IEN-SEPRAD-04/86

.

1

.

•

,

COMISSÃO NACIONAL DE ENERGIA NUCLEAR

INSTITUTO DE ENGENHARIA NUCLEAR

ESTUDO DA ATIVAÇÃO DAS PEÇAS COMPONEN TES DO CÍCLOTRON CV-28

PATRICIA WIELAND FAJARDO

SPRAD-04/86

AGOSTO, 1986

Serão de Proteção Radiológica

SUMÁRIO

.

.

	Pag.
1. INTRODUÇÃO	1
2. PRINCÍPIO DE FUNCIONAMENTO DO CÍCLOTRON	1
3. PEÇAS COMPONENTES COM POTENCIAL DE ATIVAÇÃO	4
4. POSSIVEIS REAÇÕES NUCLEARES NAS PEÇAS COMPONENTES DO CICLOTRON	6
5. DADOS EXPERIMENTAIS	14
6. CONCLUSÃO	16
APÊNDICES	
A. ALGUNS RADIONUCLÍDEOS FORMADOS POR ATIVAÇÃO DAS PEÇAS COMPONENTES DO CÍCLOTRON E SUAS ENERGIAS CARACTERÍS-	
TICAS	17
REFERÊNCIAS	28

.

÷

.

1. INTRODUÇÃO

O cíclotron CV-28, isócrono, compacto, de energia vari<u>á</u> vel é um acelerador de partículas carregadas e encontra apl<u>i</u> ção em inúmeros domínios como por exemplo: produção de radi<u>o</u> isótopos, produção de nêutrons, análise de danos por irradi<u>a</u> ção, análise por ativação, etc.

Durante a produção do feixe de partículas, as peças com ponentes do interior do ciclotron são irradiadas e ficam radioativas. Devido ao fato de que o ciclotron exige manutenção, o conhecimento dos radionuclídeos presentes é de primordial importância do ponto de vista da radioproteção.

Examinando-se a função excitação de uma reação nuclear, verifica-se se determinada reação pode ocorrer e assim prod<u>u</u> zir um radionuclídeo. Este estudo, então, verifica quais são os radionuclídeos formados nas peças componentes pelas part<u>í</u> culas carregadas, baseado em literatura disponível.

2. PRINCÍPIO DE FUNCIONAMENTO DO CÍCLOTRON

O ponto de partida para produção de um feixe acelerado de partículas é a ionização de um gás (ex: H_2 , D_2 , He^3 , He^4) pelo "ion source", no interior de uma câmara de vácuo. O ion liberado sofre ação do campo elétrico entre eletrodos chamados "dês" e é atraído na direção do "dê" que estiver negativamente carregado. O forte campo magnético perpendicular à trajetória da partícula faz com que esta se curve num semicírculo e quando o intervalo entre os eletrodos é atingido, os potenciais elétricos são revertidos e a partícula é novamente acelerada. Esse processo continua e a partícula descr<u>e</u> ve uma órbita espiralada.

A cada instante a força eletromagnética (F) fornece a força centrípeta (F_c) necessária à trajetória circular.

$$F = qvB = F_c = \frac{rw^2}{r}$$
 (2.1)

qBr

onde:

B = intensidade do campo magnético

q = carga do ion

v = velocidade da partícula

r = raio de curvatura da trajetória

O tempo para completar uma órbita circular é;

 $t = \frac{2\pi r}{v} = \frac{2\pi}{B} \frac{m}{q}$

Quando se alcança energia e corrente requeridas, um defletor eletrostático submetido a uma alta tensão contínua permite desviar o feixe na direção do canal magnético. O canal magnético focaliza o feixe para saída da câmara de vácuo através da "beam valve". (Fig. 3.1)

A tabela 2.1 apresenta as partículas carregadas que podem ser aceleradas no cíclotron e os respectivos limites de energia fornecidos pelo cíclotron CV-28.

Partícula	Energia (Mev)
Р	2 - 24
ď	3 - 14
2 He ³⁺⁺	4 - 36
α	7 - 28

Tabela (2.1) FAIXAS DE ENERGIA FORNECIDA PELO CÍCLOTRON CV-28.

Fig.3.1. Desenho esquemático do interior do cíclotron: 1) Defletor; 2) Eletrodos; 3) Ion source; 4) Canal magnético; 5) Probe; 6) Beam valve.

3. PEÇAS COMPONENTES COM POTENCIAL DE ATIVAÇÃO

As peças com maior potencial de ativação são:

Defletor: é uma peça de Cobre composta por uma carcaça, pelo septum, pré-septum e bar. A parte que fica mais ativa é o pré-septum, onde o feixe incide diretamente. A dose na superfície¹ do pré-septum pode chegar a 800 mR/h 12 horas após operação típica. Outra parte que fica bastante ativa é o "bar", que fica no interior do defletor. Essa peça geralmente apresenta um ponto de ativação máxima². Anteriormente, usava-se algumas partes de defletor

formadas de Tungstênio.

- Canal Magnético: é composto essencialmente por Ferro. Foram medidas doses da ordem de 200 mR/h 12 horas após operação.
- "Ion Source": é uma peça composta por uma base de aço, haste de Cobre e um catodo de Tântalo na extremidade. A parte mais ativa dessa peça é aproximadamente na metade da haste onde incide o feixe com maior raio de trajetória. Observa-se também que o catodo de Tântalo fica ligeiramente ativo
- Eletrodos: são formados de Cobre. Um pequeno desnível dessa peça poderá significar formação de ponto de ativ<u>a</u> ção máxima.
- 1 As taxas de exposição foram medidas com as peças no interior da máquina com o detetor GM Teletector Total 6112.
- 2 Um ponto de ativação máxima é devido a incidência locali zada do feixe de partículas. Esse ponto é facilmente dis tinguido pois o dano observável causado à peça de metal devido ao feixe de radiação, é igual ao dano causado por um feixe intenso e colimado de calor.

