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Abstract

In heavy ion collisions it has been possible to obtain composite systems at
rather high excitation energies corresponding to temperatures of several MeV,
The theoretical studies of these systems are based on concepts borrowed from
thermodynamics or statistical physics, such as the temperature.

In these lectures, we present the concepts of statistical physics which are in-
volved in the physics of heavy ion as they are produced nowadays in the laboratory
and also during the final stage of a supernova collapse. We do not attempt to de-
scribe the reaction mechaunisms which yield such nuclear systems nor their decay
by evaporation or fragmentation. We shall only study their static properties.

The content of these lectures is organized in four main sections. The first one
gives the basic features of statistical physics and thermodynamics necessary to un-
derstand quantum mechanics at finite temperature. In the second one, we present
a study of the liquid-gas phase transition in nuclear physics. A phenomenological
approach of the stability of hot nuclei follows. The microscopic point of view is
proposed in the third part. Starting from the basic concepts derived in the first
part, it provides a description of excited or hot nuclei which confirms the quali-
tative results of the second part. Furthermore it gives a full description of most
properties of these nuclei as a function of temperature. Finally in the last part,
a microscopic derivation of the equation of state of nuclear matter is proposed to
study the collapse of a supernova core.
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1. INTRODUCTION TO STATISTICAL PHYSICS

In this first part, we give an overlook of the concepts we will need subsequently.
First we recall the definition and properties of density operators. Then we introduce
the statistical entropy as a measure of the missing information. Taking into account
the knowledge of the system one has, the appropriate choice of the density operator is
done by mean of a variational method with suitable Lagrange multipliers. This pro-
cedure yields the equilibrium density of a system together with its partition function.
According to the choice of the physical variables, we define the canonical and grand
canonical ensemble. The connection with thermodynamics is briefly given without
detailed justifications, only the relation between the Lagrange multiplier associated
with the energy and the temperature is discussed. Finally, several thermodynamical
potentials are defined together with the Legendre transforms which allow to express
each of them in term of another one.

For further discussion, it will be fruitful to refer to the chapter 2 to 5 of the book
by R. Balian: “Du microscopique au macroscopique” 1).

1.1. STATISTICAL MIXTURE -~ DENSITY OPERATORS

A physical state of a system is usually represented by a ket |¥) of a Hilbert space
X associated to the quantum system. We shall assume below that the dimension of
this Hilbert space is finite to avoid mathematical complications. The experimental
measure of a physical quantity A described by an operator A is the average of A taken
over the state |¥): (A) = (¥|A|¥). The state of the system is then known exactly,
this is a pure state.

We want to describe more complex, and richer, cases where the actual state of
the system is not well known. In such case, the only thing we may obtain is the
probability ¢, that the state is described by a ket |¥,). As for any probability law,
the ¢, must be non negative real numbers and their sum must be 1. The system
is represented by the statistical mixture of states: {gy;|¥,)}. When the system is
in a pure state |¥,) the measure of the observable A is given by (¥,|A |¥)), as the
probability of this ket is ¢, one can see that the mean value of A will be:

(A)=Y o (W]dj®) . (1.1)

We have assumed the kets |¥,) normalized to unity, the above result still holds when
they are not orthogonal. The density operator D associated to the statistical mixture
{qx; l‘I’A)} is defined as:

D =Y ) (). (1.2)
A
Thus equation (1.1) takes the from:
(A) =te(DA) . (1.3)

This result shows that only D is needed to calculate (A ). All the relevant information
concerning the quantum system is contained in the density operator.
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These operators satisfy the following properties:

£) D= DI hermiticity (gareal) )

W) (D)= 1 Era=1) (1.4)
i) (D)D) > o0 non negative (g» >0, VA)

We have listed in parenthesis the properties of gx which imply those of D. Conversely, one
can show that any operator satisfying these properties can be viewed as a density operator
represented by a statistical mixture which can be constructed in principle. ‘

Up to now we have assumed that the number of particles is given. If one only knows its
mean value, it is still possible to generalize the above results by considering the Fock space
which is the direct sum of all the Hilbert spaces having a given number of particles. For
any observable A which conserves the particle number, [4, N] = 0 (where N is the particle
number operator), the measure of A is still given by (1.3).

1.2. STATISTICAL ENTROPY

We want now to determine for a given quantum system its density operator as its
knowledge allows to calculate all mean values of observable. For a system which is not
exactly known one has to define a quantitative measure of the missing information,
or equivalently an estimation of the amount of disorder. This amount of missing
information is measured from the density operator D by the statistical entropy S:

S(D)=-ktr(DigD) , (1.5)
where k is the Boltzmann constant.

When D is given by its spectral representation (see eq. 1.2), the entropy becomes:

S(D) = -k 3 (i lgp:)

The statistical entropy defined according to (1.5) satisfies some elementary properties which
justifies it as a measure of the dis . .er: '

1. It remains invariant under a unitary transform which does not modify the system:
the disorder does not increase nor decrease.

2. The statistical entropy reaches a minimum of value zero for a pure state, and con-
versely. No disorder and zero statistical entropy are equivalent statements.

3. The statistical entropy is maximum when all events p; are equiprobable. For N such
equiprobable events, p; = 1/N and S = klg N. This result shows that the entropy is
a valid measure of the disorder. Equiprobable events correspond to a state for which
the disorder reaches a maximum: there is no good physical reason to choose any state
instead of the other.

For a system built from two sub-systems a et 5, the Hilbert space of the total system

is the tensorial product of the Hilbert spaces ¥* and ¥® of the sub-systems. Let D be the
- density operator of the total system and A an observable defined by an operator A, acting
only in ¥, To calculate its mean value, T'r (DA,), one can take its trace in the space »°
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where A, does not act and define: D, = tr; (D). As D, satisfies the properties (1.4), it can
be viewed as the density operator of the sub-system a attached to ¥%. Similarly, one can
define the density operator D by taking the trace of D in ¥°.

When both sub-systems are statistically independent, D is equal to the tensorial product
D, ® Dy of the density operators of the sub-systems. The total statistical entropy is then
exactly the sum of the entropies calculated in each sub-space: S(D) = S(D,) + S(Ds).
When this is the case, there is no correlations and no information from one of the sub-
systems can teach us something about the other.

On the other hand, when the sub-systems a and & are correlated, D contains more infor-
mations than D, et Dy altogether. The knowledge of the total system, with its correlations,
is more accurate than the sole knowledge of its two parts: S(D) < S(D ) + S(Ds). The
density operator D is no longer equal to the tensorial product D, ® D;.

The last property is a “concavity” property which means that mixing two states of a
given system in a unique one increases the disorder. Let us define two states by their density
operators Dy and D;. Let 1 and p2 be the weighting factors of the mixing (0 < p1,u2 < 1
et py + pz = 1) then,

S(p1D1 + p2Dz) > S(prDn) + S(n2D2)
Finally the variation of S with respect to D is:
§S(D) = ~k te(6D(lgD+1) . (1.6)

1.3. CHOICE OF THE DENSITY OPERATOR

Up to now we have formally defined a density operator and given an estimation
of the disorder through the entropy. The next step is to calculate D, taking into
account our knowledge of the system.

