n - 1 is referred to the branches of fÜT which interchange 
when the function is locally transported around a closed path surrounding a branch point. 
The index u> = 0 , . . . ,r - 1 takes instead into account the multivaluedness of / o , , realized 
in a unramified way, along the nontrivial homology cycles. Let us remember that the latter 
can be never shrunk to small cycles surrounding a single branch point. Together with the 
monodromy matrices Ma. we have therefore also the matrices M^, Mßt corresponding to 
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the operators which transport / * r along the canonical cycles Ai and 2?,. The commutators 

between these matrices applied to / g r generate the finite group of symmetries of A r ( £ ) 
which is in general not abelian apart from a few cases [13,14]. Multiplying the fields of 
the b-c systems with conformal weight A with / s , ( z ) , we get sections of the line bundle 
Lir = Kx ' L\ where K is the canonical line bundle [44]. These are the socalled twisted 
b-c systems coupled with an external abelian gauge field via an holomorphic connection 
[45]. 

We start now to construct explicitly the covering A r ( S ) of a Riemann surface of genus 
g. As we will see it is associated to an algebraic equation of degree nr similar to eq. (2.1) 
but of a special form. The aim is to set ->p an algorithm which is able to compute the 
zeros of the function /«,(«)• Since faT can be expressed in terms of theta functions [19]: 

6[ür}(z) 
' * ' " 6[Ö\W ( 3 > 1 ) 

its zeros £ i , . . . ,£ a solve the inverse Jacobi problem: 

£ t *'&) = {*•>. - "I* (3-2) 

In eq. (3.2) K$°, v — 1 , . . . ,g is the vector of Riemann constants calculated at the basepoint 
Po, {ür} is the period in the Jacobian variety of S corresponding to the characteristic ür 

and Qv denotes a basis of holomorphic differentials in the canonical normalization. 

Instead of directly computing an algebraic equation for faT(z), we do it for its r-th 
power: gr(z) — [far(z)]r. The reason is that now gr(z) is onevalued on S and therefore it 
can be expressed as a rational function of z and y(z): 

k,l 

Eq. (3.3) is derived from a theorem of algebraic geometry [27,40], stating that the most 
general onevalued function on an algebraic curve is always a rational function. The theorem 
tells us moreover that gr(z) satisfies an algebraic equation of the kind of eq. (2.1) and has 
the same number of branches of y. As a consequence: 

g? + P^zW-1 + ... + A(z) 5 r + P0(z) = 0 (3.4) 

In particular the number of branch points of gT{z) and of y(z) coincide and the branches 
are interchanged according to the same monodromy properties. One can notice from eq. 
(3.4) that the zeros of gr are those of Po(z) because near a zero z0 of gr(z) the equation 
above is approximated by: P\{z0)gT ~ -P0(z0). The poles of gr(z) are instead given by 
the singularities of the functions Pi(z)y i — 0 , . . . ,n - 1 . Eq. (3.4) can be derived explicitly 
from eq. (3.3) computing the various powers gr(z), gl(z),.. -,5T?(^) and summing them up 
with the appropriate coefficients Pi{z), i — 1 , . . . ,n. The Pi(z) are rational functions of z 
and should be chosen in such a way that in the sum all the terms containing y(z) disappear. 
The result of the sum will be at the end PQ. Let us remember now that the zeros and poles 
ol gT{z) are of order r or multiples of r, conversely für(z) = \Jgr{.z) becomes branched at 
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these points and the covering A r (E) is no longer realized in a unramified way. Hence the 
coefficient a;;-, bki in equation (3.3) cannot be arbitrary and to find an algorithm expressing 
them in terms of the parameters of the curve appearing in eq. (2.3) in an explicit form 
is a very difficult issue (see [20] for an example when r = 2). For the zeros of gT{z), to 
which we are interested, the coefficients /3 0 |* = ßo,k{aijajm>^ki) of ^o(z) corresponding 
to the various powers in z should be such that PQ has all roots of order r. An analogous 
condition has to be put on the singularities of the Pi(z) to ensure that /« r (z) has poles of 
order r. Both these conditions entails 2rg equations in the ßo,k, 7»> which are algebraic 
relations between the parameters a and 6 and the branch points. Solving this system of 
algebraic equations in the Oi,j, bkti amounts to solve the UP on a algebraic curve. Once 
we have the correct coefficients in eq. (3.3), we can take the r-th root of gr(z) in eq. (3.4) 
getting the algebraic equation for /& r(z): 

AT + P»-i(*)/Äm'1 } + • • • + ÄWfl + ÄW = o (3.5) 

This equation can be well considered as the algebraic equation of the unramified covering 
A r ( £ ) . Let us notice that eq. (3.5) leads to an algebraic curve with the same monodromy 
group of eq. (3.4). As a matter of fact gr{z) and /*,.(*) are related through a root of 
order r which does not introduce any new branch point. Therefore the monodromy groups 
acting on /«,(z) and y(z) are equal. Moreover eq. (3.5) has an additional Zr symmetry 
/ i , - » e r fcr1 k € Z. The two groups are combined in such a way to give a non abelian 
group of symmetry of A r ( S ) even in the case in which the monodromy group of the 
algebraic curve £ is abelian. An exception is provided by the Zn symmetric characteristics 
discussed in [13,14]. 

Before to give some applications of the above results, we will introduce some possible 
generalizations which will be useful in the following. Instead of a function / « r we can 
consider a A differential i>üT{z)dz* with poles and zeros of order r. Taking its r-th root, 
two different cases are distinguished: 

i) A is an integer multiple of T. This is the case of the twisted b-c systems or twisted 
bosons described above (see also [46-47]). They are sections of the line bundle L*r = 
Kx-Llr, A integer 

ii) £ is a rational number ^. These are the A-differentials with rational conformal weight 
discussed in [48] in the case in which L\ = 1. When £ = | we have the Zr symmetric 
fermions of refs. [13,14]. 

