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ABSTRACT 

In a simplified model we follow the evolution of the originally nonthermal momentum distribution 
Our result is. thai, although the final entropy deficiency may be quite substantial at 800 Mev/iwcteon 
beam energy for smaller nuclei, the delected process does not reflect the extent of deviation from 
equilibrium (quite substanliai). The reason is the addition of flow velocities, different in different 
volume elements. 

Б. Лукач, А. Рац: Объяснение отсутствия нетеплового хвоста в нерелятивистских 
столкновениях тяжелых ионов. KFKI-1990-25/A 

АННОТАЦИЯ 

С помощь» упроченной модели прослеживается эволюция распределения моментов 
с нетепловым начальным распределением. Выясняется, что, хотя недостаток энтро­
пии в конечном состоянии в случае меньших ядер при энергиях столкновения 
800 ИэВ/нуклов может быть значительным, экспериментальные данные не свидетельст­
вует о таком отклонении от равновесного распределение. Это можно объяснить, при­
няв во внимание скорости течения, которые в различных элементах объема являются 
разными. 

Lukács В., Ráez A.: Hová tűnt a nem-termikus farok a nemrelativlsztlkus nehézion ütközésekben? 
KFKI 199a 26/A 

KIVONAT 

Egy egyszerűsített modellben végigkövetjük egy kezdetben nem termikus eloszlásfüggvény 
evolúcióit Eredményűt kapjuk, hogy bár a végső entrópiahiány 800 Mev/nukleon ütközőenergián, 
kis magok esetében még elég Jelentős marad, ez az eltérés a detektálási folyamat során nem 
jelentkezik. Mindez megmagyarázható, ha figyelembe vesszük a folyási sebességet Is, ameiykükVibőző 
a különböző térfogatelemekben. 



1 INTRODUCTION 

Central heavy ion collisions in the 0.4-0.8 GeV/nudeon beam energy regime have 
been exhaustively studied in experiments, and they seem to have been clarified quite 
well from theoretical viewpoint. According to our present knowledge no exotic state of 
matter is created in such collisions, and the remaining problems are rather technical. 
Economical macroscopic formalisms such as hydrodynamics and thermodynamics are not 
a priori applicable here, where the systems are small and short-lived; as estimations for the 
applicability, the result is that the situation is out of the borders of the above disaplir es. 

For example, it is very doubtful if thermal equilibrium can be built up in the system. 
Let us see some (rather crude) estimations for an 800 MeV Ar+Ar collision. One can get 
a characteristic time between subsequent collisions as 

At the hot dense stage of the collision n ~ 2n„ T ~120 MeV, therefore, with the usual 60 
mb total a one gets 

r ~ 0.7 fm/c. 
However, the total cross section includes very forward collisions as well, which are negligible 
for equilibration. For this purpose it is better to use a "transport" relaxation time [1] which 
can be obtained by averaging <r(l — созв) instead of a. Even for isotropic cross section this 
results in a factor 2, therefore 

Ttr cz 1.4 fm/c. 

At the end of the collision however n ~ 0.4 n0 and the temperature is lower as well, so 
then the characteristic collision time is longer by cca. a factor 7. 

Now, the length of the expansion stage can be measured between the maximal density 
("total overlap"), and the end of the continuum regime ("breakup") [2]. For this time 
tyr different calculations give different results [3], [4], [5], because of different possible 
definitions of the breakup moment. Anyway, 

Ur ~ 4 . . . 8 fm/c. 

Nevertheless, during the expansion the temperature of the system varies widely, and the 
collisions have to equilibrate the momenta to a changing pattern. Therefore the time to 
be compared to the collision time is rather the one characterizing the cooling 

-T/T~ 2.7 fm/c. 

By comparing the second and fourth time scales, we indeed are not in the regime of 
asymptotic complete thermalieation. 

The situation is even worse, as will be seen later. However, it is pointless to argue 
further here, since no one seriously has argued for complete equilibrium. This is just the 
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reason for having elaborated methods solving the whole Boltzmann equation such as BUU 
and VUU. 

Still, in the above mentioned energy range the detected particle spectrum does not 
suggest serious deviations from thermal equilibrium. This fact is rather unexpected and 
needs some discussion in itself. But let us mention in advance that this controversy will 
be the object of the present paper; namely: why are the expected nonthermal deviations 
unseen in the detected spectrum? 