When nothing is known, one has to count the number of pure states as they
are equiprobable. For N such available states, the entropy is maximum and equal
to k lg N. For states at least partly known, one must take explicitly into account all
the available information. An “exact” one will be included in the construction of the
Hilbert space. For instance, if the particle number N is exactly known, it is natural to
choose the Hilbert space ¥V built on the eigenstates of the particle number operator
with the eigenvalue N. In other cases the information is only known by mean values,
e.g. the energy U = tr(DA ). The most usual cases are:

1. N et U are exactly known, the statistical ensemble of these states is the micro-
canonical ensemble.

2. N is known exactly, U by its mean value. This is the canonical ensemble.

3. Finally when both N and U are known in average, one defines the grand canon-
ical ensemble.

In what follows, we assume that exactly known quantities are taken care of by
an appropriate definition of the Hilbert space. Let us assume more genera.lly that we
know the mean values of an arbitrary number of observables A;:

tr(DA;) = (4;) . (1.7)



We want to find the statistical equilibrium distribution realized by the density operator
D, taking into account the constraints (1.7). For that purpose, we shall use the fact that
the entropy is maximum when the disorder is maximum. To generalize this concept while
taking the constraints into account, one postulates that the equilibrium distribution is such
that the entropy is maximal and the constraints are fulfilled. The explicit construction of
D is achieved with an additional constraint which imposes that the trace of D is unity
(see (1.4)). The variational method of the Lagrange multipliers results in the search of the
stationary values of:

- te{DIg D) - E A te(DA;) — Ao Tr (D)

Given the constraints on the mean values, the resolution of this problem yields
the density operator at equilibrium:

D= ( Z,\A) , (1.8)

This expression is called Boltzmann-Gibbs distribution. The corresponding entropy
is strictly larger than that obtained for any other density operator fulfilling the con-
straints (1.7): this extremurn of S is indeed a maximum. The normalization condition
of D determines the partition function Z of the system as a function of the Lagrange
multipliers A;:

Z =tr (exp( -5 /\,-]i,-)) . (1.9)
i
Finally, the conditions (1.7) give the A; as solutions of the equations:

o

oy 8200 = ~(di) . (1.10)

By a simple calculation, the equilibrium entropy can be related to the Boltzmann-anbs
distribution:

S(DYy=klgZ+kd> N{A) (1.11)
or equivalently, because of {1.10):

S=klgZ - Z,\ (kng) . (1.12)

For a small displacement of the equilibrium associated to an infinitesimal variation of
the {A; ), and thus of the A; which are related, one has:

d2) = ¥ 55 (620N = - Tl ax

and, due to (1.12)
ds = kZA;d(zi;) . (1.13)



These last two relations illustrate that the natural variables of the partition function are
the Lagrange parameters, whereas for the entropy they are the mean values {A;). Taking
these mean values as variables, one gets from (1.13):

as
3(4;)
The transformation (1.12) is a Legendre transformation which connects klg Z, function of

the A;, to the entropy S, function of the (A; ) conjugate variables of the ;. The inverse
transformation, which is also a Legendre transformation, reads as:

=kX . (1.14)

klgZ=58-~ Z(A.)a(A') . (1.15)

In the canonical ensemble, the particle number N and the volume Q) are given
exactly. The energy is given in average, U = tr(DI? ~), where Hpy is the hamiltonian in
the Hilbert space of N particles. The Lagrange parameter associated is traditionaliy
called 8.

In the grand canonical ensemble, both the energy U and the particle number N
are given in average. The Lagrange parameters associated to U and N are 8 and —a.
The underneath table summarizes the expressions of D, Z and S.

B=few(—PHn) | D=f exp(=pH + oF)
Zc(B,N)=trexp(— BHy) | Z5(c, B)=tr (exp(— aﬁ+ﬂﬁ))
S(U)=klg Zc + kBU | S(U, N)=klg Zc + kBU — kaN

Finally let us give the relations between U and N, mean values of observables, and g
and a, relations derived from (1.10) and (1.14)

7 7
3ﬂ ngG =-U N 'a—a ngG =N N (116)
and the inverse relations:
198 1.98
o ——— — s T .17
koU g ! kAN (1.17)

In the grand canonical ensemble, the generalization to the case of several species of
particles can be done without particular difficulties. Starting from the general expres-
sions (1.8) to (1.15), one introduces as many particle number operators N; as needed with
corresponding Lagrange multipliers o;.

1.4. RELATION WITH THERMODYNAMICS - TEMPERATURE

In the preceding section we have constructed the Boltzmann-Gibbs equilibrium
distribution. Our aim is now to make the connection with thermodynamical con-
cepts. In what follows, we shall only introduce the temperature and the different
thermodynamical potentials.



Let us work in the canonical ensemble. Let a and b be two independent systems at
thermal equilibrium. They are characterized by Lagrange parameters 8, et 8. As they are
thermally isolated, there are no correlations between themselves, We bring them into con-
tact by means of a perturbation small enough to be neglected in front of the hamiltonians.
Its role is to allow energy transfer between a and b without perturbing the total system so
that the total energy remains constant. As a result, the new density operator depends upon
a single Lagrange parameter §, as there is a unique constraint on the total energy. This
thermal contact yields thus the equality of 8, and g,. The Lagrange parameter g plays
the role of a temperature. The new energy partition between a and b is obtained by cal-
culating the mean values of the hamiltonians of the sub-systems with the new equilibrium
distribution.

To achieve the relationship between § and thc temperature, we make use of the fact
that the energy U is a decreasing function of 8, a result we have not proven but which
comes from the entropy concavity (see section 1.2). As the total energy is conserved, the
equilibrium is realized for a value of # lying between 3, and §;. The energy of the colder
system increases at the expenses of the other, simultaneously, its parameter § decreases: 8
varies as the inverse of a temperature.

Under an infinitesimal transformation of an isolated system, we can associate the part
dQ of the variation dU of U coming from the variation of D to heat (no variation of &).
Similarly an infinitesimal variation of work dW can be related to the variation of H itself.
Thus we have dU = d@ + dW with:

dQ = tr(#dD) (1.18)
AW = w(DdH) . (1.19)

For a system which remains at thermal equilibrium during a transformation, the heat
variation can be related to *he entropy by:

dS = kB tr(HdD) = k8dQ. (1.20)

The comparison of this result with the relation dS = dQ/T between the entropy and
heat variations during a quasi-static transformation of a system at thermal equilibrium
shows that one can identify g with the inverse of the temperature: § = 1/kT. We shall
not elaborate further in these lectures on the correspondence between the microscopical
scale we used to introduce the Boltzmann-Gibbs distribution and the macroscopical scale
of thermodynamics.

1.5. THERMODYNAMICAL POTENTIALS

A thermodynamical potential is a function of some variables which characterizes
a system, this function presents an extremum at equilibrium and its partial derivatives
have simple physical interpretations. The entropy is an example of such thermody-
namical potential, it depends upon the internal energy U, the particle number N,
and other possible variables z,, such as the volume V' or an external field. The total
differential of S is (see equations (1.13), (1.16) et (1.17)):

dS =kBdU — kadN — kB X,dza
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It is written in terms of pairs of conjugate variables: U and kg, N and —kq,...

In thermodynamics, one distinguishes extensive variables which are proportional
to the volume at the macroscopic limit, from intensive variables which do not depend
upon it. The variables U and N are extensive, the conjugate variables k8 = 1/T and
—ko are intensive,

Most of the time the internal energy U(S, N, z,) is used instead of the entropy
S(U, N, z,). Its total differential is dU = T'dS + g dN + =, ZodZs. The internal
energy is useful for adiabatic transformations. The conjugate variable of N, & = /3,
is the chemical potential. One can also use the temperature T rather than the entropy
as variable. Then an appropriate Legendre transformation gives the free energy:

ou
F(T,N,.'ca)=U(S,N,za)—sﬁ=U—TS , (1.21)
The natural variables of F are T =1/ k8, N and the volume. They are these of the
canonical ensemble. The free energy is relevant for the study of quasi-static isothermal
transformations. If one of the z, is the volume, the work received by the system for
a variation dV' of the volume is, according (1.19):

LOH
aw = trDWdV =-PdVv

where the pressure P is the conjugate variable to the volume:

_9F
v

The pressure, as a function of the temperature, of the particle number and of the
volume is called the equation of state of the system. The quantity —P dV represents
the amount of work due to the pressure forces for a variation of the volume, similarly
pdN plays the role of a work associated to a variation of the particle number. It can
be viewed as the quantity of energy received by a system when one adds or removes
one particle. In nuclear physics, it is the opposite of the separation energy in the limit
of low temperature. For exchange of particles at constant temperature, it is easier to
use the chemical potential x = a/f rather than the Lagrange parameter c.