ķ

Outros Materiais: outros materiais podem ser ativados pela incidência do feixe de radiação como por exemplo: latão (Zn+Cu): encontrado nas bases da cerâmica usada como isolante elétri co e também nos parafusos de fixação. Alumínio: carcaça do cíclotron.

Os elementos naturais encontrados no cíclotron estão listados na Tabela.(3.1), juntamente com a abundância isotópica.

Isótopo	Abundância [®] (%)
13A127	100
26 Fe ⁵⁴	5,8
26 Fe ⁵⁶	91,7
26 Fe ⁵⁷	2,2
26 Fe ⁵⁸	0,3.
2 9 Cu ^{6 3}	69,17
2 9 Cu ^{6 5}	30,83
₃ ₉ Zn ^{6 ↓}	48,6
s _s Zn ^{6 6}	27,9
3 ₈ Zn ^{6 7}	4,1
₃ ₀ Zn ^{6 6}	18,8
3 ₈ Zn ^{7 8}	0,6
73 ^{Ta¹⁰¹}	99,988
74W ¹⁸⁰	0,13
7 6 W ^{1 8 2}	26,3
74W183	14,3
7 4 W 1 8 4	30,67
7 • W ^{1 86}	28,6

TABELA (3.1)

4. POSSÍVEIS RECODES NUCLEARES NAS PEÇAS COMPONENTES DO CÍ-CLOTRON

A função excitação de uma reação nuclear relaciona energia do projétil e seção de choque do material. Um desenho es quemático da forma característica de uma função excitação pa ra a reação nuclear I(i,j)J com o projétil carregado i, um nuclídeo alvo I, partícula emitida j e nuclídeo produto J é mostrado na figura (4.1).

Fig. (4.1) Função Excitação Típica

As funções excitação são caracterizadas pelas seguintes quantidades:

A energia mínima do projétil requerida para iniciar uma reação é a energia de threshold. No caso não relativístico:

$$E_{\text{thr}} = \begin{cases} -Q \left[1 + (A_i / A_i) \right] \text{ se } Q < 0 \qquad (4.1) \\ 0 \qquad \text{ se } Q \ge 0 \end{cases}$$

onde:

 $A_i A_I$ são os números de nucleons do projetil i e do nuclideo alvo I respectivamente, Q é o valor Q da reação I(i,j)J e é definido como:

$$Q = \left[(M_{I} + M_{i}) - (M_{j} + M_{J}) \right] c^{2}$$
(4.2)

Onde os M's são as massas do estado fundamental do nuclídeo alvo I, projétil i, partícula j emitida e nuclídeo produto J.

Na literatura encontra-se funções excitação determinadas experimentalmente assim como os valores de threshold da reação.

Tomando como referência o volume 5 parte b do Landolt-Börnstein⁽²⁾, foram verificadas as reações que tem probabil<u>i</u> dade de ocorrer através da comparação do threshold com as energias das partículas fornecidas pelo cíclotron e também através da análise da seção de choque do gráfico de função excitação para cada reação possível. Exemplos de funções excitação aplicáveis ao caso do cíclotron estão na figura (4.2).

A figura (4.2a) mostra funções excitação do Cu⁶³ e Cu⁶⁵ na reação (p,n). O threshold da reação Cu⁶³ (p,n) Zn⁶⁵ \vec{e} 4,2 MeV e da reação Cu⁶⁵ (p,n) Zn⁶⁵ \vec{e} 2,2 MeV.

A figura (4.2b) mostra funções excitação do Zn^{64} , Zn^{66} , Zn⁶⁷ na reação (p,n). Os thresholds respectivos são: 8,0 MeV, 6,0 MeV e 1,8 MeV.

O Quadro (4.1) resume as reações possíveis de ocorrer dentro da faixa de energia de cada partícula, mostrando os radionuclídeos formados. Os filhos radioativos desses radionuclídeos estão entre parênteses. Note-se que mesmo os nucl<u>í</u>

deos com pouca probabilidade de serem formados, também estão listados.

A Tabela (4.1) fornece, ordenados por número atômico, os radionuclídeos formados nas peças do cíclotron e sua respectiva meia vida.

Quadro (4.1) PRODUTOS FORMADOS DAS REAÇÕES NUCLEARES COM AS PEÇAS DO CÍCLOTRON CV-28

			and the second se	
pertícula incidente alvo	P	đ	· He ³	•
¥7,1		A1 ²⁸ Kg ²³ Ka ²⁴	ایر ^{2)} الم ^{3 ,} الم ^{2)}	
Fe ³⁴	Te ^{\$3} (Hh ^{\$3})	Co ³⁵ (Fe ¹³) Jh ³³ m Jh ³² E		Hi ³⁷ (Co ²⁷) Hi ²⁶ (Co ²⁴) Co ³³ Co ³⁴ Co ³⁵ (Te ³³) Te ⁵³ (Ph ⁵³)
ľe ¹⁴	C0 ⁵⁴	Co ⁵⁷ Co ³⁴	Hi ¹⁷ (Co ¹⁷) Hi ¹⁴ (Co ¹⁴) Co ¹⁴ Co ¹⁷ Co ¹⁴	60 ³⁴ 60 ³⁷
Fe ¹⁷	Co ^{\$7}			Mn ³⁴
О ^{ę, 3}	Zn ⁶ 3 Zn ⁶ 2 Cu ⁶ 3 Ni ⁶ 0	7,54 3 2,54 7 (Cuf 2) Cuf 4	Gat 3 (7,5 5) (1,6 5 7,7 6 3 7,7 6 3 (Cu ⁶ 3) Cu ⁶ 9 Cu ⁶ 9 Cu ⁶ 1 Cu ⁶ 9 Co ⁵ 9 Co ⁵ 9 Co ⁵ 9 Co ⁵ 9	(3366 Gof \$(Zn63) Zn68 C187 C187