As for the nature of the detected spectrum: of course, it is never an ideal thermal 
distribution (say Boltzmann). But this is not expected either, because of the relative 
motions of different volume elements. Performing the proper Lorentz transforms just 
after breakup and summing up for volume elements, a transformed thermal spectrum is 
already in agreement with the detected one in 800 MeV Ar+Ar collision within the errors 
of measurement [5]. Even at higher energy and smaller nucleus (1.8 GeV Ne+Ne) the 
produced K+,s have an essentially thermal distribution [6] (see also Ref. 7 for kaons). 
We close this list with Ref. 8, which explicitly compared spectra from thermal comoving 
distributions with those obtained from an exact solution of the Boltzmann equation [9] 
for finite time. That solution approaches the asymptotic Boltzmann shape эя e~ , ' 6 r # . 
The factor 1/6 means that the equilibration is even slower by a factor 3 which was the 
more pessimistic estimation, therefore serious deviations should be seen. Still, complete 
equilibrium solution is superior to partial ones when comparing to the detected spectra. 

In addition we note that experiments show approximate isotropy at the end of central 
collisions [6-7], [10-12]. 

In the present paper we try to examine what is indicated by the detected spectrum and 
what is not. Therefor we assume a deviation of prescribed shape, and study its evolution 
up to detection. (Notice that to answer our present question we do not have to know the 
detailed shape of the deviation, its extent is enough.) It turns out that in spite of the serious 
entropy deficiency even at breakup, from Ar upwards the nonthermalized distributions lead 
to practically the same detected spectra au the ideal thermalized ones. 

Sect. 2 recapitulates the model in which such a calculation can be economically 
performed. If the shape of deviation is prescribed, then the momentum distribution, and 
with it the behaviour of nuclear matter is completely determined by the extensive densities, 
and as many higher momenta as the number of free parameters in the shape. These 
latter quantities, called pseudoextensives, are analogous to the lower momenta (density 
and energy density), but vanish in equilibrium. Huving included them, the structure of 
dynamical equations remains the same as in thermal equilibrium, which is very convenient 
for hydrodynamical calculations. 
Sect. 3 compares the evolution of some global quantities (density, temperature, etc.) to 
that obtained in a VUU calculation, in order to check the approximation. 
The calculated momentum distributions are discussed in Sect. 4, with the result that the 
detected spectra are less sensitive on deviations from thermal equilibrium than e.g. the 
entropy.. 
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The reason is given in Sect. 5, with the conclusion that up to 1 GeV/nucleon the 
detected spectrum is not the proper information about the exact degree of thermabzation. 

The Appendix gives some detailed dynamical equations of the model. 

2. THE MODEL 
For studying the process of thermalization of the momentum distribution during the 

collision a BUU or VUU type calculation would be the proper way, since such calculations 
solve the Boltzmann equation directly. However, to perform such detailed calculations for 
a sequence of energies and atomic numbers, substantial computer time would be needed. 
Here we are not interested in the detailed shape of the momentum distribution but only in 
the extent of its deviation from a thermal distribution. Therefore it would be enough to 
prescribe an Ansatz for the distribution, with a free parameter for the deviation, and to 
follow the evolution of this parameter. However, in general, this shape would not be kept 
by the boltzmann equation. 

Now, this problem does not arise if, instead of the Boltzmann equation, we consider 
some momenta of the distribution function, and evolution equations for these momenta, 
compatible with the Boltzmann equation. In Ref. 13 such a formalism was given, and now 
we apply it to the present problem. Some formulae will be recapitulated first, partly for 
convenience, partly because of mistypes of some numerical constants there. 

Our model system is an ideal (Boltzmann) gas; the deviation from equilibrium is de­
scribed by the simplest possible polynomial, and the distribution is assumed to be isotropic, 
to permit hydrodynamics. The calculations are done upto quadratic terms in the deviation. 
We accept a relaxation time approximation. 

We accept the three-step approach of Refs. 3, 4, which fairly reproduces the observ-
ables up to Berkeley energies. There the collision is treated in three disjoint steps: 
i) ignition, in which the two clusters of nuclei interpenetrate with the original velocity; 
ii) expansion, with spherical hydrodynamics; 
iii) breakup. 
For simplicity, we do not explicitly calculate the ignition stage (which would be a straight­
forward but laborous task) but estimate its final point by some initial conditions of the 
expansion stage, detailed later. 