For the A-differentials it is not possible to write an algebraic equation as eq. (3.5) 
directly. However a general meromorphic A-differentials is always of the form [27,40]: 

(3-6) 

where y(z,y(z)) is a rational function in z and y. The zeros and poles of the A-differential 

F (*\(*)) o c c u r o n l y a t t n e singularities of the polynomials Pi{z) of eq. (2.1). We will 

consider for simplicity only the case in which the Pi(z) are just polynomials, i.e. -ŷ k = 0 

(2) Since for a A-differential the difference between the number of its zeros and poles is 
always: 6 = \[2g - 2), it is clear that the ratio 6/r has to be an integer number. Conversely 
the covering of S generated by i>üT{z)dzx is branched. 

i/>ür(z)dzx =y(z,y{*)) 
dz 
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in eq. (2.3). Therefore all the singularities of y(z) occur at z — oc and p / / * / ^ has its 
zeros at z = oo '*\ Consequently the degrees of y in y and z has to be such that the 

A 
poles at z — oo cancel the corresponding zeros of p (ft(z\) a * infinity and generate a 
A-differential with poles and zei :>s of order r. It is simple to find on a algebraic curve the 
most general form that y should have in y and z in order to fulfill this condition apart 
from some constant coefficients as we did for g r(z)- At this point we can write an equation 
analogous to eq. (3.5) in the variable y and proceed as before. The problem is again to 
choose the constants a*,, 6*j through which y(z,y(z)) is defined in order that its zeros 
and poles are all of order r, of course apart from the Ig - 2 poles v.hich are dedicated 

to the elimination of the unwanted zeros of the A-difTerential p >*-T . This problem, 
which is the analog of the UP for the A-differentials, leads always to systems ol algebraic 
equations in the parameters a,j and bki. As we will see in the next section the possibility 
to write an algebraic equation for y suggests an algorithm to derive such parameters for 
many important algebraic curves in the case of the odd spin structures. 

Another possible generalization of eq. (3.5) consists in the construction of unramified 
coverings of E with non-abelian group of symmetries. On this point see for example [38] and 
references therein. For example one could imagine to extend the equation fcT {z)T — gr(z) 
defining a cyclic Zr-unramified covering to the equation: 

for - M*M*))fbt +1 = ff'(*.y(*)) (3-7) 

where g{z,y) and g'(z,y) are rational functions of z and y. Eq. (3.7) has a Dr symmetry: 
Zr symmetry: 

ifDr,g')-+(efDT,9') er = l 

Z-i symmetry: 

The solution of eq. (3.7) is: 

fDr = yJg±Vg(z)2-l+g'(z) 

Using the same procedure applied before for the case of Zr unramified coverings, a non 
abelian Dr covering of £ is realized in a unramified way requiring that the functions 
ki( z ) = 9*{z) ~ 1 + 9'{z) a n d hi(z) — g\z) — 1 have zeros and poles of order 2 and 
n respectively. The zeros and poles of h\ and A2 are in fact the branch points, with 
multiplicity two and r resp., of the algebraic equation (3.7). 

W In ref. [15] we have computed explicitly the divisor of dz and Fy(z,y(z)) for curves 
in which the functions P%(z) have singularities just at 2 = 00. 
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4. THE EXPLICIT SOLUTION OF THE INVERSE 
JACOBI PROBLEM ON ALGEBRAIC CURVES 

1) Zn symmetric characteristics. 

Let us rewrite eq. (2.2) in the following convenient way: 

M 

n (*-•*) 
n (»- o 

Let us also suppose for simplicity that the difference M — M' is a multiple of n. In this 
way the point at z = oo is not a branch point in eq. (4.1). The monodromy matrices in 
eq. (4.1) at the branch points ati, a', are Mai = M and Ma>. = M~x respectively, where 
M is the usual matrix generating the Zn cyclic group of permutations. It is clear that the 
functions (z — a,-) and (z — aj) have zeros of order n in aj , aj. For example (z — a<) ~ yn 
near the point a, as it descends from eq. (4.1). Therefore a general combination of the 
kind: 

has zeros and poles of order n if ^ 9i + Yl 9i = m n > "* G Z. The n-th root of gr{z) g i v e -
i 

in this case: 

/M=n(*- a ' )* i i (* -^ (4-2) 

Clearly the covering originated by the above equation, which is the analog of eq. (3.5) in 
this simple case, is again Zn symmetric as the surface E of eq. (4.1). The monodromy 
at the branch points are now changed by the non local effects due to these Zn symmetric 
spin structures and become: 

Ma, = M"' Mc = M'i 

These matrices generate the group of symmetries of the covering A(S) which is again 
abelian since it is the group Zn. The computation of the Green functions and of the chiral 
determinants for the b-c systems carrying these Zn symmetric spin structures is quite 
complicated since they have zero modes and will be treated elsewhere [28]. 

2) Odd spin structures. 
On a Riemann surface there are 2 2 s - 29 odd spin structures for which the vec­

tors {ür-2)vy v — l,...,g of eq. (3.2) correspond to the zeros of a theta function: 
0[Ö]({ür-2}t,) = 0. Therefore due to the Riemann theorem [19]: 

»=1 • '«o 
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Moreover the divisor ( = (?i>-•• ,1g-i) of degree g - 1 has multiplicity t(£) = 1 (4*. The 
divisor of the zeros of an odd theta function of the kind: 0[ür=2]{J ^v — /_ w„ -+- K*°) = 
ö[«r=2](« — a) is (fit»(ö[ür=2](* — a)) = (a ,g i , . . . ,qg-i) and is determined by the g - 1 
points 9 i , . . • ,qa~i- Consequently in this case the rational function ^0(2) of eq. (3.4) and 
(3.5) will have g — 1 quadratic zeros. 

"a the mathematical literature the set of g — 1 points corresponding to the odd spin 
structures are known just for the hyperelliptic curves [19] and for a "general" algebraic 
curve (*) of genus 3 [49]. We do not treat here the hyperelliptic case, which can be 
considered as a particular case of the Zn symmetric spin structures with n = 2 [1,3,9,10]. 
We wish instead to study the Zn symmetric curves with n > 2. This is an example which 
is easy to generalize to more complicated Riemann surfaces. 

