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ABSTRACT

in a simplified model we follow the evolution of the originally nonthermal momentum distribution.
Our result is, that, although the final entropy deficiency may be quite substantial al 800 Mev/nucieon
beam energy for smaller nuclel, the delected process does not reflect the exient of deviation from
equilibrium (quite substantial). The reason is the addition of flow velocities, different in different
volumeelements.

6. llyxw; A. Pay: OGuncHeHwe OTCYTCTBUA HETENNOBOFO XBOCT3 B HEPENATHBUCTCKMX
CTONKHOBEHUAX TANEMIX wonoB. KFKI-1990-25/A

AHHOTAUNA

C noMoms0 YNPOWMEHHOH MOAEM NPOCHEXMBAETCA IBOMOUUA PACNPERENEHHA MOMEHTOB
C HETENNOBWM HaUaNLHMM pacnpeaenesueMm. BuACHRETCA, YUTO, XOTA HEAOCTATOK 3HTPO-
MUY B KOHEUMOM COCTORNMK B CAYUSE MEHLEMX AAZP NPH IHEPTHAX CTONKHOBEHUA
800 MaB/Hyxnos momeT CuTe IHAUNTENLHWM, IKCNEPUMENTIANDHME AAHHNE HE CBUACTENMCT-
BYOT O TAKOM OTKNOHEHWW OT PABHOBECHOrO PacnpeaeneHns . IT0 MONHO OOBACHHTE, Npu-~
HAB B0 BHHMAHHE CKOPOCTH TEUEHMA, KOTOPME B DA3NUUHMX INEMEHTaxX o0peMa ABNADTCA
pasHMMM .

Lukdcs B., Récz A.: Hové t(int a nem-termikus farok a nemrelativisztikus nehézion itkdzésekben?
KFKI- 1990-26/A ’ .

KIVONAT

Egy egyszerUsilett modeliben végigkdvetjik egy kezdetben nem-termikus eloszlasfuggverny
evou’:clgj,zl. Eredmény(d kapjuk, hogy bér a véged entropiahidny 800 Mev/nukleon itkbzbenergién,
kis magok eselében még eiég jelentds marad, ez az eltérés a delektdids! folyamat sorédn nem
jelentkezik. Mindez megmagyarézhalo, ha figyelembe vesszik a folyési sebességet is, amely k#onbozé
a k(dnbdzd tériogatelemekben.



"1 INTRODUCTION

Central heavy ion collisions in the 0.4-0.8 GeV/nucleon beam energy regime have
been exhaustively studied in experiments, and they seem: to have been clarified quite
well from theoretical viewpoint. According to cur present knowledge no exotic state of
matter is created in such collisions, and the remaining problems are rather technical.
Economical macroscopic formalisms such as hydrodynamics and thermodynamics are not
a priori applicable here, where the systems are small and short-lived; as estimations for the
applicability, the result is that the situation is out of the borders of the above disciplir es.

For example, it is very doubtful if thermal equilibrium can be built up in the system.
Let us see some (rather crude) estimations for an 800 MeV Ar+-Ar collision. One can gﬂ
a characteristic time between subsequent collisions as

1
NOVyel

T

(1.1)

At the hot dense stage of the collision n ~ 2n,, T ~2120 MeV, therefore, with the usual 60
mb total o one gets

T ~0.7 fm/c.

However, the total cross section includes very forward collisions as well, which are negligible
for equilibration. For this purpose it is better to use a "transport” relaxation time {1} which
can be obtained by averaging o(1 — cos) instead of 0. Even for isotropic cross section this
results in a factor 2, therefore

Tee > 1.4 fm/c.

At the end of the collision however n = 0.4 n, and the temperature is lower as well, so
then the characteristic collision time is longer by cca. a factor 7.

Now, the length of the expansion stage can be measured between the maximal density
("total overlap”), and the end of the continuum regime (”breakup”) [2]. For this time
2y, different calculations give different results [3), [4], [5], because of different possible
definitions of the breakup moment. Anyway,

tiy ~4...8 fm/ec.

Nevertheless, during the expansion the temperature of the system varies widely, and the
collisions have to equilibrate the momenta to a changing patt:-tn. Therefore the time to
be compared to the collision time is rather the one characterizing the cooling

Teoot = =T/T 2 2.7 fm/ec.