When T and p are chosen as variables, one introduces the grand potential A by
means of a double Legendre transformation on the internal energy:

ou U

A(T,u,za) =U(S’N’z°‘)_55§—NW =U—TS—[LN=F—#N

P= (1.22)

The natural Yariables, T = 1/kf8, 4,V - - are those of the grand canonical ensemble.
The equation of state (1.22) is given by the parametric representation:

P =-3A(T,pV)/ 0V ,

N =-0A(T,p,V)/du



The grand potential depends upon only one extensive variable, namely the vol-

ume, therefore ( )
A(T,u,V) 04

v av
For a homogeneous medium, the pressure is equal to minus the grand potential per
unit volume:

(1.23)

P=—AlV . O aze)

The entropy maximization, which is our starting point, amounts to the minimiza-~
tion either of F or A. The underneath table summarizes the definitions and properties
of the free energy and the grand potential, as well as the variables upon which these
quantities depend:

F(T,N,V) =U-TS A(T,p,V) =F—uN
= —kTlgZ.(3,N,V) = —kT lIg Zg(8,c, V)
dr =-SdT +pdN - P4V dA =-8dT -Ndp —-PdV
P =-9F[dV P = —8A[0V = -A[V

To use only the intensive variables T', 4 and P to define a thermodynamicz!|
potential, one has to perform the Legendre transformation: A — V 3A/3V. However
one gets an identically zero potential according to (1.23). The differential form of this
“result” reads:

SdT —VdP+Ndp =0 . (1.25)

This relation is the Gtbbs-Duhem relation, It tells us that to characterize a fluid with
three variables, at least one of them must be extensive. We shall encounter a simplified
form of this relation in the following section for a homogeneous infinite system.

As an exercise, it is suggested to calculate the partition function, the internal energy and
the entropy of a system composed of N bosons occupying either one of two levels separated
by an energy . Show that: for 8 — oo, one obtain the ground state of the system (U ‘=0,
S = 0); for 8 — 0, the internal energy is: U = — N¢/2 and the disorder reaches a maximum:
S = lg(N + 1); finally if # decreases and goes to —oo, then: U — Ne and S — 0: one gets
again a pure state where all bosons have been excited. In such a case — oaly two degrees of
freedom — it is difficult to speak of temperature, (which becomes “negative”!). We are far
away from the macroscopic limit necessary to use thermodynamical concepts.

It is also instructive to study the system made of a single particle in an oscillator well
(one patticle, but an infinite number of degrees of freedom).



2. PHASE TRANSITION - STABILITY OF HOT NUCLEI

In this second part, we study the stability of hot nuclei which we describe as the
coexistence limi* of two phases, a gas and a liquid one. After a short introduction
recalling the physical context we derive the liquid-gas coexistence equations from an
equation of state for infinite nuclear matter. Finally we show the specificity of the
nuclear problem characterized by a small number of particles and a strong coulomb

field.

2.1. THE SITUATION IN HEAVY ION PHYSICS

During a collision between heavy ions, a large part of the reaction cross section
is due to the formation of a composite system. The experimental determination of
this fraction requires an accurate selection of the different events 2'7), and has given
evidences for the compound nucleus formation up to rather high excitation energies
corresponding to temperatures of the order of 5 MeV. The study of the stability limit
of these hot nuclei will gives new insight on the properties of hot nuclear matter.

The possible coexistence of two distinct phases in nuclear matter has been pointed

out in numerous theoretical works 8'13). These studies are based on the phase diagram
of nuclear matter isotherms which have a typical van der Waals shape with two stable
regions corresponding to a dense phase (liquid) and a more dilute one (gas). As
temperature increases, these isotherms are deformed, and the distinction between the
two phases disappears at a critical temperature T which has been interpreted as the
temperature limit for the stability of the nucleus 14'19).
Microscopic calculations 20'21) which will be presented in the next part have shown
that a correct description of a compound nucleus within statistical physics implies the
consideration of a nucleus in equilibrium with a surrounding gas built from the evaporated
particles. This vapor comes from unbound components of the nuclear wave function due
to open decay channels. The equilibrium between the nucleus and the gas is interpreted as
the coexistence of two distinct phases of nuclear matter. Matter within the nucleus is in a
liquid dense phase whereas the external vapor is in a gaseous phase.

We introduce below a phenomenological model 22’23) to describe the equilibrium
of a nucleus immersed in its own saturating vapor. This model reproduces qualita-
tively the microscopical results 20’21). Furthermore it gives an adequate ground to
discuss the importance of the nuclear surface and the cha.rzge. It is a liquid drop model
at finite temperature similar to that used in astrophysics 4"26). One replaces the nu-
cleus by a drop of nuclear matter with an abrupt surface with a constant density and
a uniform temperature. The pressure inside is given by the equation of state of the
infinite nuclear matter of the liquid phase. Outside, the vapor is described by the
equation of state of the infinite nuclear matter of the gaseous phase.
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2.2. LIQUID-GAS COEXISTENCE EQUATIONS

Before introducing the nuclear equation of state, let us recall how to describe a
liquid-gas equilibrium from the concepts developed in the first part of these lectures.

Let us consider a container of volume V' with N particles at a thermal equilibrium
defined by the temperature T. We suppose that N,, of them are condense in a liquid
drop within a volume V,,, the remaining N, = N — N, being the surrounding gaseous
phase in the volume V, = V — V,,. The variables of this problem are the volume, the
temperature and the particle number, they are these of the canonical ensemble. It is
thus natural to write the free energy of the system as the sum of two terms,

F(T,V,N;V,,Np) = F,(T,V,,N,) + F(T,V -V,,N—-N,). , (2.1)

where F, and F, are respectively the free energy of the liquid drop (or the nucleus)
and of the vapor. The two additional variables N,, and V, detzrmine the partition
of the particles between the two phases in the container, their values result from the
minimization of the free energy, which yields the standard coexistence equations:

dF[3V, =0 = P,=-0F,/dV, = —-0F,[/dV,=P,
8F[dN,=0 = pu,=-3F,/dN,=—3F,[dN, =,

The first one expresses the equality of the pressures across the liquid-gas interface. The
second gives a similar condition for the chemical potentials: the same amount of energy. is
required to transfer a particle from one phase to the other. These two reasonable conditions
are thus based on the principle of maximal entropy.

For the time being, we include no surface tension and no coulomb effect. The two
phases are homogeneous so that their free energies are proportional to their volume. For
the nucleus phase one has: Fou(T, V5, Nn) = Vi fon(T,pn), where fon is the liquid free
energy per unit volume at the density p, = N,/V;,. The subscript “” means the absence
of surface tension and charge. The chemical potential and the pressure are:

9Fn -V 9fon pn . 9 fon

(2.2)

= — = 2.3
Hon E1A n 3pm 0N, EPR ’ ( )
oF a d .
Pon = — a‘;m —fon = Vn a{:: a;" Pn on — fon ’ (2'4)

They depend only upon temperature and density. The derivation of the pressure with
respect to the density yields:
0P, Opton 9 fon Otion

= —_— — 2-5
3pn Bon + pn EPR 3n Pn EPR ’ (2.5)

which is a simplified version of the Gibbs-Duhem relation (1.25) for an homogeneous
medium. For the gaseous phase one has similarly: F,, = V, f;y. The relations {2.3)
and (2.4) are still correct for the chemical potential p,y and for the pressure FPp,. The
coexistence equations read as:

Pop = "(fon ~Pn I‘on) = ‘(fou - Py I‘oo) = Poy ’

2.6
Bon = afon/apn afoo/apo = Hoy ( )

11
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Figure 1: Isotherms of the pressure calculated with the equation of state (2.7). Horizontal
lines at T = 12 and 15 MeV indicate the coexistence pl- eau between the liquid and the
gaseous phases in the absence of surface tension and coulomb effect.