For simplicity we consider just an algebraic equation of the kind: 

yn = -P9{z) = znm+ßo,nm-iz
nm-1+.-.+ßo.i* + ßo,o, rn€Z (4.3) 

The genus of such curves is given by g = 1 — m + mn\™~ ). V/e seek for an holomorphic 
differential u>.(z)dz with 3—1 zeros of order two. Its square root is ; n fact an half differential 
v,{z)dzi corresponding to the odd spin structure *. In the language of theta functions it 
is possible to construct the abelian differential 

ü.{z)dz = £ 0i[*}üi(z)dz (4.4) 
t 

satisfying the condition to have g - 1 quadratic zeros. In eq. (4.4) 

0,[*] = Urn— -6i[*}{uu)\u,=0 

and u>i(z)dz is the basis of abelian differentials in the canonical normalation [19]. On 
an algebraic curve we can build a differential u>m(z)dz proportional to that of eq. (4.4) 
following the methods of the previous section. We start with i. general abelian differential 
for eq. (4.3) given by [37]: 

n - l ml-2 

-MA- £ £ ^ V - 1 - ' - ^ 
i = l + « i , m A=0 

Since we are seeking for the zeros of w(z), one of the coefficients, let say -<4j,-i,m(m_i)_2 
can be put equal to 1. Looking at the divisors of z, y and dz we see that the function 

n - l ml-2 

l = l + « l . m * = 0 

(*) let us remember that if a divisor £ has multiplicity *(£) = 3, then 0[0]({« r =j}„) 
vanishes with its derivatives of order a — 1. 
( 5) Let us remember that a curve is said to be "general" if it covers a subset of the moduli 
space Mg of dimension Zg — 3. An algebraic curve can never cover the entire moduli space. 
In fact the branch points are just local coordinates in Mg and Mg is a complicated variety 
with singularities [26]. 
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has exactly 2# - 2 zeros and its poles eliminate the zeros of the differential dz/yn 1 at 
z — co. We have still to fix the coefficients A\j appearing in the definition Ol y in such a 
way that these zeros are all of order two. To this purpose, we write the equation F(zty) — 0 
defining y. This is very easy to do when n = 3 since y is linear in y. After making this 
further restriction we get: 

y 5 - 3 y 2

f t m _ 2 ( * ) + Zyqlm.2{z) - « f m _ 2 ( z ) = Po(z)qm-2{*) (4-5) 

Here the 94(2) are polynomials of degree A; in 2 given by: 

m,'l+*i,m)-2 

and 
2m-2 

92m-2(«)= 5Z Ax>*zX 

A=0 

In the notation of eq. (3.4) we have: 

h{z) = ftm-2(*) Pi(z) = qlm-2(z) Po{z) = Po(z)q2m-2(z) + 9 L - 2 W 

As it if possible to check, Po(z) is a polynomial of degree 2g — 2 = 6m — 6 as expected. If 
Sm-8 _ 

we write Po{z) = ]£ ßifim-t-.iz
6m~a~x, it is then clear that th« coefficients /?o,6m-6-> 

»=o 
will be functions of the parameters ßo,i appearing in eq. (4.3) and of the A\j. Following 

a-2 
section 3, we impose now that Po(z) = q2(z), where q(z) = Yl(z ~ z»')- ^ *kis condition is 

i=o 
fulfilled then the differential u>,(z)dz = y{z)^i becomes a differential wHh g — 1 quadratic 
zeros since tbe zeros of y coincide with those of PQ[Z). The first idea in order to colve the 
equation Po(z) - q2(z) in the /?o,8m-6-i» is to write down -he conditions for which the 
polynomial Po{z) has quadratic zeros. Unfortunately, already when m = 2, i.e. g = 4, we 
have three complicated equations involving the /?u,8m-s-»: 

I -JPo.o + — g — J PMPo,s 

I'hese equations represent the algebraic equations in the variables Ak,\ and it is impossible 
to solve them analytically. However the polynomial PQ(Z) in eq. (4.5) depends linearly 
of Ihe coefficients /?o,k of Po(z). We can therefore use the ßo,h to solve the equation 
PQ(Z) = q7(z) considering the parameters Ax,i and the zeros zo,..., Zy-2 appearing n q(z) 
as independent. The advantage is that we have to solve in this way a set of linear equations 
in the constant coefficients ßo,k instead of the highly nonlinear system written above in 
the ßo,im-6-i- This strategy is of course working on if the number of the coefficients 
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0o,» is greater or equal than the number of the zeros 2t- a^d of the A\j. Otherwise just 
a part of the quadratic zeros can be easily found with this method. This is a limitation 
in solving analytically the UP on Zn symmetric curves and the situation when n > 3 is 
even worse because in this case the coefficients ßo,i do not appear any longer in Po{z) in 
a linear way. The troubles arise because the UP is very complicated to solve explicitly 
either in the formalism of theta functions (eq 3.2) or in the language of algebraic curves. 
Nevertheless the method explained above can be applied when n = 3,m = 1,2,3 and 
when n = 4, TO = 1,2. These examples are very useful in order to understand how the spin 
structures are realized in terms of twist fields. Once this problem is understood, then it is 
possible to extend the solution to any curve, apart of course from the difficulties with the 
nonlinear algebraic equations. 

The main motivation for the study of the odd spin structures lies here in the fact that 
once we know the zeros ZQ,.. . , z f l -2 which solve the inverse Jacobi problem, it is then 
possible to express the chiral determinants using the 3eilinson Manin formulas [8] as in 
[11,24]. Luckily enough the procedure outlined above is able to get these zeros for the odd 
spin structures of two "general" Riemam. surfaces of genus g — 3,4. 