By comparing the second and fourth time scales, we indeed are not in the regime of
asymptotic complete thermalisation.

The situation is even worse, as will be seen later. However, it is pointless to argue
further here, since no one seriously has argued for complete equilibrium. This is just the



reason for having elaborated methods solving the whole Boltzmann equation such as BUU
and VUU.

Still, in the above mentioned energy range the detected particle spectrum does not
suggest serious deviations from thermal equilibrium. This fact is rather unexpected and
needs some discussion in itself. But let us mention in advance that this controversy will
be the object of the present paper; namely: why are the expected nonthermal deviations
unseen in the detected spectrum?

As for the nature of the detected spectrum: of course, it is never an ideal thermal
distribution (say Boltzmann). But this is not expecied either, because of the relative
motions of different volume elements. Performing the proper Lorentz transforms just
after breakup and summing up for volume elements, a transformed thermal spectrum is
alreedy in agreement with the detected one in 800 MeV Ar+Ar collision within the errors
of measurement [5]. Even at higher energy and smaller nucleus (1.8 GeV Ne+Ne) the
produced K*'s have an essentially thermal distribution [6] (see also Ref. 7 for kaons).
We close this list with Ref. 8, which explicitly compared spectra from thermal comoving
distributions with those obtained from an exact solution of the Boltzmann equation [9)
for finite time. That solution approaches the asymptotic Boltzmann shape s e~*/6%.
The factor 1/6 means that the equilibration is even slower by a factor 3 which was the
more pessimistic estimation, therefore seriovs deviations should be seen. Still, complete
equilibritm soluiion is superior to partial ones when comparing to the detected spectra.

In addition we note that experiments show approximate isotropy at the end of central
collisions [6-7], [10-12].

In the present paper we try to examine what is indicated by the detected spectrum and
what is not. Therefor we assume a deviation of prescribed shape, and study its evolution
up to detection. (Notice that to answer our present question we do not have to know the
detailed shape of the deviation, its eztentis enough.) It turns out that in spite of the serious
entropy deficiency even at breakup, from Ar upwards the nonthermalized distributions lead
to practically the same detected spectra as the ideal thermalized ones.

Sect. 2 recapitulates the model in which such a calculation can be economically
performed. If the shape of deviation is prescribed, then the momentum distribution, and
with it the behaviour of nuclear matter is completely determined by the extensive densities,
and as many higher momenta as the number of free parameters in the shape. These
latter quantities, called pseudoextensives, are analogous to the lower niomenta (density
and energy density), but vanish in equilibrium. Huving included them, the structure of
dynamical equations remains the same as in thermal equilibrium, which is very convenient
for hydrodynamical calculations.

Sect. 3 compares the evolution of some global quantities (density, temperature, etc.) to
that obtained in a VUU calculation, in order to check the approximation.

The calculated momentum distributions are dis:ussed in Sect. 4, with the result that the
detected spectra are less sensitive on deviations from thermal equilibrium than e.g. the
entropy..



“The reason is given in Sect. 5, with the conclusion that up to 1 GeV/nucleon the
detected spectrum is not the proper information about the exact degree of thermalization.

The Appendix gives some detailed dynamical equations of the model.
2. THE MODEL

For studying the process of thermalization of th: momentum distribution during the
collision a BUU or VUU type calculation would be the proper way, since such calculations
solve the Boltzmann equation directly. However, to perform such detailed calculations for
a sequence of energies and atomic numbers, substantial computer time would be needed.
Here we are not interested in the detailed shape of the momentum distribution but only in
the eztent of its deviation from a thermal distribution. Therefore it would be enough to
prescribe an Ansatz for the distribution, with a free parameter for the deviation, and to
follow the evolution of this parameter. However, in general, this shape would not be kept
by the Boltzmann equation.

Now, this problem does not arise if, instead of the Boltzmann equation, we consider
some momenta of the distribution function, and evolution equations for these momenta,
compatible with the Boltzmann equation. In Ref. 13 such a formalism was given, and now
we apply it to the present problem. Soine formulae will be recapitulated first, partly for
convenience, partly because of mistypes of some numerical constants there.