particula incidente alvo	P	d	lle ³	œ.
Q1 ^{6 5}	Zn ^{4 \$} Zn ^{4 \$}	Zır ^{6 3} Cu ^{6 6}	G1 ^{6 7} G1 ^{6 5} G1 ^{6 5} (Z1 ^{6 5}) Z1 ^{6 5}	ر ا ^{و و} ر او و ر او و ر او و
		•	Ni ^{4 5} Cu ^{6 6} Ni ^{4 3} Co ^{6 6} Fe ^{3 9}	လ ⁶ ⁹ ထ ^{6 9}
2n ^{¢ •}	Ga ⁴ * Cu ⁴ * Cu ⁴ *	Cu ^{6 4} Cu ^{6 3}		Ge ^{6 0} (Gu ^{6 0}) Ge ^{6 7} (Gu ^{6 7}) Ge ⁶⁶ (Gu ⁶⁶) Gu ⁶⁷ Gu ⁶⁶
				Car ⁶ ⁵ Zn ⁶ ⁵ Zn ⁶ ² Cu ⁶ ²
2n ⁶⁶	Ga ^{ee}	Ga ^{6 7} Ga ^{6 6} Cu ^{6 6}		Ge ^{6 3} Ga ^{6 0}
2n ^{6 7}	Ga ^{6 7}	Cu# 7 Cu# 9		
Zn ⁴ *	Ga ^{5 8} Cu ^{6 7}	Ga ^{6 8} Zn ^{6 9} G 6 7		Ge ⁷¹
Zn ^{7 0}	*			Ge ⁷³ Ga ⁷² Zn ⁷² (Ga ⁷²)
7a ¹⁰¹	W ¹⁰¹ W ¹⁷⁰ (Ta ¹⁷⁹) W ¹⁷⁰ (Ta ¹⁰⁰) Ta ¹⁰⁴ (I(I ¹⁰⁰) Ta ¹⁷⁰ (I(I ¹⁰⁰)	W ¹⁸¹ Ta ¹⁸²	Re ¹⁰³ Re ¹⁰¹ (W ¹⁰¹) Re ¹⁰⁴ Ta ¹⁰⁴⁽ (Hf ¹⁰⁴) Ta ¹⁰⁴⁽	Re 18 og Re 18 3 Re 18 2
Mrav		Ra ¹⁸⁺ R W ¹⁴⁵		
H2.06		W187 (Kn187)	W1#7(12+1#7) (Os1#7)	

•

· · ·

.

••

•

.

9

•

26: Cu 65

30:Zn 67

n?	nuclídeo	meia vida ⁸
01	11Na ²²	2,60 a
02	11Na ²⁴	15,02 h
03	1 2 Mg ^{2 7}	9,46 m
04	1 3A1 ^{2 8}	2,24 m
05	2 5 Mn ^{5 2} g	5,59 d
06	2 5 Mn ^{5 2 m}	21,1 m
07	2 5 Mn ^{5 3}	3,7.10 ⁶ a
08	₂₅ Mn 56	2,58 h
09	26 Fe ^{53g}	8,51 m
10	26 Fe ^{53M}	2,58 m
11	26 Fe ⁵⁵	2,74 a
12	26 Fe ⁵⁹	44,50 d
13	27C0 ⁵⁵	17,54 h
14	27C0 ⁵⁶	78,8 d
15	27C0 ⁵⁷	271,8 d
16	27C0 ⁵⁸ g	70,92 d
17	2706 0	5,27 a
18	27C0 ⁶ 1	1,65 h
19	2 8 Ni ⁵⁶	6. ,10 d
20	2 s Ni ⁵⁷	36,1 h
21	2 8 Ni ^{6 3}	100,1 a
22	2 8 Ni ^{6 5}	2,52 h
23	2 9 Cu ^{6 0}	23,2 m '

Tabela (4.1) RELAÇÃO DE RADIONUCLÍDEOS FORMADOS NO CÍCLOTRON

ח?	nuclídeo	meia vida
24	2 9 Cu ^{6 1}	3,41 h
25	2 5 Cu ^{6 2}	9,7'; m
26	2 9 Cu ⁶ 4	12,70 h
27	2 9 Cu ^{6 6}	5,10 m
28	2 y Cu ^{6 7}	2,58 d
29	3 0 ^{Zn6} 2	9,25 h
30	30 ^{Zn63}	38,1 m
31	3 0 ^{Zns 5}	244,1 d
32	3 0 ^{Z n 6} 9 ^m	13,76 h
33	3 0 ^{Zn72}	46,5 h
34	3 1 Ga ⁶ 4	2,63 m
35	5, Ga ^{6 5}	15,2 m
36	3 1 Ga ^{s 6}	9,40 h
37	3 1 Ga ⁶ 7	3,26 d
38	31 Ga ^{6 8}	68,1 m
39`	31 Ga72	14,10 h
40	3 2 Ge ^{6 6}	2,27 h
41	3 2 Ge ^{6 7}	1,87 m
42	8 2 Ge ^{6 8}	270,8 d
43	3 2 Ge ^{5 9}	39,05 h
44	32 Ge ^{7 1}	11,8 d
45	72 Hf ^{179 m}	25,1 d
46	72 Hf1 80 ^m	5,5 h
47	73 Ta ^{178 M}	2,45 h
48	73 Tal 78 g	9,31 mʻ

•

.