5. THE CHIRAL DETERMINANTS ON ALGEBRAIC CURVES 

We start here with the formulas of the chiral determinants given in [24]. Actually 
we consider the following combinations of chiral determinants, from which it is possible to 
construct the partition function of the bosonic string theory: 

Aj ={detd0)*{det8j) 

In the case of string theories we are interested just to Ao and A2 which are given by: 

A Q = ü'ä*o) ,51s 
det \ü"{zo)ü>i{z0)... ü>i{zg-2)\ 

and 

12 = 
< * e i | v r ( « o ) ^ ( ^ V ; ' M ( Ä o ) v » r ( * l V ; ( « l V ; ' ( « l ) . . . M « « - 2 ) V r ( * « - 2 ) ^ ( * » - a ) | 

(5.2) 

In eqs. (5.1) and (5.2) the prime denotes a derivative in z and the <pr(z)dz2, r = 1 , . . . , Zg -
3, form a basis for the holomorphic quadratic differentials. It is possible to derive an 
expression of the partition function of bosonic string theory Zg through Ao and A2 in the 
following way: 

r 3J-3 
Z« = / I I * - a r | F ( a ) | 2 « f c r l , / m ( r i i ) (5.3) 

where 

and Titj is the period matrix characterising the Riemann surface. The derivation of this 
matrix requires the knowledge of a system of nontrivial homology cycles which can be 
constructed as explained in section 2. 

14 



The parameters ar spanning the moduli space are the branch point J of the algebraic 
curve. This is a perfectly legitimate choice [40]. The most simple choice to parametrize 
the moduli space would be the coefficients ßitk,H,k' of eq. (2.3). However they do not 
fulfill the definition of moduli given in [40]. Moreover the variational formulas of [26], 
which will play a key role in the construction of the partition functions, do not exist for 
the parameters of the curve. In eq. (5.3) all the dependence of the parameters /?,-,*, 7^ ' is 
transformed in a dependence of the branch points in the following way. For certain curves, 
in particular those of group a), the number of branch points is smaller then 3<^*\ In this 
case varying the branch points we obtain just a subset of all the possible Riemann surfaces 
of genus g. In some other cases, for example the curves in group b), the number of branch 
points can be bigger than Zg. In both situations we rely en the theorems established in 
ref. [26], stating that the number N of free parameters on a algebraic curve is never more 
than Zg. Thus we fix three branch points aN-.2,<*N-itaN keeping free the remcinin1» 

N 
N - 3: 0 1 , . . . ,ajsi-s- At this point we impose the relation D(z) = \\{z — a^Psj-jv^z) 

» = 1 

for the resultant of the two eqs. (2.4). The roots of the polynomial Psg-N(z) take into 
account of those branch points which cannot be chosen arbitrarily. It is now possible to 
solve the above relation term by term in the various powers of z with respect to the N 
free coefficients ßitk and 7^' . In this way they become functions of the branch points as 
promised. The branch points appearing in PSS-N(Z) represent instead the remaining roots 
of the equation D(z) = 0 and are again functions of the a.\,.. .,as-

Finally eqs. (5.1), (5.2) depend of the normalization of the zero modes. In eq. (5.3) 
one has to insert the canonically normalized basis for the abelian differentials which can be 
obtained as in ref. [15] once we have a basis of homology cycles. Regarding the quadratic 
differentials, we need a linear combination of the tpr(z)dz2 satisfying the condition to be 
orthonormal with respect to the Beltrami differentials: 

Vr.zzrf,, •- I d2Z(pr,izfl*ti = Sr, (5.4) 

Using the variational formulas of [26] we can obtain the normalized quadratic differentials 
<pr(z)dz2 as in the hyperelliptic case [9]. We perform the derivation just for "general" and 
Zn symmetric curves, but the method can be extended also to other curves with little 
modifications. 

Let us start with the "general" case. It is well known that for bach curves a basis of 
holomorphic differentials is provided multiplying the abelian differentials pairwise in all 
the possible ways: 

<pr{z)dz2 € {u>i(z)u;j(z)dz2\i <j £l,...,g} 

Now we use the fact [26] that under the variation ar —* ar + 6aT of a branch point o r with 
multiplicity i/ r, the period matrix changes according to the following rule: 

§&-£<*(.)*(.»££> (5.5) 
In eq. (5.5) {f(z)}f=är means that we have to take the residue of order vr — 1 of the 
function f(z) at z = ar. Following [9] we start now from the general relation: 

äo7 = / E ^ ^ < M > 

(6) Let us remember that algebraic curves are coverings of CP\ and that 3 branch points 
can be arbitrarily fixed using the group of automorphisms S£/(2, C) of CP\. On this point 
see also [11]. 
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Comparing eq. (5.5) with eq. (5-6) we see that the Beltrami differentials associated with 
a branch point with multiplicity v is, on a generic curve, proportional to the derivative of 
order v — 2 of the delta function ^2\z, a,-). Now we substitute in eq. (5.6) the following 
expression for the Beltrami differentials r\T orthonormal to the <pt{z): 

rjr = (N;1)rj.(z)g-1 

where g is the metric on the Riemann surface. Summing eq. (5.6) over the 3g — 3 branch 
points generating the independent variations in the moduli space we get: 

Equating the different integrands in the above equation and using eq. (5.5) we have: 

£ fa*Az) = £ ^ {*•<*>*>w>£i w*)=*.-w** w (5.7) 
It is clear that the above equation provides a linear system to construct the holomorphic 
quadratic differentials <fr(z)- Moreover it is possible to use ~. linear combination of formula 
(5.7) in such a way that we can use an arbitrary basis of holomorphic differentials WJ(Z). 

A brief discussion of the Zn symmetric curves of eq. (2.2) is in order here. The 
number of branch points is now less than 3g unless n = 2, g = 1,2. On such Riemann 
surfaces the branch points are the moduli related to the pseudo-differential transformations 
which preserve the Zn symmetry y —» cy, e = e~^~, k = 1 , . . . ,n - 1 [50]. The quadratic 
differentials <fr{z) associated with the branch points are therefore symmetric under the 
above transformations and have the form: 

where RT{z) is a singlevalued rational function in z. The number of the £n-symmetric 
quadratic differentials is, as a matter of fact, equal to the number of branch points. There­
fore in the case of Zn symmetric curves we have to insert the Zn-symmetric differentials in 
eq. (5.7). We generalize in this way the treatment of Beilinson Manic formulas developed 
in ref. [9] which was restricted to the case n — 2. 