, For hydrodynamics, first note that Ref. 2 presented analytic solutions for an ideal 
Boltzmann gas with special initial shape and spherical expansion, (which will remain valid 
for our case). The details will not be needed here; however the main point is that the 
radius of the growing sphere changes as 

R(t) = R0^3. (2.1) 

where R0 is the initial radius (cca. at maximal compression) and t0 is a time scale constant. 
The flow velocity v is proportional to the radial distance, thus 

v —r— (2-2) 
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Now, previous calculations have demonstrated that satisfactory final results can be ob­
tained even by homogeneous local thermodynamic parameters (as density, temperature, 
etc.) and with linear velocity field, and by using only the globml balance laws. This will be 
done below. 

For thermodynamic description we follow the formalism of Ref. 13, and specially the 
simplest model system elaborated there in Sect. 5. For details cf. Ref. 13; here we collect 
only the final equations. Assume that for the distribution function / (p) 

/(P) = fo{k2)G{k2) 
k = p - p (2.3) 

(thai is, isotropic in comoving coordinates), where /» is the ideal Boltzmann distribution, 
p = mv is the flow momentum and G{k7} is a polynomial of minimal order, preserving the 
energy density and particle density of /„ (Eckart matching condition (15]). Then G{k*} ia 
quadratic, containing only one multiplicative free parameter as [13] 

С ( * ' ) = 1 + < [ * < - ^ + | ф 2 ] (2.4) 

Therefore the deviation from equilibrium is characterised by the single unequilibrium pa­
rameter 6; consequently momenta above the second one will be determined by the zeroth 
momentum n, the second, 2me, and 6. By other words, 6 is known if in addition to n and 
e, the fourth momentum is known as well. From the fourth momentum one can form a 
pseudoextensive z as 

z = ~ m V n - 7 / 3 ( ^ ) 2 * (2.5) 

with balance law similar to that of n and e but possessing an equilibration source too [13]. 
Since the function Я is a functional of / , the entropy density s depends ran,« and z, and 
evaluating it up to terms z7 we get [13] 

»Ч|-и»>-|м^)И£" ,' , ,<- 1*' <2e> 
to *ч* / 6 + ln{l6)\ /c = (2irft) exp{ - 1 

27 
640 

where the value of к, connected to the chemical constant (cf. Ref. 14), comes from 
quantum statistics. (Higher terms in г are negligible not too far from equilibrium; here we 
shall not discuss the approximation.) 
Still there is the problem of the evolution equation of z. The relaxation time approximation 
suggests [13] 

i = (vV)z ж -zVv - -z (2.7) 
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and with such a balance law the hydrodynamk pressure P can be made equal to the 
thermodynamic pressure p obtained from s [13]. This approximation is insufficient for very 
fast expansion [16], when the deviation from rigid motion causes dethermalisation [17]. In 
these stages a hydrodynamical calculation would result in anomalies. First, at low densities 
the mean free path is longer than the linear size of the sphere, so the particles evaporate. 
Second, remaining too far in the continuum description the density may decrease so much 
that the system enters the unstable region below cca. 0.4 normal nuclear density [18]. 
Third, the notion of a common temperature parametrizing the distribution is physically 
meaningless in states when the time between subsequent particle collisions is longer than 
the time scale of the expansion. However, here this stage is treated by a breakup process as 
e.g. in Ref. 2; at the moment when the equalibration processes are already negligible, we 
switch over to Liouville equation and perform a Lorentz transformation into CM system 
[19] (i.e. sum up the flow and thermal momenta and then integrate over the whole volume). 
This is to be done anyway since there is no more equilibration if the time scale of cooling is 
already shorter than the collision time, because then there is no more physical possibility 
to keep the step with the changing /„. Note that the change of the shape of a completely 
thermal distribution happens on the time scale (f/T)-1, and the collisions must perform 
a double role: to thermalize and to readjust the temperature. This suggest 

I 1 t 1 nR , n o . 
- = > - + - ~ - - 2 — (2.8) 

with r roughly the transport time scale: 

r - (notTvth)-1 (2.9) 

ш the spirit of our model, eq. (2.8) yields the breakup time, namely the one when r 
becomes infinite. (If one extended the calculation beyond that time, then the relaxation 
coefficient would become negative, indicating depaiture from thermal shape, this is just 
the dethermalisation seen in Ref. 17. Nevertheless it is better not to use relaxation time 
approximation there.) 