n۹	nuclídeo	meia vida
49	73Ta ¹⁷⁹	l,82 a
50	73Ta ¹⁸⁰ m	>5,6.10 ¹³ a
51	73Ta ¹⁶² g	115,0 d
52	73Ta ¹⁸³	5,1 .d
53	74W ¹⁷⁸	21,7 d
54	74W ¹⁷⁹	37,5 m
55	7 4 W ^{1 8 1}	121,2 d
56	74W185g	75,1 d
57	74W ¹⁸⁷	. 23,9 h
58	7 s Re ¹⁸⁰	2,43 m
59	75Re ¹⁸¹	20, h
60	75Re ¹⁸² g	2,67 d
61	75Re ¹⁸² m	12,7 h
62	75Re ¹⁸³	70,0 d
63	75Re ¹⁸ *g	38,0 d
64	7 5 Re ¹⁸⁴ m	165 d
65	7 s Re ^{1 85} g	3,78 d
66	75 Re ^{186 m}	2,0.10 ⁵ a
67	75 Re ¹⁸⁷	4.10 ¹⁰ a
68	76 05 ^{1 86}	2.10 ¹⁵ a

5. DADOS EXPERIMENTAIS

Os dados experimentais referem-se a resultados de monitoração de contaminação de superfície, do ar e de efluentes líquidos realizados na sala de manutenção e na caverna do cí clotron.

5.1 ANÁLISE DE AR

A monitoração de contaminação do ar é feita coletandose aerossóis através de um filtro de fibra de vidro "Millipore" e uma bomba de ar de alto fluxo. O filtro é analisado no sistema de contagem β -Total e, se o resultado for acima da <u>a</u> tividade mínima detetável, determina-se os radionuclídeos e as respectivas atividades através do sistema de espectrometria γ . Conhecendo-se a vazão da bomba e o tempo de amostragem, pode-se calcular a concentração do radionuclídeo na atmosfera e esse parâmetro é comparado ao limite recomendado pela ICRP Publicação nº 30, que é a concentração no ar derivada (CAD) do radionuclídeo.

De julho/84 até março/86 foram realizadas cerca de 50 análises de ar na área do cíclotron, sendo que duas foram feitas na caverna durante manutenção no interior do cíclotron. Os resultados dessas análises ficaram abaixo do mínimo significativo.

5.2 ANÁLISE DE CONTAMINAÇÃO DE SUPERFÍCIE

A monitoração de contaminação de superfície é feita através de esfregaços em lugares críticos predeterminados, são eles: chão da caverna do cíclotron; na sala de manutenção de peças do cíclotron: chão, bancada, pia, telefone, cadeira, maçaneta; chão da sala de monitoração, bota usada na ārea restrita do cíclotron (sala de manutenção e caverna).

Os esfregaços são feitos com papel de filtro seco e são analisados no sistema de contagem β -Total. Se o resultado for maior que a atividade mínima detetável, analisa-se o esfregaço no sistema de espectrometria γ e determina-se os radionuclídeos contaminantes e suas respectivas atividades. Co nhecendo-se a área de amostragem $(0,1 \text{ m}^2 \text{ para chão e } 0,03 \text{ m}^2$ para bancada e pia), calcula-se a concentração do radionuclídeo e compara-se com o limite. Adota-se como limite geral de contaminação de superfície, o limite mais restritivo. No caso do cíclotron, os contaminantes, como visto, são emissores β e o limite de contaminação de superfície é 3,7.10⁴ Bq.m⁻².

Foram feitos no período de julho/84 a março/86 um total de 729 esfregaços em locais onde há maior probabilidade de contaminação. Cinquenta e seis esfregaços indicaram contaminação, ou seja, 8% do total de esfregaços, destes, dezoito ultrapassaram o limite. Os radionuclídeos encontrados foram Zn-65, Ga-67 e Re-184 e as respectivas concentrações máximas encontradas foram: 8,8.10⁶Bq.m⁻², 1,3.10⁷Bq.m⁻² e7,0.10⁴Bq.m⁻². O nível médio de contaminação ficou em torno de 10³Bq.m⁻². Os locais contaminados mais frequentemente foram a pia e a bancada da sala de manutenção.

5.3 ANÁLISE DE EFLUENTES LÍQUIDOS

O sistema de controle do efluente líquido compõe-se de uma linha de esgoto exclusiva e um sistema de tanques de retenção/liberação. Analisa-se l litro do efluente armazenado no tanque, no sistema de espectrometria γ e determina-se os radionuclídeos e as concentrações respectivas e compara-se então com os limites⁽⁷⁾.

A análise do efluente líquido é um dado importante, pois é decorrente do tratamento de limpeza abrasiva das peças ati vadas. Tem-se encontrado principalmente Zn-65, Ga-67. e Re-182.

6. CONCLUSÃO

A maioria dos radionuclídeos formados no cíclotron tem meia vida muito curta. Do ponto de vista de Radioproteção, deve ser evitado fazer manutenção na máquina imediatamente após operação, notando que operação significa, aqui, não somente a irradiação de um alvo em uma das saídas de feixe, mas também a simples produção ou tentativa de produção do feixe requerido.

Alguns radionuclideos têm maior probabilidade de se tor narem contaminantes. Por exemplo, as peças mais manuseadas são de Cobre, e os radionuclideos importantes formados no Co bre são o Zn-65 e o Ga-67. Isso é confirmado pelas análises de esfregaços feitos no local e de efluentes líquidos, que indicaa presença destes radionuclideos.

Os radionuclídeos Ta-182 e Re-182 são encontrados no ca todo de Tântalo gasto, de modo que deve-se dar especial aten ção do pó que despreende no manuseio do ion source quando da troca do catodo.

Este estudo limitou-se a verificar as reações com as partículas p, d, He³⁺ e α . Sabe-se que as peças também são ativadas pelos nêutrons secundários das reações acima. A at<u>i</u> vação das peças com nêutrons constitui escopo de futuro est<u>u</u> do.

APÊNDICES

A. ALGUNS RADIONUCLÍDEOS FORMADOS POR ATIVAÇÃO DAS PEÇAS COM PONENTES DO CÍCLOTRON E SUAS ENERGIAS CARACTERÍSTICAS.

Objetivo: Auxílio na análise por espectrometria γ de amos tras colhidas no laboratório do Cíclotron.