2.3. EQUATION OF STATE - PHASE DIAGRAM

In order to solve the coexistence equations, one needs an equation of state. In-
stead of using a van der Waals equation to study the liquid-gas transition, we shall
work in the context of nuclear physics. It is possible to derive a nuclear equation
of state from an effective force of the Skyrme type. This has been done and yields
rather complicated expressions. We use below a simplified version 11) which gives
qualitatively correct results and at the same time allows a better understanding of
the underlying physics:

P,(T,p) = Tp —~ a;(T)p* + as(1 + 0)p**° , (2.7)

1 2rk? P
a(T) =8 = gepo(-) T2

The chemical potentials u,n and g,y are calculated up to an additive constant
#0(T) from the Gibbs-Duhem relation:

&(T,p) = u(T, p) — 1o(T) = Tlg(p) — 2a!(T)p + as(2 + 5)0*** (2.8)

12
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Figure 2: Pressure and chemical potential for a temperature T < T¢ as a function of the
density p. The solution of the coexistence equations is indicated by the dashed line.

In the definition of the pressure, m is the nucleon mass and g = 4 the spin-isospin
degeneracy. The parameter o determines the stiffness of the equation of state; together
with a, and a3, it is related to infinite nuclear matter properties 11). This equation of state
results from an approximation of low density and high temperature.

The isotherms calculated with this equation of state are shown on figure 1. They
have a typical van der Waals shape with a critical point at T¢ = 17.22 MeV for
pe = 0.057 fm~3 and P. = 0.27 MeV fm™3. Below the critical temperature, there are
two stable regions where the derivative of the pressure with respect to p is positive;
the vapor corresponds to the low density region, the liquid to the high density one.
These two phases are separated by an unphysical region where the derivative 3P [/dp
is negative. '

As equation (2.6) tells us that the chemical potentials of the two phases are equal,
the exact determination of u,(T) is useless. Figure 2 shows an example of chemical
potential at a temperature below the critical one (T' < T¢). Because of the Gibbs-
Duhem relation, the minima and maxima of u(p) and P(p) correspond to each other.
The liquid phase, P.,(p,) and pon(ps), corresponds to densities p, > p. (minimurn of
P and p), whereas the gaseous phase, P,,(p,) and pou(ps), corresponds to densities
pv < p1 (maximum of P and p).
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The coexistence equations can be solved by iteration, they give the two densities p, and
#n, the pressure F, and the equilibrium chemical potential u,. When drawn in the (P, u)
plane (see fig. 3), the isotherm has a typical shape with two cusps corresponding to the
extrema of P(p) and u(p). The gaseous phase corresponds to the almost vertical branch, the
unphysical region lies in between the two cusps and the liquid phase is represented by the
last branch. This representation provides a nice way of solving graphically the coexistence
equations.

The Maxwell construction detzrmines the vaporization plateau by the law which says
that the algebraic sum of the areas comprised between the plateau and the pressure isotherm,
as a function of the volume, is zero. One can verify this law from the Gibbs-Duhem relation
written under the form (2.5) of the relation. One can also show that when the isotherm
is drawn as a function of the density, it is the algebraic sum of the areas comprised be-
tween the plateau and the chemical potential isotherm which is zero! (the hatched areas on
figure 2).

2.4. SURFACE TENSION - COULOMB INTERACTION

We consider now the nucleus as a liquid drop having a uniform charge and to
the free energy, we add a surface term and the coulomb energy of the drop. The
contribution of the nucleus to the total free energy (2.1) becomes:

Fn(T, Vn’ Nn) = Fon(Ta Vna Nn) + Fnur!(Ta Sn) + Fcoul(Vn)

For a sphere of radius R, with a uniform charge Z and a surface tension a(T) which
depends upon temperature, these terms are:

Fours(T, S = a(T) 47 RZ , 2.9
f n .

Fou(Va) =(3/4)Z2%¢/ R, . (2.10)

A detailed study of the surface tension (7") has been done in ref. 25

we present below, the simpler form has been used 27):

3T T \3/2
«m=e(1437) (1-5)

where T¢ is' the critical temperature. At zero temperature, o, = 18/ 47 r? = 1.14 MeV
fm~2, this is the usual value found in semi-empirical mass formulae with r, = 1.12 fm.
As we are mainly interested in the qualitative origin of the nucleus instability, we shall
not introduce separately protons and neutrons. The charge Z of the nucleus is defined by
Z = zA where z is a fixed parameter to be determined for each nucleus.

). In the results

With these additional terms, the coexistence equations becomes:
Pon(T,pn) + 6 Pu(T, 00, 4) = Pou(T,p0) (2.11)
ton(T20) + 6n(Ts pny A) = po(Ty00)
with,
6Py = Pou+ Pury =470,/ 34)3 (2%, /54 - 2o(T)]

2.12
Spn = Heout = (47p,/ 3A)1/ Y6zZ¢e%/5 (2.12)
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Figure 3: Isotherms T = 5 MeV, T = 6.57 MeV and T = 8 MeV. The isotherms in.solid
line include infinite nuclear matter contribution only, these in dashed line take surface and

coulomb effects into account.

There is no surface tension contribution to the chemical potential. The coulomb repul-
sion induces a positive term to the pressure, contrary to the surface tension which reduces
the internal pressure. The pressure necessary to hold the nucleus stable is the result of
a balance between the surface tension which tends to bind the nucleus and the coulomb
repulsion. The coulomb term gives a modification of the chemical potential proportional to

the fraction z of protons inside the nucleus.

Figure 3 shows the isotherms T' = 5 MeV, T = 6.57 MeV and T = 8 MeV in
the plane (P,u) for the nucleus ®Ag. The solid lines represent the isotherms with
the three branches: vapor, unphysical and liquid. The coexistence point for infinite
nuclear matter is at the crossing of the liquid and the gas branches. The dashed
lines give the total pressure (P,, + 6P,) as a function of the total chemical potential
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Figure 4: Variation of T};,, along the valley of stability.

(#on + 6up). The intersection of these curves with the vapor vertical branches defines
the new solution of the coexistence equations (2.11). One observes that at a limiting
temperature T, (= 6.57Mev), this intersection reaches the border of the gas phase
and that there is no solution beyond this temperature.

The disappearance of the solution for T' > Ty, implies that there is no equilibrium
where the liquid and gaseous phases may coexist. At temperatures larger than T}, it
is no longer possible to equilibrate the internal pressure of a nucleus: an expansion out of
equilibrium will occur with charged particle emission or fragmentation of the nucleus 28'29).
This expansion will stop only when new equilibrium conditions will be matched at lower
temperatures for the fragments or the residual nucleus.

This model shows that there exists a limiting temperature which depends upon the
nucleus. This temperature is always lower than the critical temperature T¢. Figure 4
shows this dependence along the nuclear stability line approximated by the relation Z =
A/?2-0.3.10"2 A%/3, The value of T};m decreases with A, the decreasing rate being smaller
for larger A. This can be interpreted from the expressions (2.12) of the pressure and the
chemical potentials. The coulomb part P,y of § P, and &u,, increase with A, which implies
a lowering of the temperature at which nuclei become unstable.

