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Abstract

In quantum mechanics it is not possible to define a probability for finding a particle at

position r with momentum p. Nevertheless there is a function introduced by Wigner, which

retains many significant features of the classical probability distribution. Using simple one

dimensional models we try to understand the very involved structure of this function.
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I Introduction

The Heisenberg's uncertainty relations imply the impossibility to simultaneously mea-

sure with infinite accuracy the position and momentum of a particle in quantum mechanics.

Therefore there is no quantal equivalent to the classical distribution function of statistical

mechanics /C|(ri, ...,fiv>Pi) -MPJV)) which defines for an ensemble of N identical particles ( in

our case fermions ) the probability of finding them at the points : fi,..., fjv, with momenta

Pi,--,PN- Many years ago Wigner [l] introduced however a quantal quantity which has

many of the properties of the classical distribution function and which in the appropriate

limit coincides with it. This quantal distribution function is usually called the Wigner

transform and rigorous formulations of quantum mechanics ( Weyl [2] ) are based on the

use of the correspondence principle to connect this quantal distribution function to the

classical one. The Wigner transform is also a useful starting point to derive semiclassical

approximations for the many body problem, such as Thomas Fermi, as was already shown

by Wigner [1] and Kirkwood [3]. More recently, it has been also widely used by the theo-

reticians to study a variety of quantum processes, e.g.: in the description of the dynamics

of heavy ion nuclear reactions and in atomic and molecular collisions [4], and also in the

description of coherent states [5].

On a more practical level, and although the Wigner transform is not a measurable

quantity, in recent years a lot of progress has been made in the experimental determination

of quantities directly related to it, like mass and momentum distributions, in systems

ranging from condensed matter to nuclear and quark physics. In most cases however one

is not interested in the quantal equivalent of the full distribution function , but only on

an integrated form of it giving the probability for finding a particle at position f with

momentum p, with ali the other particles positions and momenta undetermined. For these

purposes it can be expected that the mean field approximation gives a sufficiently good

description of the ground state of the N-fermion system , so that the interactions between

the particles can be well approximated by a one body potential. The reduced Wigner

transforms computed with these models show considerable structure and differ considerably



from the predictions of the simpler Thomas Fermi approximation . What we will show

here is that these structures can be interpreted using elementary classical and semiclassical

ideas and that this allows to recognize even in these involved quantal functions many of the

signatures of the classical probability distribution for finding a particle with momentum p

at position f.

II Wigner Transform

Ignoring spin and other possible intrinsic degrees of freedom, the full Wigner transform

is defined as the Fourier transform of the density matrix:

fw(fl,...,fff,pi,...,pN) —

and it can be easily checked that it has the following properties :

T^j^ y Mri,..., FJV, &,..., pV)dp\...dpJv = M?!, -, J=Jv)I2 (2)

which gives the probability for finding the particles at the points FI, ...,?N (with any values

of their momenta), and

J ^Fl' '"' Fjy'^' "•»P*)dFi-<fi>r

where îj) is the Fourier transform of ^, and which gives now the probability for finding

the particles with momenta Jj1, ...,pjv- It is also immediate to realize that the Wigner

transform allows one to compute the expectation values of any operator H that depends

only on positions and momenta:

< B >= J H(fi,...,if
N,p1,...,pri)fw(fi,...,fN,pi,...,pff)df1...dfNdp\...dpN (4)

Since the classical distribution function, /Ci(F1, ...,fN,pi, ...,pN), has the same proper-

ties this leads to the interpretation of Wigner's transform as its quantal analog . However,



important differences remain : in particular, it is easy to check with simple examples (

some will be explicitly shown later ) that /iv(r,p) is not positive definite and therefore

cannot be a probability density.

The reduced Wigner transform is defined as :

f ( r , p ) = J •••] dr2...drNdp2...dpNfw(r,r2,...,rN,p,p2,...,pN) (5)

And , in particular, for a system of N fermions described by a Slater determinant of single

particle wavefunctions {<fo(r),i = 1, ...., N} , is given by

/(r,p) = E / #(r, + f )&(r2 - |)e^ ds. (6)
•=i J £ *•

Hence

i=1

where p(f) is the total density in r-space,i.e.: the probability for finding a particle at point

r with any value of its momentum. Similarly, the total density in momentum space is given

by:

(?,ftdr = P(P) = E|&(p)|2 (8)

where & (p) is the Fourier transform of <£,- (?) .