Esse apêndice é composto por três tabelas que ajudarão a determinação de um radionuclídeo a partir das linhas de energia encontrada no sistema de espectrometria gama. Os radionuclídeos aqui relacionados são aqueles possíveis de serem formados por ativação de materiais componentes do Cíclotron e que têm meia vida à 2 horas.

A Tabela (A.1) fornece para cada radionuclídeo, a sua meia vida, suas energias características e respectivas abundâncias⁽⁸⁾. Note-se, porém, que nem todas linhas de energia do radionuclídeo estão listados, aquelas linhas cuja energia é muito baixa e/ou abundância ínfima foram suprimidas.

Na Tabela (A.2) estão listados, por ordem crescente de energia, a energia, o radionuclídeo e a abundância.

A Tabela (A.3) é uma tabela secundária que agiliza em muito a determinação do radionuclídeo. Estão listados por or dem crescente de energia, o radionuclídeo, a energia do pico mais abundante e a abundância desse pico. Para usar essa tabela, basta, tendo o espectro de energia, procurar o fotopico mais alto. Com a energia desse fotopico, pesquisar na Tabela (A.3) a que nuclídeo pertence essa energía e depois, na Tabela (A.1), as outras energias desse radionuclídeo.

OBSERVAÇÃO: À direita do valor da energia estão alguns codigos, são eles:

A - energia proveniente de aniquilação de pares.

- D energia de raios γ emitidos pelo filho do radionuclídeo.
- G abundância calculada pela relação genética na equação transiente.

 X - energia proveniente de raios-X.
Números - são as incertezas no último algarismo do valor da energia.

TABELA (A.1)

•							
NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)		ABUNDÂNCIA	NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)		ABUNDÂNCIA
2 2 1 1Na	1274.5	1	99,9	56 27C0	846.8	1	99,9
2,60a	-		-	78,80	1037,8	1	14,1
					1238,3	1	67,0
24 11Na	1368,5	1	100,		1771,4	1	15,1
15,02h	2753,9	1	99,9		2034,9	1	7,78
					2598,6	1	16,8
2 5 ^{Mn}	744,2	1	90,0	· · · · · · · · · · · · · · · · · · ·			
5,59d	848,2	1	3,32	28Ni 56	158,4	1	98,8
	935,5	1	94,5	6,10a	269,5	1	36,5
	1246,2	1	4,21		480,4	1	36,5
,	1333,6	1	5,07		750,0	1	49,5
	1434,1	1	100,		811,9	l	86,0
5.3		*****			1561,8	1	14,0
2 5 Mn	5,4	X	22,4	E 7			
6	6,0	X	3,02	27 ^C 0	122,1	1	85,6
3,7.10 a	•			271,8d	136,5	1	10,6
. 55 Fe	5 Q	x	25_0	57		:	
26·0 7 74=	, , , , , ,	x	2,38	28 ^{Ni}	127,2	1	12,9
<i>د</i> ، / ۳۵			5,00	36,lh	1377,6	1	77,9
55	Q 1 R	3	2.7	,	1757,5	1	7,09
2700 17 5uh	ц77_2	3	20.3		1919,4	1	14,7
الل ا ال الله الله الم	803-8	3	2.1	5 8 g		_	
•	931.5	3	. 75.0	2 7 CO	810,8	1	99,4
	1316.7	3	71	70,92d			· · · · · · · · · · · · · · · · · · ·
	1370.0	3	3.0	5 9			
	1408.7	3	16.5	26 ^{re}	192,2	1	3,4
	-	-		44,50d	1099,3	1	50,5
56 2 s Mn	846-8	1	98.9	·	1291,6	1	43,2
2.58h	1810.7	1	27.2	60			
- ,	2113.0	1	14.3	2700	1173,2	1	99,9
	211090	-	- • • • •	5,2/a i	1332.5	1	, 1,00 s

HUCLIDEO	ENERGIA (KeV)	-	ABUNDÂNCIA	NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)	•	ABUNDÂNCIA
61 27C0	67,4	1	86,0	6.7 29Cu	93,3	1	16,1
1,65h	909,2	5	3,0	2,58d	184,6	1	48,7
61 29Cu	67,4	1	4,13	67 31Ga	93,3	1	37,0
3,41h	. 283,0	1	13,1	3,26d	184,6	1	20,4
	656,0	1	.11,2		300,2	1	16,6
. ·	1185,2	1	3,86		• ••••		k
	-			3 2 Ge	10,3	Х	5,50
3∎Zn	40,8	1	25,2	270,83	1077,4	lD	2,93
9,25h	507,6	1	14,6	с в III		·	•
	548,4	1	15,2	30Zn	438,6	1	94,8
	596,6	1	25,7	13,76h			•
64 1	7.5	x	14.8	69	5.7ኪ ገ	 ר	13.3
2900 12 70b	511	A	35.8	3200	872 0	ר	י בי, כ
	· · · · · · · · · · · · · · · · · · ·		,.		1106.8	1	36.0
65 28Ni	366,3	1	4,61				
2,52h	1115,5	1	14,8	71 32 Ge	9,2	х	39, 1
- ,	1481,8	1	23,5	11,8d	10,3	X	5,57
6 5 ·		 ,	·····	7.2	• • ·		s, concar c
28Zn	1115,5	1	50,7	30Zn	144,7	1	83,0
244,1d				46, 5h	630,0	1D	35,5
b 6	····				834,0	1D	137,2
31Ga	833,6	1	6,12		2201,7	lD	37,2
9,40h	1039,3	1	38,4	79		• • • • •	• • .
	2190,0	2	5,76	31 Ga	630,0	1	24,8
. ·	2752,1	2	23,5	14,10h	834,0	l	95,6
<u> </u>			· · · · · · · · · · · · · · · · · · ·		2201,7	1	25,9
32Ge	43,9	1	28,6	1.7 eM	· ·		, • . •
2,27h	108,8	1	10,4	73 Ta	55,8	XG	76,3
	273,0	1	10,4	2,45h	88,9	lD	62,0
	381,8	1	27,8		213,4	lD	80,9
	Į				325,6	lD	93,9
					426,4	11	96,9

. .