Our model system is an ideal (Boltzmann) gas; the deviation from equilibrium is de-
scribed by the simplest possible polynomial, and the distribution is assumed to be isotropic,
to permit hydrodynamics. The calculations are done upto quadratic terms in the deviation.
We accept a relaxation time approximation.

We accept the three-step approach of Refs. 3, 4, which fairly reproduces the observ-
ables up to Berkeley energies. There the collision is treated in three disjoint steps:

i) ignition, in which the two clusters of nuclei interpenetrate with the original velocity;
ii) expansion, with spherical hydrodynamics;

ii1) breakup.

For simplicity, we do not explicitly calculate the ignition stage (which would be a straight-

forward but laborous task) but estimate its final point by some initial conditions of the
expansion stage, detailed later.

, For hydrodynamics, first note that Ref. 2 presented analytic solutions for an ideal
Boltzmann gas with special initial shape and spherical expansion, (which will remain valid
for our case). The details will not be needed here; however the main point is that the
radius of the growing sphere changes as

7 4+ 12
R(t) = R.,l/—t—t:—;z (21)
o
where R, is the initial radius (cca. at maximal compression) and t, is a time scale constant.
The flow velocity v is proportional to the radial distance, thus
(22)

v =

"R



Now, previous calculations have demonstrated that satisfactory final results can be ob-
tained even by homogencous local thermodynamic parameters (as density, temperature,
etc.) and with linear velocity field, and by using only the global balarce laws. This will be
done below.

For thermodynamic description we follow the formalism of Ref. 13, and specially the
simplest model system elaborated there in Sect. 5. For details cf. Ref. 13; here we collect
only the final equations. Assume that for the distribution function f(p)

J(p) = fo(K*)G(K?)
k=p-p (2:3)

(that is, isotropic in comoving coordinates), where f, is the ideal Boltzmann distribution,
p = mv is the flow momentum and G{?} is a polynomial of minimal order, preserving the
energy density and particle density of f, (Eckart matching condition {15]). Then G{4?} is
quadratic, containing only one multiplicative frec parameter as [13]

G(k?) = 1+6[k‘ 20’”‘ 2-°(ﬂ) ]

(2.4)
Therefore the deviation from equilibrium is characterised by the single unequilibrium pa-
rameter §; consequently momenta above the second one will be determined by the zeroth
momentum n, the second, 2me, and 6. By other words, § is known if in addition to n and
¢, the fourth momentum is known as well. From the fourth momentum one can form a
pseudoeziensive z as

z= Sagm’e2 ’7/3(4"“) é (2.5)

with balance law similar to that of n and € but possessing an equilibration source too [13].
Since the function H is a functional of f, the entropy density s depends on n, € and z, and
evaluating it up to terms z? we get [13]

3 3.3 - '
8= n(§ —In(n)~ §ln(4;::e)) 2m4 n'?/3¢4 22 (2.6)

_ 2 5 + In(16)
k= (2xh) -exp{- 3 }
=2
T 840
where the value of x, connected to the chemical constant (cf. Ref. 14), comes from

quantum statistics. (Higher terms in z are negligible not too far from equilibrium; here we
shall not discuss the approximation.)

Still there is the problem of the evolution equation of z. The relaxation time approximation
suggests {13}

b= (VV)z = =29V - 22 2.7)



and with such a balance law the hydrodynamic pressure P can be made eyual to the
thermodynamic pressure p obtained from s [13]. This approximation is insufficient for very
fast expansion [16], when the deviation from rigid motion causes dethermalisation [17]. In
these stages a hydrodynamical calculation would result in anomalies. First, at low deusities
the mean free path is longer than the linear size of the sphere, so the particles evaporate.
Second, remaining too far in the continuum description the density may decrease so much
that the system enters the unstable region below cca. 0.4 normal nuclear density [18].
Third, the notion of a common temperature parametrizing the distribution is physically
meaningless in states when the time between subsequent particle collisions is longer than
the time scale of the expansion. However, here this stage is treated by a breskup process as
e.g. in Ref. 2; at the moment when the equalibration processes are already negligible, we
switch over to Liouville equation and perform a Lorentz transformation into CM system
[19] (i.e. sum up the flow and thermal momenta and then integrate over the whole volume).
This is to be done anyvway since there is no more equilibration if the time scale of cooling is
already shorter than the collision time, because then there is no more physical possibility
to keep the step with the changing f,. Note that the change of the shape of a completely
thermal distribution happens on the time scale (T/T)~?, and the collisions must perform
a double role: to thermalize and to readjust the temperature. This suggest