Then the model is defined. The equation of state is contained in the entropy function 
5 — s(n,«, z) given by eq. (2.6). In order to follow the evolution one has to solve the 
balance and dynamical equations, collected in the Appendix. To this end one needs initial 
conditions and the integration is to be continued until breakup defined above. In the 
initial conditions we follow Refs. 3, 4 and start from a supposed total overlap stage but 
for simplicity, with double nuclear density. (For the possible error see again Refs. 3, 4.) 
There the temperature can be calculrted from the beam energy; for the extra density г 
the proper initial value should be taken from Monte Carlo simulations for the development 
of the Maxwell tail. However, one may use a simpler estimation. If the thermalisation is 
not complete (and therefore the tail is not quite Maxwellian), then the entropy \* lower, 
and the relative difference is roughly a function of the number of collisions. As an order 
of magnitude estimation, in what follows, we use 30% initial entropy shortage, roughly 
conform to one collision per particle until overlap. At the end of the expansion stage we 
apply the breakup prescription [2]. 
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3 . COMPARISON TO VUU CALCULATIONS 

Having integrated the evolution equations one can get the quantities characterizing 
the degree of thermalisation of the system. The simplest such quantity is the entropy loss. 
One expects a more complete thermalization for larger nuclei, because of more collisions 
during the expansion. This is been on Fig. 1, where the relative final entropy loss (with the 
assumed initial 30%) is displayed as a function of the atomic mass at 800 MeV/nucleon 
beam energy. 

However, the figure shows that for small nuclei (until cca. Ar) the final entropy loss is 
still quite substantial (above 10%). Then one might expect serious deviations from thermal 
spectra at breakup. Still, this is just the deviation not seen in the detected spectrum. We 
should rather understand this contradiction. 

Our present model is rather hand-made and approximative. Therefore one should first 
check it via some comparison to more detailed and better founded calculations. The most 
obvious candidate for an etalon is a VUU or BUU calculation. However, admitting that 
only such a calculations would give the complete energy spectrum, here we are not really 
interested in the details of the spectrum, only in the extent of deviation from equilibrium at 
breakup. For this purpose it seems natural to compare global data of the fireball (such as 
density, temperature and entropy), from VUU and from our simplified model calculation. 

For this comparison we select Ref. 20 (cf. also Refs. 21 and 22). It gives the results 
of a VUU calculation with Skyrme equation of state, mainly for Nb+Nb collision at 1.05 
GcV/nucleon beam energy. That calculation starts at first touching and extends for cca. 
40 fm/c. Consider first the evolution of the average density in a 2 fm central sphere. 
It reaches its maximum 2.7n0 cca. at t — tto*ch = 6 fm/c. This must be the moment 
of the total overlap and henceforth we measure the time from here. Then the density 
starts to decrease and passes the normal nuclear density at cca. 9 fm/c. Now, our model 
calculation gives the curve on Fig. 2. (For the dynamical equations cf. the Appendix.) 
In what follows, we display always two curves, a solid one for thermal equilibrium and a 
dashed one for 30% initial entropy shortage. However on Fig. 2 the two curves coincide 
since up to z1 terms the deviation does not influence the dynamics in the present model 
[13]. 

The curve shows that the breakup happens at cca. 4 fm/c after total overlap. Our 
density starts from 2щ as an initial condition of the model and drops by cca. ln0 during 
that time. Since the same decrease in the VUU calculation took cca. 6 fm/c, one can 
conclude that the dynamical time scales of the models differ. However, the difference does 
not seem vital, and notice that our n is rather an average density of the whole sphere. 

The next quantity to be compared is the temperature. In Ref. 20 at total overlap it 
is cca. 80 MeV, still very slowly increasing. After cca. 1 fm/c it reaches the maximum 
at 80 MeV, and at 4 fm/c (which is our breakup) it is cca. 75 MeV. Henceforth it seems 
to follow a power law in the density. Now, our results are displayed on Fig. 3. As seen, 
at total overlap Г ~ 30 MeV, nevertheless its maximal value is 80 MeV at cca. 2 fm/c, 
and it decreases to cca. 70 MeV at breakup. The agreement with the VUU results is 
not bad. On the other hand, the calculation with complete thermal equilibrium gives 
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quite different temperatures, some 50% too high at breakup. This difference should be 
obvious when comparing equilibrium calculations to experimental data, and it is not, as 
told in the Introduction. (We shall see the reason in the next Chapter.) One could also 
question the serious increase of temperature in the first 2 tm/c of the expansion, because 
this might have been a signal for negative specific heat. Nevertheless the second derivative 
5,до does have the negative sign required for stability. Therefore one can conclude that 
the source of the temperature increase is the thermalisation still going; anyways, Ref. 20 
found a (much smaller) temperature increase as well. The difference indicates that our 
approximate off-equilibrium equation of state may be incorrect so far from equilibrium. 