.

•

20

•

•

NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)	ABUNDÂNCIA	NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)	ABUNDÂNCIA
170 7.W 21,7d	55,8 XI	42,4		1231,0 1	11,6
•	63,2 XI	14,0	1 # 2 g 75 Re	56,0 X	52,0
179 M			2,67d	59,3 X	61,0
72Hf	55,8 >	56,		67,2 X	20,6
25,1d	146,1]	26,3		365,5 3	56,4
	192,8 2	20,9	1.0.2 17		
	236,6 2	18,3	7₅Re	59,3 X	52,5
	362,6 2	38,5	12,7h	67,7 1	38,0
	453,7 3	66,0		1121,4 2	31,9
		·		1221,5 2	25,1
73Ta 7	54,6 >	16,7			
1,82a	55,8 >	29,2	73Ta	58,0 X	25,3
	63,2 >	9,78	5,1d	59,3 X	44,0
· · · · · · · · · · · · · · · · · · ·			·	67,2 X	14,9
72Hf	57,5	48,4		107,9 1G	10,8
5,5h	215,2	81,4		246,1 1	26,7
	332,3	.94,4		354,0 1	11,4
	443,2	82,8			
			Re ¹⁸³	59.3 X	61.6
181 7 . W	56,3 >	18,2	75 70,0d	67.2 X	20.8
121,24	57,5 >	31,8		162.3 1	23.5
· ·	65,2 >	10,7			
			184 <u>8</u>	59.3.X	45.1
181 75 RG	58.0)	35.1	38.0d	792.1 1	37.4
20.h	59.3)	61.0		903.3 1	37.8
	67.2)	20.6			
	365.5	3 56.4	184 ^m	59.3 XG	57.7
			1654	61.1 X	24.4
182g	59.3)	17.5		67.2 XG	19.6
115.04	67.7	41.3		69.2 X	8.3
,	100.1	1 14.1			
	1121.3	35.0	106 2	59.3 X	2.69
	1221.4	27.4	3.784	127.2 1	9.20
	<u>тект</u> 917 -	· · · • • ·		1 x y y y z x x	

•

•

21

.

•

NUCLÍDEO MEIA-VIDA	ENERGIA (KeV)	ABUNDÂNCIA	NUCLÍDEO MEIA-VIDA	ENERGJA (KeV)	APUNDÂNCIA
186 ^m 75 ^{Re} 2,0.10 ⁵ a	'59,0 1 137,2 1D	18,6 9,20	-187 74W 23,9h	61,1 X 72,5 1 134,2 1 479,5 1 685,8 1	14,0 12,9 10,3 25,3 31,6

-

•

• .

22

•

.

23

TABELA (A.2)

.

.

.

		• • • • • • • • • • • • • • • • • • • •			••••••••••••••••••••••••••••••••••••••
ENERGIA (KeV)	NUCLIDEO	ABUNDÂNCIA	ENERGIA (KeV)	NUCLIDEO	ABUNDÂNCIA
5,4 X	2 5 ^M n ^{5 3}	. 22,4	59,3 X	7 5 ^{Re 1 0 1}	61,0
5,9 X	26Fe 55	25,0	59,3 X	73Ta 1828	17,5
6,0 X	2 s ^{Mn 5 3}	3,02	59,3 X	7 s ^{Re 1 8 2 g}	61,0
6,5 X	2.6Fe 55	3,38	59,3 X	7 5 Re 1 8 2 M	52,5
7,5 X	29 Cu ⁶⁴	14,8	59,3 X	73Ta ¹⁸³	44,0
9,2 X	3 2Ge 7 1	39,1	59,3 X	7 5 Re 1 8 4 g	45,1
10,3 X	3 2Ge 71	5,57	59,3 X	7 5 Re 1 8 3	61,6
10,3 X	3 2Ge ^{6 8}	5,50	59,3 XG	7 5 Re 1 8 4 M	57,7
40,8 1	3 0 ^{Zn⁶²}	25,2	59,3 X	75 ^{Re186} g	2,69
43,9 1	3 2Ge ^{6 6}	28,6	61,1 X	7 5 Re 1 8 4 M	24,4
54,6 X	73Ta ¹⁷⁹	16,7	61,1 X	74W 187	14,0
55,8 X	72Hf ^{179M}	56,	63,2 XD	74W 178	14,2
55,8 X	73Ta ¹⁷⁹	29,2	63, <u>2</u> X	73 ^{Ta¹⁷⁹}	9,78
55,8 XD	74W 178	42,,4	65,2 X	74W 181	10,7
55,8 XG	73 ^{Ta¹⁷⁸^M}	76,3	67,2 X	75Re 181	20,6
56,3 X	74W 181	18,2	67,2 X	75 ^{Re 182} 2	20,6
57,5 X	74W 178	14,0	67,2 X	73 ^{Ta183}	14,9
57;5 1	72Hf ¹⁸⁰ M	48,4	67,2 X	75 ^{Re 183}	20,8
57,5 X	74W 181	31,8	67,2 XG	75 ^{Re^{184M}}	19,6
58,0 X	75 Re ¹⁸¹	35,1	67,4 1	2 7 C 0 ^{6 1}	86,0
58,0 X	75 Re182g.	52,0	67,4 1	29Cu ⁶¹	4,13
58,0 X	73 Ta ¹⁸³	25,3	67,7 1	73Ta ¹⁸² g	41,3
59,0 1	75 Re ^{186 m}	18,6	67,7 1	75 Re ^{182m} .	38,0