As we see from eqs. (5.1), (5.2) and (5.7) the explicit construction of the partition 
function for the bosonic string theory on an algebraic curve requires the knowledge of four 
things: the nontrivial homology cycles, the abelian differentials, the abelian differential 
'j}t{z)dz with 9 — 1 quadratic zeros and the positions of such zeros. Unfortunately the 
methods of sections 3-4 allow the derivation of an abelian differential which is only pro­
portional to the true normalized abelian differential ü,(z)dz of eq. (4.4). The constant of 
proportionality depends of the parameters of the curve which ultimately are functions of 
the branch points and this is unsatisfactory. In order to solve partially this extra problem 
we normalize our differential w,(z)dz in such a way that its value is 1 at some point z = a 
which is not a zero of u>,(z). In this way it is clear for example that the differential: 

, t,\ *«,<**(*) 

16 



is proportional to w*(z) apart from the factor 0,,iu>i(O). Hence, since the normalized 
abelian differentials <Dj(z) are known from ref. [15], the formulas (5.1) and (5.2) for the 
chiral determinants are determined up to the theta constants 6,^. 

The first example we treat is provided by the Zn symmetric curve of eq. (4.3) with 
n = 3, m = 2. In this case gm_2(z) in eq. (4.5) is a constant which can be set equal 
to one and the condition PQ(Z) = q(z)2 is satisfied if Po(z) = q2(z) ~ qliz)- Here q(z) = 
(z — ZQ)(Z — zi)(z — Zi) is a polynomial of degree three and flä(z) is like in eq. (4.5). The 
original six free parameters /?0,i of eq. (4.3) have been substituted by the six parameters 
2O,ZI,Z2>-AO,OJ-AO,I>-AO,2- The algebraic equation 

** = -«*(') +«5 W (5-8) 
has therefore an abelian differential with g — 1 quadratic zeros given by: 

w . w < b = y-±*&dz (5.9) 

In eq. (5.9) we have y = y + 92(2). Let us notice that in eq. (5.8) we loose the position 
of the branch points because they are given by the relation q2(z) - q\(z) = 0, which is of 
degree six and it is impossible to solve explicitly. Nevertheless we have the bonus that we 
have solved the inverse Jacobi problem for one odd spin structure on the curve with genus 
g — 4 of eq.(5.8). Moreover we have found more then one odd spin structure: just looking 
at eq. (5.8) it is easy to proof that also the following functions have g — 1 quadratic zeros 
and correspond to different odd spin structures: 

y = y-ekq2{z) k = 0,1,2 € = €^ 

If we choose the spin structure represented by the differential of eq. (5.9), the zeros zo, z\, zj 
occur in the first sheet, i.e. when y - \/P~ö. We have now all the ingredient to construct 
A 0 and A2 in eqs. (5.1) and (5.2). The abelian differencials are in fact given by: 

z3~*dz dz 
u)i[z)dz = — 7 = 1,2,3 u)Az)dz — — 

y y 
while the quadratic differentials invariant under the Zn transformations to be inserted in 
the RHS of eq. (5.7) are of the form: <pr = ^r^4, r = 1,2,3. In the particular case of 
the Zn symmetric curves the twist fields are already known [10,37,39] and it is possible to 
derive the chiral determinants using the stress energy tensor method. The result is: 

{detdo)> = [det(K)}$ [J (o i - arf 

where K = §A utidz. Equating the above expression with eq. (5.1) we get: 

e . M 0 ) . « 5 S Ö « M i ( ) i { ] K . aifm ( 6 . 1 0 ) 

We are now able to evaluate in a easy way the theta constants #,,; since the above equation 
is a linear system in these variables. Let us remember that in general such theta constants 
are defined through complicated differential equations [29] and are known only in the 
hyperelliptic case. 
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6. THE CASE OF ALGEBRAIC CURVES OF HIGHER GENUS 

In this section we apply the method discussed previously in order to provide all the 
ingredients needed for the construction of the partition functions on "general" algebraic 
curves of any genus. The first task consist in constructing an algebraic equation with the 
biggest number of free parameters in order to cover the moduli space as r.uch as possible. 
This problem can be solved using the Baker's method [27]. On a lattice on the plane whose 
units are squares of side 1, we trace two cartesian axis. The vertical axis is associated to 
the variable r and the horizontal to the variable s, where r and s are the two indices 
appearing in eq. (2.5). Now we draw on such a plane all the points {r,s) for which the 
coefficients cTj, in eq. (2.5) are different from zero. Finally all the external points are 
connected by straight lines in such a way that none of the points (r, s) is kept outside of 
the close polygon we get. The polygon should be convex, otherwise one can perforin the 
transformations y —• y+p(z) or z —» z+p'(y) with p,p' polynomials in z and y respectively, 
adding new terms of the kind cT%tyTz* in the final curve. Let us remember that after a 
rational transformation the new curve is equivalent to the eld one as explained it section 
three because it has the same number of branch points and the monodrorcy group does 
not change, p and p' are arbitrary r>olynomials with a constraint on their degrees due to 
the fact that we want to keep in the transformed curve the same maximum degiee in z and 
y of the original one. Conversely, the former curve will have a different number of sheets 
than the latter. At the end, the Baker procedure applied to the final curve yields a convex 
polygon. After the polygon is convex, the above transformations are no more effective and 
do not change its shape. Returning to the Baker's method, the number of free parameters 
of the curve is exactly the number of points contained inside the convex polygon together 
with those lying on the boundary, while the genus is given by the number of the points 
which are inside the polygon but do not belong to the boundary. In this way we can 
construct the algebraic equation for a curve of genus g with the biggest possible number of 
free parameters c r > J and with a determined number of sheets just drawing a suitable convex 
polygon on the plane. Since the branch points are functions cf these parameters, we have 
in this way the possibility of constructing a "general" curve of genus g or at least the best 
approximation of it. Unfortunately the Baker's method does not provide the most general 
form of an algebraic curve. For example when g = 5 we start with a n-sheeted Riemann 
surface associated to a reference multivalued function y. According to section 3, there is a 
function y, corresponding to an odd spin structure, with n branches and with 2g — 2 = 8 
zeros. Therefore y satisfies eq. 3.4 with a -Po(z) of degree 8. As we already explained, the 
function y and its Weierstrass polynomial F(z,y) = 0 describe the Riemann surface under 
consideration as well as y. However any attempt to construct a convex polygon for 