Even this reduced Wigner transform is rather cumbersome to compute for realistic

cases [15-6-7]. We show in Fig. 1 a calculation for the ground state --f the atomic nucleus
40Ca (N=Z=20). We assume that the nucléons are confined by the Woods Saxon potential

[8]:

V(r) = —^ (9)
l + e °»

We solve numerically the Schrodinger equation and using (6) we obtain the Wigner trans-

form. When the potential is spherically symmetric it can be shown [7 and refs. therein]

that / depends only on the moduli of r and p and on the angle between them. This latter

dependence is very weak for closed shell systems [7] and therefore what is shown is an
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angle averaged Wigner transform. It should be noticed that more realistic calculations

using Hartree Fock wavefunctions [7] give Wigner transforms that are undistinguishable

from the one above when plotted on the scale of Fig. 1. In the same figure is also shown

the distribution function predicted by the Thomas Fermi model :

/TF(f,p) = M(E - Hci) (10)

where Hci is the classical hamiltonian given by Hd = V(r) + ̂ . E is the Fermi energy

obtained by requiring that /TF when integrated over f and p gives the chosen number of

nucléons. The factor 4 accounts for spin and isospin degeneracy. It is seen that /rf(r,p)

only predicts the gross features of the Wigner transfom, i.e.: its volume in phase space.

The strong peak at p = r — O gives however little contributions to integrals like that

in eq.(7) or (8) : in spherical coordinates df — r2dO and the extra r2 factor suppresses

the peak close to the origin. The strong oscillatory behaviour is a characteristic quantal

effect that goes beyond the Thomas Fermi approximation. What we want to show in the

following is that these oscillations can be interpreted using very simple ( and classical )

ideas, and that the analogy between classical and quantal transforms goes much further

than the mere Thomas Fermi approximation. For simplicity we will deal only with one

dimensional systems, beginning with one particle and going from this simple case to more

involved ones. This is not a merely academic case : see for instance the analysis of time

frequency distribution for electromagnetic waves [14].

JU One Dimensional Systems

a) One particle

We begin with a single plane wave:

4>f w (x) = —=€-** (11)
V2?r

whose Wigner transform is:



Next we consider the superposition of two plane waves with equal and opposite momenta:

<j>2P.w.(x) = Nsinkx (13)

, and for simplicity we fix the normalization setting N=I. Then

/ap...(c,p) = £(*(£ - *) + *(£ + *) - 2«w(2fcg)«(£)) (U)

If the superposition is due to reflection on an infinite wall at x= O

<j>T(x) = sinkxO(x), (15)

where O is the Heaviside function. The Wigner transform is

Mq, P) = q(Jo(2q(^ ~k))+ y0(29(| + *)) - 2cos(2qk)j0(2q^))e(q) (16)

It is seen that /p.«,.(g,p) has precisely the form that one would expect from the classical

analogy : a state with well defined momentum, fefc, and which is just the delta function

in eq.(12). Similarly it is easy to check that for a state with well defined position, i,

the Wigner transform is just 6(q — x) .The next example, fap.w., shows that superposing

two plane waves gives again something that has a classical analog: the delta functions at

p = ±hk , but also an additional term due to genuine interferences : is has zero width in

momentum, at p=0, and oscillates in g with wavelength A = n/k. This a characteristic

quantal signature without classical analog. It will be apparent later that a term of this kind

is always present in all the Wigner transforms of bound orbitals. The reflecting potential

considered hi the third example has an additional effect not present in the previous cases:

the particle is confined to the right of the wall and due to this what are being superposed

are no more states with well defined momenta, ±Hk. This shows up in fr in the replacement

of the delta distribution by spherical Bessel functions. (It is easy to show from eq.(16) that

one recovers eq (14) when q —» oo). These are still peaked at the classical values of the

momenta, but now the distribution is broadened in momentum. A simple estimate of the

width, Ap, of the peaks is given by the distance between the maximum and the first zero

of the Bessel function (Rayleigh critérium). For the three peaks the result is the same :



(17)

In addition the height of these peaks is finite. It is now:

(18)

Eqs. (17) and (18) show that at q=0 the effect of the wall is maximal: the peaks disappear

both because their height vanishes and because their width tends to infinity. However,

going away from the wall the classical image recovers its validity. Thinking in classical

terms (no interferences) one would expect that since in (j>r the flux of incoming particles (

and that of reflected ones ) is independent of x, the probability to find one of these at a

given point, as given by /r, should also be independent of q. Measuring that probability by

the /rtmai given in (18) this appears not to be so. However a better estimate of the flux of

incoming particles has to take into account the broadening of the peak. To do this in the

simplest way we take the product Ap./r,mai and then indeed recover |(l - Jo(^)) which

becomes q- independent far away from the wall.

We consider now the infinite square well potential. A bound state in this potential can

be viewed as a standing wave i.e.: a plane wave bouncing back and forth from each wall,

with a wavelength fixed by the requirement of vanishing at the boundary. Its normalized

wave function can be written:

4>a.w.(x) = J -sin(knx)0(a - x)B(x) (19)

up to the 2/a normalization factor, the Wigner transform is again given by eq. (16) with

two differences: i)only the discrete values of A; are allowed :kn — nir/a, ii)eq. (16) holds

only for q < a/2, for q > a/2 one has to complete by symmetry around q = a/2; hence it

is a closest wall that determines the behaviour in p-space. Indeed to derived the desired

result, withouth lengthy calculation it is sufficient to start from the one wall model, put

the mirror at q = a/2 and keep only the wavefunctions which are left unchanged by the



mirror symmetry. The resulting Wigner transform is plotted in Fig. 2a for the m -3 orbit.

Note that the height of the peak ( for q < a/2 ) is given by eq. (18) but for p — kirn/a, i.e.

/r.mai = ^f(I ~ .?b(^p))j so that its linear behaviour is modulated by the Bessel function,

as can be seen on the figure.

The next step towards a more realistic potential is to replace the infinite walls by soft

ones. The resulting Wigner transforms are not analytic any more, but their new features

can be again understood using semiclassical and classical concepts. In the WKB method

it is assumed that when the variation of the potential is slow, the wavefunction of the n-th

orbital can be locally approximated by a plane wave so that to each point ,1 , one can

associate a local momentum , p(x), given by

pn(x) = ±^2m(En - V(x)) (20)

where En is the eigenenergy of the level. For the square well this prescription gives the two

momenta , ±Hmr/a, as expected.

Next we consider a potential with the surface more diffuse, as the case of the stretched

harmonic oscillator defined in ref.[9] as:

O, if O < x< a;
(21)

1 9 / \ n . ~ \ /
z-a , if x > a

and symmetric for negative x. Note that this potential has two well known limiting cases:

the infinite square well (w — * oo) and the harmonic oscillator (a — > O). In Fig. 2b we show

the Wigner transform for the n=8 orbit of the SHO potential. In this case, a/fr/,0 » 1

(frfto = y ̂ j), and the SHO potential can be well approximated by the infinite square well

with the same a. As it is expected the two Wigner transform are very similar, and the

most important features of Fig 2b can be understood from (16). Nevertheless some changes

appear due to the surface diffuseness: i) due to the added attraction, the energies, En, are

lower than those of the infinite square well, and this decreases the local momentum for all

x, ii) the wavefunction does not vanish when |i| > a, and at these large values of x one

expects from (20) to find fen's decreasing towards zero at the classical turning points. These



features can be seen in Fig. 2b. Varying the values of few in (21) the role of the surface

diffuseness can be very easily studied in this model. As it is shown in [réf. 10] the bumps of

the Wigner transform are more pronounced for small values of the surface diffuseness. The

position of the maximum value coincides with the prediction of the local momentum (20)

only for a/6/,0 3> 1. When a/6/,0 — *• O (SHO — > HO) the position of the quantal maxima is

shifted with respect to the semiclassical prediction (20). AJ shown by Berry [ll] this general

feature of the Wigner transform can be understood using the WKB approach for f ( q , p ) .