2.5. SUMMARY

We have proposed a simple model to study the possible occurrence of a liquid-gas
phase transition for nuclei at high temperature. As a matter of fact we have observed
the existence of a limiting temperature at which the nucleus becomes unstable mainly
because of the coulomb repulsion. This limiting temperature T;;,, depends upon the
nuclear matter properties: equation of state and surface tension. In principle it is
possible to study this dependence by the measure of Tj;,, for different nuclei. The
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isospin has been taken care of in an approximate way, one should introduce explicitly
the neutron and proton contributions in the free energy. Such an improvement has
been done recently 30). In any case, this attempt remains qualitative as the matter
density of a nucleus is still approximated by a sharp distribution with an abrupt edge.

To conclude the second part of these lectures, let us make three comments.

1) The experimental signature of the coulomb instability is a sudden reduction
of the compound nucleus formation rate together with an increase of the emission
of unequilibrated particles. Fragmentation 2 ’31) is expected at temperatures higher
than Tim.

2) The question remains whether this coulomb instability can be associated to a
phase transition. For a nucleus enclosed in a finite box, the coulomb instability does
correspond to a first order phase transition toward a state where all the matter is
ejected and sticks to the surface of the box 21). Such a transition resembles the bubble-
nucleus transition found in the core of a supernova 26’3?') where the nuclear medium
is electrically neutral (see the last part of the lectures). However, it is irrelevant for
the physics of nuclear reactions.

3) Finally few words concerning other approaches. In ref. 11)’ finite size effects .
and the coulomb field are included directly in the equation of state for infinite nuclear
matter. This produces a lowering of the critical temperature T, itself. However, the
coulomb interaction is a long range force, its range is actually larger than the size of
the nucleus. It seems therefore not appropriate to include such a force in an equation
of state for an infinite medium. The separate treatment of the coulomb force that we
have proposed shows that there is indeed a instability which cannot be related to a
thermodynamical effect. It is more likely to be of a dynamical nature, rather than
coming from 2 modification of the critical temperature.

In another work 33) the coulomb force has been included separately, however the
nucleus is enclosed in a box without including open channels for particle emission. In
our approach, unbound single particle levels by which this emission occurs are included
through the external saturating vapor which matches adequately the nucleus. The
coulomb instability triggers when this matching is no longer possible. Finally, in
references 18) and 19), the coulomb force is apparently not included.
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3. MICROSCOPIC DESCRIPTION OF HOT NUCLEI

In this third part, our aim is to propose a completely microscopic version of
the description of hot nuclei. For that purpose we shall use the formalism developed
in the first part of these lectures for a system made of independent particles. The
hamiltonian contains only a one-body potential associated to a set of single particle
states. This first step toward a microscopic calculation allows the derivation of the
occupation numbers without having to deal with the full complexity of the two-body
forces. However, the difficulty coming from the presence of states in the continuum is
present and it will be possible to infer a method to take them into account properly.

To include a two-body force in the hamiltonian, we shall introduce the mean field
approximation before using the variational method described in the first part of the
lectures, this will lead to the Hartree-Fock equations at finite temperature. Properties
of nuclei as a function of temperature are calculated with a Skyrme effective two-body
interaction: root mean square radii, chemical potentials, entropy, charge and matter
density profile, life time and stability limit.

3.1. INDEPENDENT PARTICLE SYSTEM

Let us work in the grand canonical ensemble where both the energy and the
particle number are known by their mean values. The density operator reads as:

= (=BT —ui)} . (3.1)

The system consists of 1ndependent particles, its hamiltonian is a one—body operator
B = 3 € 7y, with fi; = a a;. The particle number operator is N = Y; fti. The a;
and a; obey the fermion anticommutation relations. The operator D becomes:

D= exp( Za,a"' a,) ,

with ¢ = B(¢; — i). One calculates the partition function in the Fock basis associated
to the hamiltonian H: Zg = [I; (1+ e *). The mean value f; of the occupation
number operator #; for a given state ¢ is given by:

. ad 1 1
fi=(fi) = ™ lgZ2¢ = T3 em = 15 ofaa
These occupation numbers are also called Fermi factors. As a function of the f;, the

grand potential is:

A

(32)

A=—kTlgZg=—kT ) lg(1+e™)=kT > lg(1-f) . (3.3)
i i
Similarly, the particle number, the internal energy and the entropy are:
N= (W) =% fi ,
E= (ﬁ ) = Ei El’fl' ’

S= (E-uN-A)/T =kX;:(fiei +1g(1-£))
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In the above expression of S, one can eliminate ¢; and the entropy takes its usual
form in terms of the Fermi factors:

S==k (ilgfit(-f)le-f) . (3.4)

The Fermi factors f; (3.2) lie between O and 1, they decrease with ¢;: higher energy
states are less occupied than low energy ones. In the limit of low temperature, «; goes to
infinity with the sign of ¢; — u. Hence, for states below u, f goes to 1, whereas for those
above, f goes to 0. In this limit, one recovers a pure state corresponding to the Slater
determinant built from the single particle states lying below the Fermi level, those above
remaining empty. One is also welcome to verify on the expression (3.4) that the entropy is
indeed O in the limit of zero temperature.

3.2. SYSTEM OF INTERACTING PARTICLES

Let us return now to the general case where the hamiltonian of the system con-
tains a two-body potential. In the grand canonical ensemble, the expression of the
density operator is still given by (3.1); however the hamiltonian reads as:

H=73 (ilt|j)af a; + %E(ij[V [kt) af af a; s
£J

This expression of D is far too complicated as it involves the exponential of a two-body
operator. We want to find an approximate expression for D, for that purpose, let us
return to the variational principle which has allowed us to derive the expression of D
by maximization of the entropy, or equivalently by minimization of the grand potential
A. The mean field approximation amounts to minimize A amongst a restricted class
of density operators defined as the exponential of one-body operators:

D, = El— exp (— Y oiaf a.-) , (3.5)

The form postulated for D, is identical to that obtained for one-body hamiltonian in
section 3.1. The results of this section are still valid insofar as they do not imply the relation
between «; and ¢;:

Z, = H.- (1 + e"‘") s
fi= (A'Als‘.) = -3(lg Z)/0c; =1 /(1 + %) , (36)
N = (ND) =3 ki ’
S= -kTr(Dlg D) = -k T;{filgfi+ (1~ £)lg(1 - )}
The internal energy E = T'r (H D) and the grand potential however are given by:
E =T, fi(lth)+3 Ty L5 (Vi) - G5V 1)} 6.7
A =EB-p%; i+ T Z; {filgfi+ (- fi)ls(1~- fi)} . (3.8)
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The minimization of A with respect to the parameters which ﬁenera.te the class
of trial density operators D, is described in the references 32) et ? ). The variation
with respect to the single particle states |1} yields to the Schrddinger equation:

hls) = eff) , (3.9)
where the one-body hamiltonian k is given by:
hij = (ilk|s) = Glels) + 3 i {Gk|V |ik) — GRIV |ks)} . (3-10)
k

We now minimize with respect to the «;. As the expression (3.6) defines f; as
a monotonic function of «; and as the grand potential deperds only upon f;, it is
simpler to minimize A4 with respect to f;, which yields: f; = 1/(1 + #l%~#) with
o; = Be; — u). We find thus a result quite similar to that of a one-body potential
(see section 3.1) for the potential & = T; ¢; a} a;.