—=;+—z——2— (2.8)

with 7 roughly the transport time scale:
r = (nogv)~" (29)

In the spirit of our model, eq. (2.8) yields the breakup time, namely the one when 7
becomes infinite. (If one extended the calculation beyond that time, then the relaxation
coefficient would become negative, indicating depaiture from thermal shape, this is just
the dethermalisation seen in Ref. 17. Nevertheless it is better not to use relaxation time
approximation there.)

Then the model is defined. The equation of state is contained in the entropy function
s = s(n,e,z) given by eq. (2.6). In order to follow the evolution one has to solve the
balance and dynamical equations, collected in the Appendix. To this end one needs initial
conditions and the integration is to be continued until breakup defined above. In the
initial conditions we follow Refs. 3, 4 and start from a supposed total overlap stage but
for simplicity, with double nuclear density. (For the possible error see again Refs. 3, 4.)
There the temperature can be calculr*ed from the beam energy; for the extra density z
the proper initial value should be taken from Monte Carlo simulations for the development
of the Maxwell tail. However, one may use a simpler estimation. If the thermalisation is
not complete (and therefore the tail is not quite Maxwellian), then the entropy is lower,
and the relative difference is roughly a function of the number of collisions. As an order
of magnitude estimation, in what follows, we use 30% initial entropy shortage, roughly
conform to one collision per particle until overlap. At the end of the expansion stage we
apply the breakup prescription [2].



3. COMPARISON TO VUU CALCULATIONS

Having integrated the evolution equations one can get the quantities characterizing
the degree of thermalisation of the system. The simplest such quantity is the entropy loss.
One expects a more complete thermalization for larger nuclei, because of more collisions
during the expansion. This is scen on Fig. 1, where the relative final entropy loss (with the
assumed initial 30%) is displayed as a function of the atomic mass at 800 MeV /nucleon
beam energy.

However, the figure shows that for small nuclei (until cca. Ar) the final entropy loss is
still quite substantial (above 10%). Then one might expect serious deviations from thermal
spectra at breakup. Still, this is just the deviation not seen in the detected spectrum. We
should rather understand this contradiction.

Our present model is rather hand-made and approximative. Therefore one should first
check it via some comparison to more detailed and better founded calculations. The most
obvious candidate for an etalon is a VUU or BUU calculation. However, admitting that
only such a calculations would give the complete energy spectrum, here we are not really
interested in the details of the spectrum, only in the extent of deviation from equilibrium at
breakup. For this purpose it seems natural to compare global data of the fireball (such as
density, temperature and entropy), from VUU and from our simplified model calculation.

For this comparison we select Ref. 20 (cf. also Refs. 21 and 22). It gives the results
of a VUU calculation with Skyrme equation of state, mainly for Nb+Nb collision at 1.05
GeV/nucleon beam energy. That calculation starts at first touching and extends for cca.
40 fm/c. Consider first the evolution of the average density in a 2 fm central sphere.
It reaches its maximum 2.7ng cca. at t — tjouch = 6 fm/c. This must be the moment
of the total overlap and henceforth we measure the time from here. Then the density
starts to decrease and passes the normal nuclear density at cca. 9 fm/c. Now, our model
calculation gives the curve on Fig. 2. (For the dynamical equations cf. the Appendix.)
In what follows, we display always two curves, a solid one for thermal equilibrium and a
dashed one for 30% initial entropy shortage. However on Fig. 2 the two curves coincide
since up to z2 terms the deviation does not influence the dynamics in the present model

[13].

The curve shows that the breakup happens at cca. 4 fm/c after total overlap. Our
density starts from 2ny as an initial condition of the model and drops by cca. 1np during
that time. Since the same decrease in the VUU calculation took cca. 6 fm/c, one can
conclude that the dynamical tiine scales of the models differ. However, the difference does
not seem vital, and notice that our n is rather an average density of the whole sphere.