In this approach /(<?,?) is given by the Airy function. In the case of the HO potential and

for the values of p and q near of the classical trajectory ^- = 2l^Mft "*" 2IJ?" = n + 1/2, the

Wigner transform reads:

o2/3

/nrjfB(p,ï) = (n + 1/2)1/3^'KW2 - (2n + l))(2u + 1)-I/3] (22)

Note that the classical trajectory does not correspond to the maximum of the Airy func-

tion which its not reached for the argument equal to zero (corresponding to the classical

trajectory) but for the argument equal to -1. One can recover the classical trajectory in

the limit ft = O, using the property:

ton. Ai(j:)= 6(x) (23)

and this delta function is peaked for values of p and q given by eq. (20) .

As an illustration we have calculated the exact [6] and WKB Wigner transforms for the

6th level of the H.O. potential (see fig. 3), the classical trajectory corresponds to h0 = 22,

near this value fw KB(P, q) is a very accurate approximation to the quantal result. As it is

shown in Table I the position of the outer quantal maximum is fairly well reproduced by

the WKB approach even for small values of n.

b) N particles

In fig. (4) we show the Wigner Transform for N occupied levels for the infinite square

well potential. From eq (6) it is clear that for a Slater determinant each orbital contributes

additively to the total Wigner Transform. It can be checked that each of the sucessive
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valleys and ridges in f ( q , p ) as one goes from the center (q = 0,p = O) to the surface is due

to the filling of a new orbit.

In order to get insight into the N fermions problem, let us study the infinite and the

semi-infinite system case. In the infinite system / is g-independent and given by

f (9,P)=O(IfF- |D (24)

where kF = rrp is the Fermi momentum (p = limjv-.ooa-.oo ^)- The limiting case of the half

infinite system can be found starting from the Wigner transform for the infinite square well

. Adding over infinite levels, taking a —> co with p constant, we find from eq. (16)

sint 1 . .2pq^

Eq. (25) is plotted in fig. 5. The similarity between figs. 4 and 5 suggests that some

semiclassical approaches developped for the half infinite systems [12] can be useful also for

one dimensional finite systems. As already noticed by Ayachi et al. [13] the oscillations at

p = 0 remain with period ir/kF and are not damped even far away from the wall. In the

limiting case qkF » 1 we can understand this behaviour analytically. Starting from (25)

we find:

f ( q , p ) = 6(kF- | f | ) - 26(^)sinkFq (26)
n n

The first term of this expression is just that of the infinite matter and the second term is

responsible for the oscillatory behaviour at p = O.

IV. Concluding Remarks

It is possible to understand the gross features of the Wigner transform using the square well

potential and semiclassical models . If the potential is approximately constant over a long

range (system with saturation) the square well potential allows to understand analytically

the most important features of the Wigner transform. In the other cases the most important

features can be understood making the WKB approximation, and the classical trajectory

11



is only recovered for ft = O. The half infinite limit can be reached adding over infinite shells

with the constraint p = constant, and in this case the oscillations at p — O remain.

This work has been financed by grants from DGICYT (PB-87-0311 and PS-88-0045)

and by the exchange programs between the French and Spanish governments.
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Figure Captions

Fig. 1 Quantal Wigner Transform for 40Ca obtained with the Woods Saxon potential . For

comparison we also show the prediction of the Thomas Fermi model. V0 = -55MeV1

R0 = l.2Al'3fm and a0 = .50/m.

Fig. 2 a) Wigner Transform for the 8*ft level of the infinite square well potential (a = 8.5/m).

b)For comparison we also show /(ç, p) for the same level of the SHO well with the

same value of a.

Fig. 3 Comparison between the quantal (solid line) and the WKB (dotted line) Wigner

Transforms as a function of h0 for the 6th level of the H.O. potential.

Fig. 4 f ( q , p) for 8 occupied levels of the infinite square well potential (the value of a is the

same of Fig. 2).

Fig. 5 Wigner Function truncated at q= 12 fm of the half infinite potential for kp =

1.12/m-1.

Table Caption

Table 1 Values of ho corresponding to the maxima of the Wigner transform given by the

WKB and quantal prescription for the first five levels of the H.O.. For comparison

the position of the classical trajectory is shown in the third column.
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TABLE I

Q.

O

1

2

3

4

5

Ouantal

O

3

6,45

10,04

13,70

17,41

WKB

O

3,12

6,58

10,17

13,84

17,55

Classical

2

6

10

14

18

22
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