The next two curves in Ref. 20 gave the pion yield and flow angle; such quantities are 
not included in our model. The fifth calculated quantity there was the average transverse 
momentum. Its final value is 120 MeV/c, and at 4 fm/c (which is our breakup time) 
it is already greater than 2/3 of this final value. In contrast, our model yields a value 
independent of time 

<Pj-> =Узтп~А~' 
(It is pointless to compare the numerical values, because our calculation is meant for a 
central collision, while in this point Ref. 20 took an impact parameter 3 fm, comparable to 
the sue of the whole Nb nucleus. Then the majority of the nucleons are spectators there 
with negligible p±, so decreasing the average value.) That is, for this quantity our model 
is quite inadequate, although not very bad for the detected value. 

The reason for this difference is transparent enough. The transverse momentum mea­
sures not the thermal shape but the isotropy of the momentum distribution. Now, in our 
simplified model the deviation from equilibrium w isotropic. Then the comparison shows 
that at this point the approximation is an oversimplification. However, as we have seen, 
the isotropisation is already quite developed at breakup, the detected spectra are isotropic 
[10] - [12], and we are interested only in the extent of the deviations, not in their detailed 
forms. If necessary, the present model can be improved by including anisotropics in the 
ways of Refs. 23 and 24. 

The next quantity is the specific entropy. In Ref. 20 its value at total overlap is cca, 
3, while the asymptotic value is cca. 6. Our results are displayed on Fig. 4. The starting 
value is 4 (because of our initial condition of 30% entropy shortage); the final value at 
breakup is 5.6, some 5% 1езд than in thermal equilibrium. One can conclude that the final 
entropy is well reproduced in our model. 

The model calculation also yields the evolution of our deviation parameter z; this is 
given in Fig. 5. One can see that between total overlap and breakup it decreases by a 
factor of 2.5, according to the decrease by a factor of б in the entropy deviation. 

Ref. 20 gives one more curve for global data which can be calculated in our model. It 
is the final specific entropy vs. bombarding energy for an Au+Au collision. There S/N is 3 
at 100 MeV/nucleon, and cca. 5.5 at 1 GeV. Our result is Fig. 6. The values are practically 
the same as well as the shape of the curve; in addition one can see that thermalisation is 
almost complete for Ar at breakup even for the highest calculated energy. 
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Since at breakup our model reproduces more or less all the global quantities which 
can be calculated within its framework, our conclusion is th?t with sufficient caution it 
can be used to estimate the extr.nt of the detectable deviations from a thermal spectrum. 
This will be done in the next Chapter. 

4. MOMENTUM SPECTRA 

Now we are in the position to calculate momentum spectra in our model for collisions 
at 400 and 800 MeV/nucleon beam energies, for three different nuclei, Ne, Ar and U, re­
spectively, with or without 30% entropy deficiency at total overlap. The detected spectrum 
is obtained by adding up thermal and flow momenta just after breakup in the same way as 
in Ref. 2; the distribution function is detennined by the 3 independent densities n, e and 
z. But first, before the spectra, we display the final entropy vs. beam energy for Ne+Ne 
and Ar+Ar. (Figs. 7 and 8; for U+U the curve would be very similar to Fig. 6.) One 
can see a deficiency of cca. 15% at 1 GeV for Ne and 10% for Ar. Being Л5 quadratic 
in z, the deviation in the momentum distribution might be quite serious, but in the same 
time thermal equilibrium models give roughly good final results. This is just the problem 
which triggered the present search. 