The next quantity to be compared is the temperature. In Ref. 20 at total overlap it
is cca. 80 MeV, still very slowly increasing. After cca. 1 fm/c it reaches the maximum
at 80 MeV, and at 4 fm/c (which is our breakup) it is cca. 75 MeV. Henceforth it seems
to follow a power law in the density. Now, our results are displayed on Fig. 3. As seen,
at total overlap T ~ 30 MeV, nevertheless its mazimal value is 80 MeV at cca. 2 fin/c,
and it decreases to cca. 70 MeV at breakup. The agreement with the VUU results is
not bad. On the other hand, the calculation with complete thermal equilibrium gives



quite different temperatures, some 50% too high at breakup. This difference should be
obvious when comparing equilibrium calculations to experimental data, and it is not, as
told in the Introduction. (We shall see the reason in the next Chapter.) One could also
question the serious increase of temperature in the first 2 fm/c of the expansion, because
this might have been a signal for negative specific heat. Nevertheless the second derivative
S,55 does have the negative sign required for stability. Therefore one can conclude that
the source of the temperature increase is the thermalisation still going; anyways, Ref. 20
found a (much smaller) temperature increase as well. The difference indicates that our
approximate off-equilibrium equation of state may be incorrect so far from equilibrium.

The next two curves in Ref. 20 gave the pion yield and flow angle; such quantities are
not included in our model. The fifth calculated quantity there was the average transverse
momentum. Its final value is 120 MeV/c, and at 4 fm/c (which is our breakup time)
it is already greater than 2/3 of this final value. In contrast, our model yields a valve
independent of time

<pt S %m,E;'..
(It is pointless to compare the numerical values, because our calculation is meant for a
central collision, while in this point Ref. 20 took an impact parameter 3 fm, comparable to
the size of the whole Nb nucleus. Then the majority of the nucleons are spectators there
with negligible p, , so decreasing the average value.) That is, for this quantity our model
is quite inadequate, although not very bad for the detected value.

The reason for this difference is transparent enough. The transverse momentum mea-
sures not the thermal shape but the isotropy of the momentum distribution. Now, in our
simplified model the deviation from equilibrium is isotropic. Then the comparison shows
that at this point the approximation is an oversimplification. However, as we have seen,
the isotropisation is already quite developed at breakup, the detected spectrz. are isotropic
[10] - [12], and we are interested only in the eztent of the deviations, not in their detailed
forms. If necessary, the present model can be improved by including anisotropies in the
ways of Refs. 23 and 24.

The next quantity is the specific entropy. In Ref. 20 its value at total overlap is cca.
3, while the asymplotic value is cca. 6. Our results are displayed on Fig. 4. The starting
value is 4 (because of our initial condition of 30% entropy shortage); the final value at
breakup is 5.6, some 5% less than in thermal equilibrium. One can conclude that the final
entropy is well reproduced in our model.

The model calculation also yields the evolution of our deviation parameter z; this is
given in Fig. 5. One can see that between total overlap and breakup it decreases by a
factor of 2.5, according to the decrease by a factor of 6 in the entropy deviation.

Ref. 20 gives one more curve for global data which can be calculated in our model. It
is the final specific entropy vs. bombarding energy for an Au+Au collision. There S/N is 3
at 100 MeV/nucleon, and cca. 5.5 at 1 GeV. Our result is Fig. 6. The values are practically
the same as well as the shape of the curve; in addition one can see that thermalisation is
almost complete for Ar at breakup even for the highest calculated energy.




Since at breakup our model reproduces more or less all the global quantities which
can be calculated within its framework, our conclusion is that with sufficient caution it
can be used to estimatc the extent of the deteciable aeviations from a thermal spectrum.
This will be done in the next Chapter.