n*,y) = IVi/'= o 

with a side of eight units along the r axis and containing just five points is impossible for 
any n. The apparent contradiction is solved constructing the Weierstrass polynomial for 
y explicitly as we did for tne 4-sheeted surface of genus 5 of eq. (6.10). In this case the 
coefficients P%{z) are of a very special form. Therefore, despite of the fact that the Baker's 
method applied to F(zty) gives a genus which is much higher than five, it is possible to see 
that there are many cancellation in the leading terms in z of the resultant D(z) between 
.lie two equations F{z,y) — 0 and Ff(z,y) = 0. At the end the number of branch points, 
which is equal to the degree of D(z) in z, and their multiplicities, is in agreement with 
the Riemann Hurwitz formula. Let us recall here that the number of branch points and 
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their multiplicities for a n-sheeted curve are related to the genus by the Riemann Hurwitz 
equation: 

2g - 2 = - 2 n + V ( i / i - 1) (6.1) 

We are now ready to construct the partition functions on "general" algebraic curves of 
genus g. 

i) "General" curves of genus three. Firstly we study the Riemann surface of ref. [15] 
associated to the equation: 

y* + Pi{z)y + Po(z) = 0 (6.2) 

P\(z) and PQ{Z) are polynomials of degree 3 and 4 respectively. They provide exactly 9 
parameters ßitk, * = 0,1. This is in agreement with the fact that a "general" algebraic 
curve should depend on 3g free parameters. Using the Sylvester method to solve eq. (2.4), 
we find that the resultant P?{z) + P$(z) = 0 has 9 roots corresponding to 9 branch point i. 
Another branch point of multiplicity two occur at z = oo. The Riemann Hurwitz formula is 
then satisfied if all ten branch points have multiplicity two. Therefore the curve described 
by eq. (6.2) belongs to the group b) discussed in sectioi. 2. A non canonical basis of 
abelian differentials is given in [15]: 

dz zdz ydz 

The canonical abelian differentials are obtained as in ref. [15] using the basis of homology 
cycles given in fig. 4. The six normalized quadratic differentials 

£l(*)i ••• .£•(*) 

are computed from the products of two abelian differentials by means of eq. (5.7). The 
result is too long to be rewritten here. The differential u>*(z)dz with 2g — 2 quadratic zeros 
is of the form: 

y + A0iz + AQ0 

u>,{z) = =-̂  r—'-dz 

As we can see the function y — y + Aa,iz + J40,O has exactly four zeros. In fact in this case 
2g - 2 = 4. The position of such zeros is given by the polynomial Po{z) appearing in the 
equation F(z,y) = 0 which defines y. It is clear that Po(z) i6 proportional to the resultant 
of the system of equations: 

iF(z,y) = 0 
\y = y + A0ilz + A0,o = 0 

Using the method of algebraic elimination of Sylvester, thu position of the zeros of y is 
specified by the resultant of the above equation: 

D(z) = R\'z) 4- P1(z)R1(z) - P0(z) = 0 

where R\(z) — A^^-Y A^t\z. The degree of D(z) is four as expected. If we require that y(z) 
has two zeros of order two at z = ZQ,ZI, then we have to solve the equation D(z) — q2{z) = 
y(z-Zo)2(z — z\ ) 2 . In order to fulfill such relation, it is sufficient to reparametrize the initial 
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curve as we did in the example of eq. (5.8) putting: Po(z) = R\(z) + Pi(z)Ri(z) — q2(z). 
In this way the "reparametrized" equation of genus 3: 

y S + Pi(z)y + R\(z) + PitfR^z) - q2(z) = 0 (6.3) 

has a natural odd spin structure associated with the holomorphic differential: 

/ 1 ( y + **(*)) te^ 

u;,(z) has two zeros of order 2 at z = zb,zi located in the sheet where 

y(z) = yJp0{z)+tfP^z)* + P1(z)* + { / P o W - ^ ^ ) 2 + P i ^ ) 3 

The square root v»{z) = y/u,(z)dz defines a natural metric on the surface of eq. (6.2): 
9xi — l* /»( z)P' The five parameters ßo,k of Po{z) are now functions of five new independent 
parameters represented by ZQ,ZI ,7 , AQ,O and Ao,i• At this point we have all the ingredients 
for the construction of the partition function of string theory on a algebraic curve of genus 
3 which covers all the moduli space apart from the subset related to the hyperelliptic 
surfaces. Let us notice however that this set is of zero measure in the moduli space M3. 
We list below the two formulas for Ao and A2: 

A -A.i\K\l» -, x u>"(*o)/f.(0) . 
Ao = del\K (P»,iti;i) ,,,—r—7—r—-.—rr (6.5) 

w"(z0)/u;,(0) 
A2 = ^ l Ä l ( ^ ^ ) d e ^ r ( 2 o ) ^ ( 2 o ) ^ ( i o ) ^ ( z i ) ^ ( z i ) ^ ( 0 l ) (6-6) 

Here K is as in eq. (5.10) while 

Let us notice here that the quartic of genus three is the most well studied case after 
hyperelliptic curves in the mathematical literature. Since the very early times [49] it was 
found the following remarkable curve with three natural odd spin structures. 