There is however an essential difference as the one-body hamiltonian h is the solution
of the non-linear equations (3.9): the Hartree-Fock equations. This hamiltonian h is also
called the Hartree-Fock mean field. In the limit of zero temperature, one recovers the usual
Hartree-Fock equations.

Another difference lies in the calculation of the internal energy and of the grand potential
or of the partition function. Let D, be the density operator of the independent particle
system corresponding to A. The internal energy E, calculated from D, is: E, = Y fici,
whereas the Hartree-Fock internal energy of the system is according to (3.7):

1
EByr =) fiei - 3 Y fifiVij=Eo—-<V >
: i

The additional term, equal to the mean value of the potential, is the generalization of the
term already present in the Hartree-Fock energy at zero temperature. In the mean field
approximation, the Hartree-Fock grand potential is written as: 4 = A,— < V >, where
Ao is the grand potential associated to h. Let Z, be the partition function associated to
D,, the Hartree-Fock approximation Zgp to the exact partition function of the interacting
system is: Zgp = Z,exp(f < V >). These modifications to E, and Z, are the direct
consequence of the non linearity of the Hartree-Fock equations as derived within the mean
field approximation 35'36).

These equations are solved by iteration, as done in the usual case of zero temperature.
Given a trial mean field, one solves equation (3.9), this gives the single particle spectrum
and wave functions. The chemical potentials are obtained from the ¢; by demanding that
the sums of the proton and neutron occupation numbers are equal to the corresponding
nucleon numbers. Finally, the Hartree-Fock field is recalculated from (3.10). One has then
to iterate the process until convergence.

3.3. CONTINUUM STATES ~ ONE-DIMENSIONAL MODEL

In an independent particle model, the energy E and the particle number N of a
system are given by:

N= 30k

E= ;0 fie (3.11)
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where the coefficients g; are the degeneracy factors of the orbits.

The difficulty comes from positive energy states which introduces a continuum of
states whose exact treatment is out of reach numerically. As soon as the temperature
rises, the number of particles in the continuum, proportional to f5° f(€)de, can become
important. When a continuum state is occupied with a non negligible probability, the
nucleus is no longer stable but is in a diffusion state.

In a first approximation, one can eliminate the contribution of the continuum by taking

into account only the bound single particle states 37’38) and truncating the sums in the
expressions (3.11). However, the contribution coming from the resonances is also eliminated
at the same time. At low temperature, this rather drastic method can be justified, arguing of
the negligible occupation of the continuum. At higher temperature however, it is necessary
to include their contribution in an appropriate manner.

We propose below a simple one-dimensional model to show how to include this con-
tribution by means of a subtraction procedure based on a phase shift analysis 39’40) for
a calculation of the partition function 41’43). Let V(z) be a short range potential de-
fined on a segment of length 2R. The wave functions which vanish at £ = — R behave as
sin(kz + kR + 6) in the vicinity of z = R, where k is the wave number (2mE/A?)}/? and
§(E) the phase shift. The positive energy states are given by the quantization condition
2kR + 6(E) = nn. And their density is thus f(E) = dn/dE. Upon replacing f(E) in the
grand potential and writing explicitly the bound state contribution, one has:

A=k Y lg(l—f.)+—/ lg(1- /) o ag+ 285 /o le(t - /) e dE
:¢;<0

(3.12)
In the above equation, the first term comes from the bound states, the second represents
the finite contribution to the grand potential arising from the continuum. The last one
diverges with the length of the segment, it is equal to the grand potential obtained in the
absence of the interaction V' (z). The finite part 4 of the grand potential is thus obtamed
by the subtraction: A= A(V) - A(V =0).

) This model suggests to define the grand potential describing a nucleus in eqtiilib-
rium with its vapor as the difference between the grand potential of the total system,
nucleus plus vapor, and that of the vapor alone (where the nuclear interaction is set
to zero). A more detailed justification of this subtraction method is given in ref. ),
with a similar model design to include a Coulomb field in a three-dimensional space.

3.4. APPLICATION TO NUCLEI

Hartree-Fock calculations in a cell of radius R for a given temperature and chem-
ical potential give in general two distinct solutions. One of them is obtained by start-
ing the iterative method proposed in section 3.2 from a Saxon-Woods potential; it
describes a nucleus located at the cell center and surrounded by an external gas.
The other one, which resembles a vapor-like dilute nuclear matter, is obtained while
starting the iterations from a zero potential. In the absence of Coulomb force, the
matter density of this solution is nearly uniform; at large distances, it is equal to the
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density of the other solution. Subsequently, we denote p and 5 the matter densities
corresponding respectively to the nucleus and vapor-like solutions, in addition, we dis-
tinguish explicitly neutrons and protons, introducing two distinct chemical potentials
Bn and pp.

According to the discussion of section 3.3, it is natural to define the grand poten-
tial of a hot nucleus as the difference between the grand potentials A and A calculated
with the one-body density matrices p and j respectively. In the absence of Coulomb
field, this definition is satisfactory as the difference 4 = 4 — 4 defining the nucleus
converges toward a value which turns out to be independent of the cell as its radius
R is increased.

The Coulomb field introduces an additional difficulty: when the cell size increases, the
Coulomb repulsion becomes so large that protons are driven out to the cell surface. The
presence of a gas outside the nucleus is the signature of an evaporation: we are somehow
simulating a dynamical mode of evaporation by a permanent regime calculation where
the gas represents the evaporated particles. As it is reasonable to neglect the Conlomb
interaction between two evaporated protons, we shall neglect the Coulomb interaction in
the gaseous phase: evaporated protons only feel the charge of the nucleus. This method
has the advantage of eliminating spurious divergences,

The Coulomb energy is calculated accordingly from the subtracted proton den-
sity: pp — pp, and the corresponding subtracted grand potential is:
2
A= Anlo) ~ An(3) +5 [ lople) = 54l lTe—'r_l (o (") = B,(r")] dr dr' + Eus
(3.13)
The term E.. comes from the Coulomb exchange potential calculated in the Slater
aprroximation. The index N added to the grand potentials A(p) and A(5) means that
they only contain the nucleon-nucleon interaction.

The minimization of A, with respect to both p and 5, yields two set of coupled
Hartree-Fock equations quite similar to equation {3.9). The nucleus solution contains
a Coulomb potential obtained by variation of the Coulomb energy included in (3.13),
The same occurs for the vapor solution.

The calculations presented in the next section have been done with two nucleon-nucleon
effective forces of the Skyrme type 44’45). These interactions consist of the sum of a
two-body force and of a density dependent term, both of range zero. The correspond-
ing Hartree-Fock equations are local in coordinate space. Their explicit derivation is given

in reference 32) together with the parameters of the forces SIII 45) and Skm 46) which are
presently used. The detailed expression of the Coulomb field for the nucleus and vapor

. . 20
solutions can be found in reference ).

3.5. RESULTS

8.5.1, Condition of validity. First of all we have to check that our subtraction
method describes the physics of a hot nucleus and not that of the container or the
cell in which we have put the nucleus to perform the calculation!
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Table 1 gives results obtained for **®*Pb at 4 MeV temperature with Skm, the cell radius
ranges from 12 to 18 fm. The convergence is quite good for the subtracted entropy, energy
and mean square radii. At the edge of the cell, the densities of the nucleus and the vapor
are already very close to each other for a cell of radius 14 Fermi (p,, ~ #n and p, ~ j,) and
the difference decreases rapidly when the radius increases. On the other hand, the R = 12
fm cell is slightly to small. Practical calculations have been performed with R = 16 fm.