		•	•	•	
ENERGIA (KeV)	NUCLÍDEO	ABUNDÂNCIA	ENERGIA (KeV)	NUCLIDEO	ABUNDÂNCIA
69,2 X	75Re185m	8,3	246,1 1	7 aTa ^{1 8 3}	26,7
72,5 1	74W 187	12,9	269,5 1	2 8Ni ⁵⁶	36,5
88,9 ID	73Ta ^{178m}	62,0	273,0 1	32Ge ⁶⁶	10,4
91,8 3	27C0 ⁵⁵	2,7	283,0 1	2 9 Cu ⁶¹	13,1
93,3 1	2 9 Cu ⁶⁷	16,1	300,2 1	31Ga ⁶⁷	16,6
93,3 1	31Ga ⁶⁷	. 37,0	325,6 1D	73Ta ^{178M}	93,9
100,1 1	7'3Ta ¹⁸² g	14,1	332,3 1	72Hf ^{180m}	94,4
107,9 1G	73Ta ^{] \$ 3}	10,8	354,0 1	73Ta ¹⁸³	11,4
108,8 1	3 2 Ge ^{6 6}	10,4	362,6 2	72Hf179M	38,5
122,1 1	2 7 C 0 ^{5 7}	85,6	365,5 3	75Re ¹⁸¹	56,4
127,2 1	28Ni ⁵⁷	12,9	365,5 3	75Re ¹⁸²	56,4
134,2 1	74W 187	10,3	366,3 1	2 8Ni ^{6 5}	4,61
136,5 i	2 7 C 0 ^{5 7}	10,6	381,8 1	32Ge ⁶⁶	27,8
137,2 1	75Re ^{186g}	9,20	426,4 1D	₇₃ Ta ^{178M}	96,9
137,2_1D	75Re ^{186m}	9,20	438,6 1	30Zn ^{69 m}	94,8
144,7 1	30Zn ⁷²	83,0	443,2 1	72Hf ^{180M}	82,8
146,1 1	72Hf ^{179M}	26,3	453,7 3	72Hf ^{179M}	66,0
158,4 1	2 8 Ni ⁵⁶	98,8	477,2 3	2 7 C 0 5 5	20,3
162,3 1	7 5 Re ¹⁸³	23,5	479,5 1	74W 187	25,3
184,6 1	2 9 Cu ^{6 7}	48,7	480,4 1	2 8 N 1 5 6	36,5
184,6 1	31Ga ⁶⁷	20,4	507,6 1	3 o Zn ^{6 2}	14,6
192,2 1	26Fe ⁵⁹	3,4	511,0 A	29Cu ⁶⁴	35,8
192.8 2	72Hf ^{179M}	20,9	548.4 1	3 0 Zn ^{6 2}	15.2
213.4 1D	73Ta ^{178M}	80.9	574.1 1	32Ge ⁶⁹	13.3
215.2 1	72Hf ^{180M}	81.4	596.6 1	30Zn ⁶²	25.7
236.6 2	72Hf179M	18.3	630.0 1	1.Ga ⁷²	24.8

.

25	

ENERGIA (KeV)	NUCLÍDEO	ABUNDÂNCIA	ENERGIA (KeV)	NUCLÍDEO	ABUNDÂNCIA
630,0 1D	3 0Zn 72	35,5	1115,5 1	2 eNi 65	14,8
656,0 1	2 9Cu ^{6 1}	11,2	1115,5 1	30 ^{2n 65}	50,7
685,8 1	74W 187	31,6	1121,3 1	73 ^{Ta 182} g	35,0
744,2 1	2 5 ^{Mn} ^{5 2} g	90,0	1121,4 2	75 ^{Re 182m}	31,9
750,0 1	2 8Ni ^{5 6}	49,5	1173,2 1	2 7C0 ⁶⁰	99,9
792,1 1	75Re ¹⁸⁴ g	37,4	1185.,2 1	2 9 Cu ^{6 1}	3,86
803,8 3	2 7C0 5 5	2,1	1221,4 1	73Ta ¹⁸² g	27,4
810,8 1	27C0 ^{58g}	99,4	1221,5 2	75 ^{Re 182^m}	25,1
·811,9 1	28Ni 56	86,0	1231,0 1	73Ta ^{162g}	11,6
833,6 1	31Ga ⁶⁶	6,12	1238,3 1	2 7 ^{Co 5 6}	67,0
834,0 1D	30Zn ⁷²	137,2	1246,2'1	2 5 ^{Mn 5 2 g}	4,21
834,0 l	31Ga ⁷²	95,6	1274,5 1	11Na ²²	99 ,9
846,8 1	2 5 Mn ^{5 6}	98,9	1291,6 1	26 Fe ⁵⁹	43,2
846,8 1	27C0 ⁵⁶	99,9	1316,7 3	_{2 7} Co ^{5 5}	71,
848,2 1	2 5 ^{Mn 5 2} g	3,32	1332,5 1	2 7 CO ^{6 0}	100,
872,0 1	32Ge ⁶⁹	11,9	1333,6 1	2 5 Mn 5 2 g	5,07
903,3 1	75Re ¹⁸⁴ g	37,8	1368,5 1	11Na ²⁴	100,
909,2 5	27C0 ⁶¹	3,0	1370,0 3	2 7 C 0 ^{5 5}	3,0
931,5 3	27 ^{C0⁵⁵}	75,0	1377,6 1	2 8 N ± 5 7	77,9
935,5 1	2 5 ^{Mn 5 2} g	94,5	1408,7 3	2 7 C 0 ^{5 5}	16,5
1037,8 1	27C0 ⁵⁶	14,1	1434,1 1	2 5 Mn ^{5 2 g}	100,
1039,3 1	31Ga ⁶⁶	38,4	1481,8 1	2 • Ní ^{6 5}	23,5
1077,4 1D	32 Ge ⁶⁸	2,93	1561,8 1	2 8 Ni ⁵⁶	14,0
1099,3 1	26 Fe ⁵⁹	56,5	1757,5 1	2 a Ni ⁵⁷	7,09
1106,8 1	32 Ge ⁶⁹	36,0	1771,4 1	27C0 ⁵⁶	15,1

.