y z i - / 2 ( z , y ) = 0 (6.7) 

with t = ciz + C2J/ + ca and 

/ = oooz2 -f- any2 + a-22 + <*io2J/ + *2<>z + <*2iy 

Using again the Sylvester method for eqs. (2.4), we get a polynomial of degree 12 whose 
solution are the branch points. Two of the branch points occur at z = 0. At these point 
the four sheets are connected pair wise at the two projections 0i and O2 of the point z = 0 
on the algebraic curve. Therefore the point z =- 0 has multiplicity 4 and the algebraic curve 
of eq. (6.7) does not belong to group b). The relevant divisors [15] for the construction of 
the abelian differentials are: 

,. , . v 0i02O!3 . . . a i 2 ,. , „ , ,v 0i02O!3 •••«12 

°°(0) ' • • °°(3) °°(0) • ' * °°(3) 
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0 2 0 2 -v 2-v 2 

div(z) = - ^ div(y) = 7 + 7 ~ 
OO( 0) . . . 00(3) CO(o) • • • 0O(3) 

As usual, O(j) denotes the projection of the point z — a on the sheet t. Moreover in the 
above formula 0i ,0a,aj ...an denote the 12 branch points with multiplicity two of eq. 
(6.7) and: 

_ -O20 ±yigjp — 4aoott22 
2aoo 

The three independent holomorphic differentials are: 

, dz zdz ydz 

Fy(*,y) v ' n (^ .y ) *•»(*•») 

It is now clear that we have three possible odd spin structures associated to the differentials: 

. zdz ydz t(z,y)dz 
1 ' Fy(z,y) Fy(z,y) K ' Fy(z,y) 

Proceeding as for the curve in eq. (6.2) we can construct the Beilinson Manin expression of 
the partition function using all three spin structures *, *' and *". In this way it is probably 
possible to check that the Beilinson Manin formula is not affected also at genus 3 when 
the reference odd spin structure * in eq. (5.1) is changed. 

ii) "General" curves of genus 4. A "general " Riemann surface of genus four can be 
represented by the algebraic equation: 

ys + P2(z)y2 + Pi(z)y + Po(z) (6.8) 

The polynomials ^2(2), Pi(z) and PQ(Z) have degrees 2,4 and 6 in z respectively. Again the 
Sylvester method tells us that there are 12 branch points on , . . . a 1 2 . The point z = 00 has 
no ramifications. Therefore the Riemann Hurwitz formula (6.1) assures that all branch 
points have multiplicity two and the curve (5.8) belongs to the group b) analyzed in 
section 2. The number of parameters /?;,*, i = 0,1,2 in eq. (6.8) is 15. However a simple 
transformation y —» y — P2(z)/3 eliminates the term Pi(z)y2 from eq. (6.8) containing 
exactly three parameters. Hence the number of free parameters is equal to the number of 
branch points which is 3(/ = 12 as expected on a "general" algebraic curve of genus four. 
The relevant divisors for the construction of the abelian differentials are: 

j - tj \ a\...a\2 j - IT? 1 \ ct\...a\i div(dz) = —= = j - div{Fv{z,y) = —-. -r j ~ 

div(y) = 
°°<0)°°(1)°°(2) 

61.. .6( denote here the zeros of Po{z)- The four independent abelian differentials are: 

. . zt+1dz n , „ . . . ydz 
<*(*)=-£w T i = 0 , l ,2 w*{z)dz = Fv(z,y) ' ' ' w Fv(z,y) 

Therefore an holomorphic differential with g - 1 quadratic zeros should be of the form: 
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with 52(2) = Ao,a22 T Ao,i« + Ao.o. It is easy to verify that y = y + 92(2) is a meromorphic 
function on the curve with 2^ — 2 zeros. The position of these zeros is provided by the 
following set of equations: 

{ y
3 + P2{z)y2 + P^y + P0(z) = 0 

With the method of Sylvester, the resultant of these two equations is given by: 

h{z) = ql(z) ~ P2(z)ql(z) + * ( * ) » ( * ) ~ Mz) 

Now we require that Pol*), i-e- V, has g — 1 = 3 quadratic zeros z0,zi,z2. This implies: 

2 

«5(») - P2(z)q2

2(z) + Pi(z)q2{z) - P0(z) = q\z) = 7 [ J * ~ **) 
i=0 

Therefore, if we choose the reparametrization of the curve (6.8) in such a way that 

Po(z) = q\{z) - P2{z)q\{z) + P x(*,ft(«) - <?2(*) 

then the algebraic curve has a natural spin structure * represented by the abelian differ­
ential u»[z)dz of eq. (6.9). The zeros which solve the U P for * are zo,zi and z2 and are 
located all on the same sheet. Again the 7 parameters ßo,k of Po{z) becomes functions 
of the new independent parameters: 7,Zj, and Ao,i, t = 0,1,2. A natural metric on the 
curve is provided by gzi = )Ü;»|. We can proceed as for the case g = 3 and construct the 
partition function of bosonic string theory in a similar way. 

iii) The curves of genus 5. Applying the Baker's method the most "general" curve of 
genus five is associated with the following algebraic equation: 

P4{z)y* + PA{z)yl + P2(z)y2 + Pl{x)y + P0{z) = 0 (6.10) 

where Pz,P2,P\ and P 4 are polynomials of degrees 2,3,3,3 and 1 respectively. The branch 
points are 16 and the Riemann Hurwitz formula is satisfied only if they are all simple. 
Therefore also the curve of eq. (6.10) belongs to group b). Let us put P4(z) = z —a. It 
turns out that y is singular both in 2 = a and z — 00 but not branched at these points. 
Despite the appearances, the algebraic curve associated to eq. (6.10) has only 3<j — 1 free 
parameters. In fact if we project the curve on the 2 axis, then z — z{y) is a three sheeted 
function which can at most have 14 branch points due to Riemann Hurwitz. Instead a 
"general'1 curve of genus 5 requires at list 15 branch points generating independent pseudo-
conformal transformation'-. We follow now the procedure outlined in ref. [15] to determine 
the degree of divergence of y in 2 = a and z — 00. It is relatively simple to realize that 
just a branch of y has a singularity of the first order in 2 = a. It is not important in the 
context to know exactly what is the branch. Let us denote with a,\ the projection of the 
point z = a on the sheet where the singularity occurs. At 2 = 00 there are Singularität of y 
with a first order pole just on two of the four sheets. Again we denote the projection 01 „he 
point 2 = 00 on these sheets with 001 and 002. The relevant divisors for the construction 
of the holomorphic differentials are: 