4. MOMENTUM SPECTRA

Now we are in the position to calculate momentum spectra in our model for collisions
at 400 and 800 MeV /nucleon beam energies, for three different nuclei, Ne, Ar and U, re-
spectively, with or without 30% entropy deficiency at total overlap. The detected spectrum
is obtained by adding up thermal and flow momenta just after breakup in the same way as
in Ref. 2; the distribution function is determined by the 3 independent densities n, e and
z. But first, before the spectra, we display the final entropy vs. beam energy for Ne+Ne
and Ar+Ar. (Figs. 7 and 8; for U+U the curve would be very similar to Fig. 6.) One
can see a deficiency of cca. 15% at 1 GeV for Ne and 10% for Ar. Being AS quadratic
in z, the deviation in the momentum distribution might be quite serious, but in the same
time thermal equilibrium models give roughly good final results. This is just the problem
which triggered the present search.

Now, Fig. 9 gives various momentum spectra for an Ne+Ne collision at 800 MeV/nu-
cleon beam energy: label "no” stands for totzd overlap, "nb” for just before breakup in the
comoving system, while "fb” labels the momentum distribution just after breakup, which
will be detected, including the contribution of the flow. On the horizontal axis the variable
is the dimenionless momentum &, where

k %-ﬂ—rlk;
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Again, solid lines mean distributions in thermal equilibrium while the initial entropy defi-
ciency is 30% for dashed ones.

Consider first the solid lines. The rightmost one is, of course, a therinal distribution
with the highest temperature, as expected at maximal density. During the expansion T
decreases and reaches its minimum at breakup; this is the leftmost curve. However, the
addition of the flow velocities shifts the curve back in the direction of the first one. This
final third curve is not a thermal distribution, but, as seen, mimics it quite well, with
an effective temperature somewlere between the maximal and minimal ones. This is well
known since Ref. 2; the reason is that during expansion some part of the initial thermal
energy has been converted into kinetic one, but after breakup they are added up again.

However, the situation is more complicated when one turns to the off-equilibrium
dashed lines. At the beginniing the distribution is far from thermal, with a very expressed
shoulder at & ~ 1. During the expansion the equilibration works, but still there is a
serious deviation from equilibrium just before breakup in the k = 1 region. However, this
deviation is further washed out by adding the flow velocities, and the detected spectrum,
while not quite of thermal shape, is not too far from that even for the smallest nucleus
investigated. ("Effective” thermalisation.)



Note that the entropy is determined by the distribution function in the local comoving
frame, i.e. by the curve "nb”, while the detected one is "fb”. Therefore there is a possi-
bility to have a fairly thermal detected spectrum together with a still substantiai entropy
shortage. It seems that this happens in the experiments.

While on Fig. 9 the tail is quite thermal, still the global curve could be distinguished
from such a one. The difference is much smaller for Ar+Ar (Fig. 10), while for U+U (Fig.
11) the after-breakup off-equilibrium curve is halfway between two equilibrium curves,
mimicking both except for temperature. The differences are even less for 400 MeV /nucleon
beam energy (not displayed), as can be expected.

8. CONCLUSICNS

In a simplified mudel we have investigated the thermalisation during expansion in
various nucleus-nucleus collisions at the upper end of the nonrelativistic regime. Our
results can be summarized as follows.

For smaller nuclei, as Ne and Ar, the thermalisation is far from being complete in
entropy; therefore one expects a rather nonthermal! momentum distribution at breskup.
This is shown indeed by the model calculations. However, the flow velocities contribute to
the detected spectrum, and their addition leads to a further "effective” thermalisation in
the same way as to the increase of the effective temperature [2]. The model calenlations
predict that the detected spectra will be fairly thermal from Ar upwards, in agreement with
the lack of clearly nonthermal characteristics when trying to reproduce the experimental
spectra by calculations.

This effective thermalisation via breakup might suggest a substantial change of the
distribution function in a regime almost without further collision (the late stages of VUU
calculation). Still, the entropy does not increase anymore, which facts are seemingly in
contradiction. However, we are speaking of two different distribution functions. Namely,
the distribution function, from which the entropy density is calculated, is defined at fixed
location and time, and later the entropy density is integrated over volume. In contrast,
the detected distribution is meant at a fixed place and integrated over time or over the
oncoming matter elements. Generally the two distribution functions do not coincide even
in the Liouville regime. The problem deserves further investigation.