R S E* Tn n Pn Pp Pn Pp

12 130.75 280.14 5.785 5.607 8.8000 0.9200 8.2600 0.7800
14 130.71 280.06 5.784 65.606 8.1600 1.1500 8.1300 1.1400
16 130.65 279.86 5.784 5.606 8.0814 1.5139 8.0811 1.5136
18 130.70 280.02 5.784 5.606 8.0745 1.8821 8.0741 1.8820

Table 1: Subtracted values of the entropy S, the binding energy E* (MeV), and the neutron
and proton radii r, and r, (fm) as a function of the cell radius R for 2®8Pb at T = 4 MeV
with Skm. The densities at the edge of the cell are given for the nucleus and vapor solutions
in unit 10~4 fm~3.

3.5.2. Lifetime. One can get an estimation of the nucleus lifetime by evaporation in
the following way. The external gas produces exactly the amount of pressure necessary
to hold the nucleus at equilibrium. The grand potential A of this uncharged gas is
equal to the opposite of the pressure multiplied by the volume: 4 = A(p) + PV. The
minimization of A is identical to that of A(p) with the constraint that the system
occupies the volume V, the corresponding Lagrange parameter is then —P. Hence,
the gas directly characterizes the stability of the nucleus. For example, the lifetime
of a hot nucleus can be estimated from the standard formuia used in nucleosynthesis
to calculate reaction rates 47): 1/7 = n{ov) = (07 ), where n is the density of -the
external gas, o the neutron capture cross section, v the speed of the external nucleons
and j their current. The notation {ov ) represents the statistical average over the gas
states. If one replaces o by the geometrical cross section, ¢ = wR?, where R is the
radius of the nucleus, one finds for ?®Pb (R = 7 fm, g, = —8 MeV) a lifetime of 108
sec at 1 MeV temperature. This lifetime decreases when the temperature increases:
0.9 10~%° at 2 MeV and 1.3 107%2 at 5 MeV.

To be meaningful, these lifetimes must be larger than the time the system need
to thermalize or simply to form. This hierarchy of time seems to be experimentally
observed, at least up to temperatures of the order of 5 to 6 MeV: 5 MeV for the
heavier nuclei, (see for instance ref 2)) and 6 MeV for the lighter ones 3).

3.5.8. Other properties. The results we present below have been with the Skm and
SIII interaction for the lead nucleus. For temperatures higher than 2 MeV the subtrac-
tion procedure is used. AT T = 1 MeV the density of the external gas is nearly zero
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Figure 5: Density profiles for °8Pb calculated with SIII at four different values of the tem-
perature.

and no state in the continuum is significantly occupied. No center of mass correction
is done, nuclei are spherical: no deformation effect is taken into account.

Neutron and proton subtracted densities are drawn on figure 5 at four different
temperatures for 2%®Pb with SIII. The surface thickness increases with temperature
faster for protons than for neutrons. This difference reflects the importance of the
Coulomb field. Density oscillations due to shell effects are washed out as soon as the
temperature becomes larger than the shell spacing 38).

Table 2 summarizes the main results obtained with SIII for 2®*Pb. Up to 8 MeV
temperature, the Skm interaction gives qualitatively similar results, the differences
can be attributed to the value of the incompressibility modulus which is smaller for
Skm (K ~ 220 MeV) than for SIII (K ~ 380 MeV). The most spectacular difference
between these two interactions is the temperature at which the nucleus becomes un-
stable. There is no solution with Skm beyond T'=8 MeV which appears as a limiting
temperature for Skm.

3.5.4. Limit of stabslity. These calculations were possible only over a limited range
of temperature. Beyond the limiting temperature observed above, the results depend
upon the of the cell in which the Hartree-Fock equations are solved.

Figure 6 shows the density profiles of 2*®Pb with SIII at 11 MeV. In a 14 Fermi radius
cell, one may think that the nucleus is well described by the subtracted densities as they do
vanish at the cell edge. However, the same calculation repeated in a 16 Fermi radius cell
produces a very different density: the nucleus is no longer stable and nucleons are escaping
toward to edge of the cell.
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T(MeV) | E*(MeV) S up(MeV) pup(MeV) ry(fm) rq(fm)
0 0 0 -5.75 -4,95 5.53 5.656
1 14.65 20.40 -6.30 -5.80 5.53 5.66
2 74.18 60.41 -6.58 -6.24 5.56 5.68
3 154.83 92,86 -7.07 -6.57 5.59 5.71
4 255.96 121.79 -7.81 -6.90 563 5.75
5 379.14  149.19 -8.79 -7.28 5.69 5.80
6 523.30  175.42 -9.98 -71.73 5.76 5.87
7 688.00 200.78 -11.36 -8.25 5.85 595
8 870.36  225.11 -1291 -8.87 5.97 6.06
9 1068.05 248,36 -14.61 -9.56 6.12 6.19
10 1291.50 271.93 -16.51 -10.34 6.33 6.39

Table 2: Excitation energy, E*, entropy, S, proton and neutron chemical potential, s, and
In, proten and neutron root mean square radii, r, and r, for 2%8Pb with SIIL

In an even larger cell, the calculations give a solution looking like a bubble where matter
is glued to the surface of the cell. This transition is irrelevant for an isolated nucleus: there
is no physical mechanism which can produce such a cell holding a “bubble nucleus”.

It is nevertheless possible to go beyond the limiting temperature by setting artificially
the Coulomb field to zero. The corresponding uncharged and fictitious nucleus still exists
at temperatures higher than 7};,, however it becomes less dense, its surface is more and
more diffuse and its radius increases. At even higher temperature, one does not observe
a sudden instability, but rather a smooth transition toward a uniform nuclear matter at a
temperature slightly lower than the critical temperature for an infinite medium.

i
S.

') ™ % %)

Figure 6: Profiles of neutron and proton subtracted densities for 2°Pb at T = 11 MeV with
SIII in cell of 14 fm (=olid lines) and of 16 fm (dashed lines).

25



3.6. CONCLUSIONS

We have confirmed in a microscopical approach the results obtained in the phe-
nomenological model of the second part of the lectures. The dependence of the limit-
ing temperature with the nucleus mass seems however less pronounced. Microscopical
calculations with Skm show that 5¢Fe and *®Pb are both stable at T' = 8 MeV and
unstable at T = 9 MeV. A more detailed study has been done from the root mean
square radiim): the limiting temperature for 2**Pb merely exceeds 8 MeV whereas
for 56Fe, it is close to 9 MeV. This difference remains smaller than the prediction of
the phenomenological model and a systematic study of the mass dependence of the
limiting temperature remains to be done.

Finally, let us stress some theoretical limitations of the above calculations.

1) All the calculations have been performed for spherical nuclei. Deformation
may play an important role, especially at lower temperature. It must certainly be
included if one is interested in the influence of temperature on fission barriers 48).

2) Angular momentum has not been included either, and one knows that nuclei
produced in heavy ion reactions do carry a large angular momentum.

3) The available effective interactions are usually determined so as to reproduce
nuclear properties at zero temperature. For the time being, there are no indications
that they usage is valid at non zero temperature. The dependence of the mean field
upon the temperature due to its non linearity may not be sufficient. However there
is also no strong evidence that it is not legitimate to use these forces 49).
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4. HOT NUCLEI IN SUPERNOVA

Amongst the different stages of a supernova evolution 50'53) we shall focus only

in the collapse of the core. During this final stage, the density reaches values close
to the infinite nuclear matter density with a temperature of the order of several
MeV. The nuclei which build the core can be described following the method used
precedently. However the nuclear medium witkin a supernova core is electrically
neutral and the description of the nuclei will be simpler as the difficulties arising from
the long range Coulomb field are no longer present. The physics is also different:
beyond the description of a single nucleus, it is the equation of state of the matter
inside the core of the star which is important as well as the chemical composition of
the core ° ) The total pressure inside the core increases as the density to a power
~ called the adiabatic index. When the nucleons are bound in nuclei, they do not
contribute to the total pressure, it is then solely due to the electrons which form an
ultra-relativistic gas and « is equal to 4/3. On the contrary, when nucleons are free
particles, they contribute to the pressure as a non relativistic gas and ~ is equal to
5/3. The value 4/3 is of special importance as it determines whether it is possible for
the star to resist to grav:tat:on and to stop the collapse: for an adiabatic index larger
than 4/3, the star is stable ) Furthermore, if the nuclei are still present during
the collapse, the neutrinos diffuse coherently. Their mean free path decreases 56, 57),
and it is no longer possible for them to escape the star before the end of the collapse.
Otherwise they might remove too much energy from the core so that the rebounce at
the end of the collapse could be not powerful enough to eject the outer layer of the
infalling star producing in this way what is observed as a supernova explosion.