<M<fc) = 2 2 a a div(Fv(z,y)) = —2 
O O ( 0 ) O O ( l ) O O ( 2 ) O O ( 3 ) CO(0}OO(l)OO(2)OO(3)al 
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,. . x £16263 
div(y) = 001OO2O1 

Here 61,62,63 denote the zeros of PQ(Z) and « j , . . . ,ajg are the 16 branch points of the 
algebraic curve (6.10). A basis for the abelian differentials is provided by: 

/ w d z 1 \J z d z t \ J y z d z 

wi(«)^ = -F7—T w2(z)dz = — — - Ui(z)dz = — Fy^y) v ' Fv(*,y) v ' *,{*#) 

ydz y2dz 
ut(z)dz = — u>i(z)dz = Fy(z,y) 1 V ' Fy(z,y) 

A general abelian differential with g - 1 quadratic zeros is therefore of the form: 

„ ft\dM - (y2 + *(*)y + M*)), 
•{)dz " f^i) d z 

where qi(z) and Pi(z) have both degree 1. In this case y = y2 +qi(z)y + Äi(z) has exactly 
Ig — 2 zeros. In order to have g ~ 1 quadratic zeros, the resultant D(z) between y and eq. 
(6.10) should be z-sro. We simplify the calculation putting Po(z) — 7(2 - z0)

2(z — zj) and 
.Ri(z) = 0. Therefore the resultant D(z) becomes: 

D(z) = P 0(z)[P 4(z)9?(z) - P,(z)«J(2) + P2(*)<7i(*)2 - Pi(*)*(*) + P„(*)] = 0 

The equation above depends linearly of the coefficients ßitk, i = 0,1,2,3 of eq. (6.10) and 
has already a quadratic zero in z = z 0 and a simple zero in z = zj. Five of these coefficients 
can be used to rewrite D(z) in the form: 

D(z) = 7(* - *o?(* ~ *i?(* ~ *2)\z - zif 

At the end we finish with 10 of the 17 paiameters appearing in eq. (6.10) becoming 
dependent of the 5 parameters 7, ZJ, i = 0 , . . . , 3 and of the two parameters Aito, Ai,i in 
<7i(z). There is no contradiction with the fact that the algebraic curve depends effectively 
of a set of 14 parameters as mentioned above. The expression cf the five coefficients ßitk 
in terms of the parameters 7,Z»,-AI IO,J4I II is too complicated to be written here. However, 
even if the final expression is involved, we are able to compute also in this case the partition 
function of bosonic string theory. 
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CONCLUSIONS 

In this paper we have studied in which way the spin structures are realized on a 
algebraic curve E. The answer is that they live on coverings A r (E) which are also algebraic 
curves. All the A differentials ij)dzx carrying spin structures and therefore the Green 
functions of b-c systems, are determined in the sense of ref. [37] by the behavior at the 
branch points a* of E and at their zeros z* of order r. The points Z{ appear as degenerate 
branch pcints of A r (E) . In fact when A = 0, deriving eq. (4.5) in z and putting z = z> 
we get a zero since z< are the roots of PQ. The &ame conclusion is valid for A ̂  0 using 
the function y(z,y) of section 3 instead of far(z). Let us remind that y is the part of 
V> generating the multivalued behavior due to the spin structure. The situation is well 
exemplified by the Z&- symmetric algebraic curve of eq. (5.8). Here we have a holomorphic 
half differential u»(z)dz$ — « p with y = y + qi(z). The function 

>/i=yj\/-?{*)+&*)+1z{*) 

has branch points when —g 2(z)+gf(z) = 0 as the original function y and degenerate branch 
points when 42(2) - 0. The method of A-differentials of [37] is able to cope with equations 
like (4.5) which belongs to group a), but stumbles against the obstacle of degenerate branch 
points. Unfortunately the odd spin structures have Green functions of complicated form 
[51-52] and it is very difficult to grasp how the method of A-differentials can be extended 
in this case. Probably the even spin structures are more simple in this sense; they will be 
treated elsewhere. 

One of the byproducts of our work is the construction of an algorithm to solve the 
UP on algebraic curves for any spin structure symplifying a previous algorithm of [20]. 
Moreover it solves explicitly the UP for one odd spin structures in many examples of 
Riemann surfaces. This fact allowed us to derive an explicit expression for the partition 
functions of string theory at genus 3 and 4. Unfortunately some interesting aspects of the 
subject exposed in this paper have been neglected or just briefly discussed due to the lack 
of space: The already mentioned construction of the Green functions of free fermions with 
even spin structure, the generalization to the supersymmetric Beilinson Manin formula [53], 
the modular invariance, the Beltrami differentials and finally the variational formulas of 
[26]. These further developments are unavoidable in order to know how far the Knizhnik's 
conjecture can be pushed and in order to get a deeper understanding of conformal field 
theorizs on Riemann surfaces. 
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* 

FIGURE CAPTIONS 

fig. 1 The canonical polygon of a Riemann surface of genus g. The polygon is intersected 
Ly the branch lines connecting the branch points. 

fig. 2 A canonical basis of homology cycles for an hyperelliptic Riemann surface of genus 
g. Bold lines characterize the parts of cycles lying on the first sheet, dashed lines the 
parts lying on the second sheet. 

fig. 3 A canonical basis of homology cycles for the Riemann surface associated to the alge­

braic equation:ys = i l ( jE^") • The part of the cycles lying on the third sheet are 

denoted by twisted lines. 

fig. 4 The branch cuts for the curves of group b). The n — 2 branch lines on the left 
connect consecutive sheets pairwise. The other g + 1 branch lines are intersected by 
the homology cycles as in the hyperelliptic case. 
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