Now, Fig. 9 gives various momentum spectra for an Ne+Ne collision at 800 MeV/nu­
cleon beam energy: label "no" stands for totrj overlap, "nb" for just before breakup in the 
comoving system, while "fb" labels the momentum distribution just after breakup, which 
will be detected, including the contribution of the flow. On the horizontal axis the variable 
is the dimenionless momentum k, where 

L _ 3 n U 
k-2ttl + tf^ 

Again, solid lines mean distributions in thermal equilibrium while, the initial entropy defi­
ciency is 30% for dashed ones. 

Consider first the solid lines. The rightmost one is, of course, a thennal distribution 
with the highest temperature, as expected at maximal density. During the expansion T 
decreases and reaches its minimum at breakup; this is the leftmost curve. However, the 
addition of the flow velocities shifts the curve back in the direction of the first one. This 
final third curve is not a thermal distribution, but, as seen, mimics it quite well, with 
an effective temperature somewhere between the maximal and minimal ones. This is well 
known since Ref. 2; the reason is that during expansion some part of the initial thermal 
energy has been converted into kinetic one, but after breakup they are added up again. 

However, the situation is more complicated when one turns to the off-equilibrium 
dashed lines. At the beginning the distribution is far from thermal, with a very expressed 
shoulder at jfc ~ 1, During the expansion the equilibration works, but still there is a 
serious deviation from equilibrium just before breakup in the i u l region. However, this 
deviation is further washed out by adding the flow velocities, and the detected spectrum, 
while not quite of thermal shape, is not too far from that even for the smallest nucleus 
investigated. ("Effective'' thermalisation.) 
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Note that the entropy is determined by the distribution function in the local comoving 
frame, i.e. by the curve "nb", while the detected one is n fb n . Therefore there is a possi­
bility to have a fairly thermal detected spectrum together with a still substantial entropy 
shortage. It seems that this happens in the experiments. 

While on Fig. 9 the tail is quite thermal, still the global curve could be distinguished 
from such a one. The difference is much smaller for Ar+Ar (Fig. 10), while for U+U (Fig. 
11) the after-breakup off-equilibrium curve is halfway between two equilibrium curves, 
mimicking both except for temperature. The differences are even less for 400 MeV/nuckon 
beam energy (not displayed), as can be expected. 

5. CONCLUSIONS 

In a simplified model we have investigated the thermalisation during expansion in 
various nucleus-nucleus collisions at the upper end of the nonrelativistie regime. Our 
results can be summarized as follows. 

For smaller nuclei, as Ne and Ar, the thermalisation is far from being complete in 
entropy; therefore one expects a rather nonthermal momentum distribution at breakup. 
This is shown indeed by the model calculations. However, the flow velocities contribute to 
the detected spectrum, and their addition leads to a further "effective" thennalisation in 
the same way as to the increase of the effective temperature [2]. The model calciuatiom 
predict that the detected spectra will be fairly thermal from Ar upwards, in agreement with 
the lack of clearly nonthermal characteristics when trying to reproduce the experimental 
spectra by calculations. 

This effective thermalisation via breakup might suggest a substantial change of the 
distribution function in a regime almost without further collision (the late stages of VUU 
calculation). Still, the entropy does not increase anymore, which facts are seemingly in 
contradiction. However, we are speaking of two different distribution functions. Namely, 
the distribution function, from which the entropy density is calculated, is defined at fixed 
location and time, and later the entropy density is integrated over volume. In contrast, 
the detected distribution is meant at a fixed place and integrated over time or over the 
oncoming matter elements. Generally the two distribution functions do not coincide even 
in the Liouville regime. The problem deserves further investigation. 

Therefore it seems that the detected spectra do not display too much directly of the 
expected nonthermal nature of the momentum distributions. Therefore, the fair agreement 
between thermal equilibrium calculations and experimenal spectra up to 1 GeV/nucleon 
beam energy does not indicate even approximative equilibrium during expansion. An in­
direct signature for or against equilibrium would be the final temperature. However, in 
several cases the breakup moment is determined by fitting the detected temperature to the 
•lope of energy spectrum, and then even this signature is lost. The lack of equilibration 
would be revealed if the entropy could be measured independently, e.g. from produced 
particle ratios [25], [26]. Nevertheless, at 800 MeV/nucleon beam energy even the pion 
production is moderate and heavier mesons are ruled out. Similarly, hadrochemical pro­
cesses are sensitive to the temperature during the whole collision, but at such energies 
hyperon and resonance production is almost nil. 
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One can conclude that below cca. 1 GeV/nucleon beam energy the final observables 
of a heavy ion collision give rather poor and indirect insight into the nonthermal behaviour 
of the system, which is probably substantial enough. 
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APPENDIX 

Our starting balance equations, from Ref. 13, are as follows: 

(dt + vV)n + nVv = 0 ( A l ) 

{dt + vV)e + «Vv = -pVv (A2) 

(dt+vV)z + zVv=--z (A3) 

(dt + yV)s + sVv = -az2 (A4) 

a = Km-4nu/3e-4 (A5) 

In addition, of course, the total energy of the sphere is constant, i.e. 