ENERGIA (KeV)	NUCLÍDEO	ABUNDÂNCIA	ENERGIA (KeV)	NUCLÍDEO	ABUNDANCIA
1810,7 1	2 5 Mn ^{5 6}	27,2	2201,7 1D	3 • Zn ⁷²	37,2
1919,4 1	2 8 Ni ^{5 7}	14,7	2201,7 1	31Ga ⁷²	25,9
2034,9 1	27C0 ⁵⁶	7,78	2598,6 1	27Co ⁵⁶	16,8
2113,0 1	2 5 Mn ^{5 6}	14,3	2752,1 2	31Ga ⁶⁶	23,5
2190,0 2	31Ga ⁶⁶	5,76	2753,9 1	11Na ²⁴	99,9
	• ·		· ·		

۰.

.

		•		• •			
TABELA (A. 3)							
NUCLIPEO	FNERGIA DO PICO MAIS ABUND.(KeV)	ABUNDÂNCIA	NUCLÍDEO	ENERGIA PICO MAI ABUND.()	DO (S (eV)	ABUNDĀNCIA	
2 5Mn ^{5 3}	5,4 X	22,4	Cu ⁶¹	283,0	1	13,1	
26Fe ⁵⁵	5,9 X	25,0	72Hf180M	332,3	1	94,4	
32Ge ^{7 1}	9,2 X	39,1	73Ta ¹⁷⁶¹¹¹	426,4	1D	96,9	
32Ge ^{6 6}	10,3 X	5,50	3 o Zn ^{6 9 m}	438,6	1	94,8	
32Ge ^{6 6}	43,9 1	28,6	72Hf ^{179m}	453,7	3	66,0	
2 W 178	55,8 XD	42,4	29Cu ⁶⁴	511,	A	35,8	
73Ta ¹⁷⁹	55,8 X	29,2	3 o Zn ^{6 2}	596,6	1	25,7	
74W 181	57,5 X	31,8	74W 187	685,8	1	31,6	
75Re ^{186M}	59,0 1	18,6	27C0 ⁵⁸⁹	810,8	1	99,4	
75Re1828	59,3 X	61,0	3 0 Zn ⁷²	834,0	1D	137,2	
75Re ^{182m}	59,3 X	52,5	3 1 Ga ^{7 2}	834,0	1	95,6	
75Re ¹⁸³	59,3 X	61,6	2 5 Mn ^{5 6}	846,8	1	98,9	
75 Re ^{184 g}	59,3 X	45,1	27C0 ⁵⁶	846,8	1	99,9	
75 Re ^{184M}	59,3 XG	57,7	27C0 ⁵⁵	931,5	3	75,0	
75 Re ¹⁸¹	59,3 X	61,0	31 Ga ⁶⁶	1039,3	1	38,4	
7)Ta ^{] 83}	59,3 X	44,0	26 Fe ⁵⁹	1099,3	1	56,5	
2 7 CO ^{6 1}	67,4]	86,0	32 Ge ⁶⁹	1106,8	1	36,0	
73Ta ¹⁸²⁸	67,7 1	41,3	3 o Zn ⁶⁵	1115,5	1	50,7	
3) Ga ⁶⁷	93,3 1	37,0	11Na ²²	1274,5	1	99,9	
27Co ⁵⁷	122,1 1	85,6	27N0 ⁶⁰	1332,5	1	100,	
75 Re ¹⁸⁶ g	137,2 1	'9,2 0	11Na ²⁴	1368,5	1.	100,	
28 Ni ⁵⁶	158,4 1	98,8	2 5 Mn ^{5 2 g}	1434,1	1	100,	
29 Cu ⁶⁷	1.84.6 1	48,7	2 8 Ni ⁶⁵	1481,8	1	23,5	
	1				•	1	

REFERÊNCIAS

- HELLWEGE, K-H et alii. <u>Q-Values and excitation functions</u> of nuclear reactions. Berlim, Springer Verlag, 1973. (Landolt-Bornstein. Numerical data and functional relationships in science and technology, new series, group 1, v.5, pt.A).
- 2. HELLWEGE, K-H et alii. <u>Q-Values and excitation functions</u> of nuclear reactions. Berlim, Springer Verlag, 1973. (Landolt-Bornstein. Numerical data and functional relationships in science and technology, new series, group 1, v.5, pt.B).
- 2. HELLWEGE, K-H et alii. <u>Q-Values and excitation functions</u> of nuclear reactions. Berlim, Springer Verlag, 1974. (Landolt-Bornstein. Numerical data and functional relationships in science and technology, new series, group 1, v.5, pt.C).
- 4. LEMOS JR., Orlando Ferreira <u>Aceleradores de partículas</u>. CNEN/IEN/Dep. Física. Nota Informativa. 1980.
- 5. INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna. <u>Monitoring of</u> <u>radioactive contamination on surfaces</u>. 1970. (Technical Report Series nº 120).
- 6. INSTITUTO DE ENGENHARIA NUCLEAR, Rio de Janeiro. <u>Informa-</u> ções do corpo técnico do Departamento do Física/IEN.
 - 7. PINA, J.L.S. de & ROCHA, A.C.S. da <u>Critério para libera-</u> <u>ção de efluente líquido radioativo do IEN</u>. CNEN/IEN/ DISEP-01/84.
 - ATOMIC DATA AND NUCLEAR DATA TABLES Albany, v. 29, n. 1, Sep. 1983.
 - 9. PATTER: ON, H. W. Accelerator Health Physics. Academic Press, 1973.