Therefore it seems that the detected spectra do not display too much directly of the
expected nonthermal nature of the momentum distributions. Therefore, the fair agreement
between thermal equilibrium calculations and experimenal spectra up to 1 GeV/nucleon
beam energy does not indicate even approximative equilibrium during expansion. An in-
direct signature for or against equilibrium would be the final temperature. However, in
several cases the breakup moment is determined by fitting the detected temperature to the
slope of energy spectrum, and then even this signature is lost. The lack of equilibration
would be revealed if the entropy could be measured independently, e.g. from produced
particle ratios [25], [26]. Nevertheless, at 800 MeV /nucleon beam energy even the pion
production is moderate and heavier mesons are ruled out. Similarly, hadrochemical pro-
cesses are sensitive to the temperature during the whole collision, but at such energies
hyperon and resonance production is almost nil.
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One can conclude that below cca. 1 GeV/nucleon beam energy the final observables
of a heavy ion collision give rather poor and indirect insight into the nonthermal behaviour
of the system, which is probably substantial enough.
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APPENDIX

Our starting balance equations, from Ref. 13, are as follows:

(B +vV)n+nVv =0 | (A1)
(3 +YV)e + Vv = —pVv (A2)
(0 +vV)z +2Vv = -2z (A3)
(0 +VV)s + 5V = 1az? (A4)

a=Kin~4n'3¢4 (A.5)

In addition, of course, the total energy of the sphere is constant, i.=.

E= / (e+ %mnv’)dV = const. (A6)

Now, notice that (in the present z? approximation) the z eqnation is decoupled, i.e. the
dynamics is unaffected by z. Then we can turn to the analytic solution of Ref. 2. It has a
limit of homogeneous density and energy distriltions, which we will use. Using eq. (2.2)
Vv can be expressed via R and R

h+3%n=0 (AT)
. R :
e+3(c+p)—§=0 (A2)
Y '
z+3ﬁz— e (4.3)



. LR 1 , '
s+3Ra-—’_az (A4)

Then, by using the homogeneity assumption, the conservation equation for the total energy
can be written into the form

E= -—R’c + TéNmR2 = const. (A6)
where N is the total particle number:
N= i;lnn'“ (A7)

By comparing egs. (A.6’) and (A.2’) one obtains

Now, up to 22 [13]

Hence eq. (2.1) is obtained according to Ref. 2 with

3 n(0)

t, = i-am-e-(-(ﬁ (AS)
where we have used the initial conditions
R(0)=R,
R(0)=0 1A.9)

By assuming no compression, from particle and energy conservation between beam pulse
and total overlap one gets

n(0) = 2n,
(§) =gt (410)

n t-'o

Now we turn to the decoupled z equation. Virite
| #(t) = (()R" (A11)
Then the solution can be written as

()= Goe~ 4O (A12)
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With the form (2.8-9) for 7 and with the above n and o ~ v~! the integral gets an analytic
form

— -1 . _ T
z2=2z,f""(2) exp{ 7[————1 g + arctan(:r)]} (A.13)
with
z=tft,
y= %n,v,toa,. (A.14)

Here v, is to be taken from the temperature at total overlap, which, in turn, comes from
the initial conditions for n, e _discussed above) and for z (see the end of Sect. 2).
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calculation for Nb+-Nb at 1060 MeV /nucleon beam energy
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(henceforth, if not indicated otherwise,

the beam energy is 800 MeV /nucleon)



Specific entropy, E/N

20

500 1000
Beam energy, MeV/nucleon

Fig. 7
As Fig. 6, but for Ne+Ne

15600



Specific entropy, E/N

21

500 1000
Beam energy, MeV/nucleon

Fig. 8
As Figs. 6 and 7, but for Ar+Ar

1500



22

J
10 N\ N\
\ )
v\
e \\
g ! \
2 \\
5 A
[} \ \ \
0.1 o\ \
\)
3\ \
0.01 b o\ Ao
0.0 1.0 2.0 3.0
Momentum k
Fig. 9

Momentum spectra during an Ne+Ne collision at 800 MeV
The dimensionless momentum k is defined in eq.(4.1)
Labels indicate different distributions as follows
"no” stands for total overlap (therefore no flow)
"nb” is measured just before breakup in the comoving system (so again without flow effects)
"fb” is valid between breakup and the detector, including flow
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