E= / ( c+Ímnü 2 )dK = const. (Л.6) 

Now, notice that (in the present z2 approximation) the z equation is decoupled, i.e. the 
dynamics is unaffected by z. Then we can turn to the analytic solution of Ref. 2. It has a 
limit of homogeneous density and energy distributions, which we will use. Using eq. (2.2) 
Vv can be expressed via R aud R 

п + з | п = 0 (АЛ') 
К 

б + 3(с + р ) | = 0 (А.2') 

i + 3 | * = - i * (A3') 
st т 



I I 

i + 3^3 = - a z 2 {АЛ') 

Uten, by using the homogeneity assumption, the conservation equation for the total energy 
can be written into the form 

E = — # « + ^NrnR7 = const. (A.&) 

where N л the total particle number: 

3 

By comparing eqs. (A.6*) and (A.2') one obtains 

bp 

N = ^nR* (Л.7) 

R = Rnm 

Now, up to г2 [13] 
2 
3« 

Hence eq. (2.1) is obtained according to Ref. 2 with 

P = ? 

" У м mT( «. = Í /TS"»4$ M-») e(0) 

where we have used the initial conditions 

Л(0) = Д в 

Я(0) = О (Л.9) 

By assuming no compression, from particle and energy conservation between beam pulse 
and total overlap one gets 

n(0) = 2n0 

(£) = lElsi (АЛО) 
V t e o 4 A v ' 

Now we turn to the decoupled z equation. V/rite 

z(t) = <(0Ä"3 (All) 

Then the solution can be written as 

« , ) = ( . « - /> ' ' -« •> (ЛЛ2) 



12 

With the form (2.8-9) for т and with the above n and a ~ v'1 the integral gets an analytic 
form 

z = z„f-\x) • e x p { - 7 [ ^ 2 + arctan(ar)]J (A13) 

with 

x = t/t„ 

7 = -n„v0toao. M-14) 

Here v0 is to be taken from the temperature at total overlap, which, in turn, comes from 
the initial conditions for n,« ^discussed above) and for z (see the end of Sect. 2). 
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Fig. I 
Relative final entropy deficiency vs. atomic number with an assumed 

30% initial one at 800 MeV/nucleon beam energy 
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Fig. t 
Density n (in units of normal nuclear density) vs. time in our model 

calculation for Nb+Nb at 1050 MeV/nucleon beam energy 
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Specific entropy S/N versus time 



18 

З - i 

N Л 

5 2-э 
О" 
V 

Е -
8 
с _. 
-О 1 

и 

I 
V) 

\ 
\ 

\ 
\ 

I I I I » I г I и I I I I I I i r í ' р I I м I I I I | 
2 4 

Time, fm/c 
в 

Fig. 5 
Specific deviation parameter z/n vs. time 

The initial value belongs to the assumed 30% entropy loss 
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Fig. 6 
Final specific entropy vs. beam energy for an Au+Au collínon 

(henceforth, if not indicated otherwise, 
the beam energy is 800 MeV/nocleon) 
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Fig. 7 
As Fig. 6, but for Ne+Ne 



21 

S 

I I 1 1 I I I I 1 I 1 1 I I I I I I I I I I I I I i I 1 I I 
500 1000 

Beam energy, MeV/nucleon 
1500 

Fig. 8 
As Figs. 6 and 7, but for Ar+Ar 
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Fig. 9 
Momentum spectra during an Ne+Ne collision at 800 MeV 

The dimensionless momentum к is defined in eq.(4.1) 
Labels indicate different distributions as follows 
"no" stands for total overlap (therefore no flow) 

nnb" is measured just before breakup in the comoving system (so again without flow effects) 
"fb" is valid between breakup and the detector, including flow 
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As Figs. 9 and 10, but for U+U 
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