The simplest approximation which can be made to estuna.te the equa.tlon of state is
to use uniform gases of neutrons, protons and electrons. Such calculations ) may be
considered as useful guides. However, they cannot give any information about the presence
of nuclei. An improved version of this simple model is to include nuclei by means of semi-
empirical mass formulae 50’56’58). In these approaches, nuclei are treated as point;like
particles in a Boltzmann gas. The first attempt to include the finite size of nuclei, as well
as nuclear forces, has been through the compressible liquid-drop model 59'13). However,
since these calculations include only an incomplete description of the nuclear surface, they
still need to be improved. This can be achieved by means of Thomas-Fermi 60’61). An
alternate but more microscopic way is to perform Hartree-Fock calculations at non zero
temperature 32’62) following the scheme we have given in these lectures. These calculation
have been reproduced later within the Thomas-Fermi approximation 63,04

a new way to study the detailed structure of the supernova core 5).

), which has open

In what follows, we describe more precisely the physical context of the problem.
We show how the variational principle introduced in section 1.3 gives the equation of
state. We proceed by describing the method of resolution and the main results in a
model with a spherical geometry 3?"6?'). Finally, we present some calculations done in
a three-dimensional model 65) but at the cost of a further approximation.
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4.1. PHYSICAL CONTEXT

The stellar medium during the collapse 52'66) has some special features which
modify the previous picture we have developed for an isolated nucleus.

The core of the star is made not only of barions but also of electrons and neutrinos
whose contributions must be included. As the core is electrically neutral, there are as
many protons as electrons. The hydrodynamical description of the collapse assumes an
adiabatic evolution: the entropy per barion remains constant. This is actually true only
when npeutrinos are “trapped” inside the core, which happens at a density of the order
of one percent of infinite nuclear matter ) Above this density, there is # equilibrium:
p+e~ & n+wv,. This condition implies the equality between chemical potentials: pp+pe =
#n + piy. The total lepton number is conserved. The electron and neutrino concentrations,
Y. and Y, are the ratio of the particle number of each kind of leptons to the total number of
barions. As the barion number is conserved, the lepton concentration remains also constant:

!’[=Y¢+Yy.

It is not our purpose to discuss the evolution of the star from the origin till the
beginning of the collapse. However, this description is necessary as it deﬁnes the
conditions of the collapse: an entropy per barion S /A roughly equal to unity ) and
a lepton concentration Y; of the order of 0.35 52,6 ) Our goal is to find which phase
minimizes the energy. Is this a uniform matter phase or a phase made of nuclei? For
the optimal solution, we want the equation of state which tells how the pressure varies
with the barion density. In what follows, we are only interested in the final stage of
the collapse when the mean density 5 of the core is of the order of p,/10 to p,, where
P, is the infinite nuclear matter density.

For normal nuclear matter, g, is about 0.17 fm~3 (3. 10! g/cm®). A lepton fraction ¥;
of 0.35 corresponds to Y, ~ 0.30. Due to electrical neutrality Z/A is equal to 0.30 instead
of the symmetric nuclear matter value of 0.50. The resulting saturation density p, is no
longer 0.17 but closer to 0.14 fm~3. Similarly, the incompressibility modulus is roughly. 140
MeV instead of 220 MeV.

4.2. MODEL DESCRIPTION OF THE CORE

In the density domain we are considering, the core is expected to be a solid. It
can thus be described as a crystal with a nucleus at each site, the interstitial space
being filled by a ditfuse nucleon gas.

4.2.1. Wigner-Seitz approzzmatzon To derive an equation of state, we use of the
Wigner-Seitz approximation ) The calculation of the whole core is replaced by the
calculation of the properties of a single elementary cell surrounding a given site. This
problem is still very difficult because of the rather complicated polyhedrali shape of the
unit cell. If the gas filling the interstitial space is uniformly distributed, the Wigner-
Seitz cell can be replaced by a sphere. Curvature corrections are small when the size
of the nucleus is small compared with the size of the cell - i.e. when the distance
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between adjacent nuclei is small compared with the mesh size - and when the density
of the external gas remains low. This reduces the initial three-dimensional problem
. to a one-dimensional one. The minimum of a given thermodynamical potential
characterizing the core is obtained by calculating its value ). in an elementary cell
containing A, nucleons and by minimizing 1./ A, with respect to A..

Two additional conditions have to be fulfilled. The first one is related to the spherical
geometry hypothesis: a reasonable matching between two neighboring cell is possible only
if the density remains constant in the vicinity of the surface. For a cubic face centered
crystal for instance, the density must remain constant over a distance from the surface
equal to 2R(1 — (v6x/6)1/3) = 0.19 R where R is the cell radius. This distance represents
the overlap between two adjacent cells obtained by imposing the condition that the volume
of the core is equal to that of all cells.

For the Wigner-Seitz approximation to be valid the crystal must be solid: it should not
melt. As a first approximation, matter can be considered as a one-component plasma, i.e.
a system of point-like nuclei surrounded by a uniform background of negative charges. For
such system, matter will be a solid when the plasma parameter, I' == Z%e?/ RkT, is greater
than 155 69’70). For lower values of I', Coulomb liquid corrections can be included 69’70).
Even in the less favorable cases we shall encountered, these corrections remain negligible.

Finally, the Wigner-Seitz approximation replaces an infinite but periodic system by a
unique cell with appropriate boundary conditions. This amounts to replacing each band by
a single isolated level: band width corrections are to be expected. It is possible to justify
this approximation in the limit of a large number of particles at each crystal site 32).

4.2.2. Definition of the thermodynamical potential. We choose to work in the grand
canonical ensemble and we minimize the grand potential in a single cell:

Q=nn,p+ne+nv+‘/;,c )

where 2, , is the barion grand potential without Coulomb terms, 1, is electron one
and 0, the neutrino one. The last term is the Coulomb interaction energy between
the protons and the electrons: V,, = V.oui(p, — p.), where p, is the proton density and
p. = Y, p the electron one which is chosen uniform.

The microscopic calculation of Q,, is performed at the Hartree-Fock approximation
with a suitable two-body effective force (see section 3.2). The boundary conditions at the
surface of the cell are chosen so that there is a correct matching between adjacent cells. To
do so, a given parity is imposed to the single particle wave functions across the surface. The
freedom in the choice of this parity can be used as a test of the Wis;ner-Seitz approximation
which must be independent of any reasonable choice.

4.2.8. Electron contribution. The next step is the calculation of the electron contri-
bution ), for a given Y,. Several simplifications can be made.

First of all electrons are ultra-relativistic. For barion densities larger than 0.02 -
fm~3, the electron density p, is at least of the order of 0.01 and their Fermi momentum
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is k§) = (372/5,)1/320.6 fm~". The electron mass is then negligible to better than 10~
and the Fermi energy becomes: eff) = \/ h2e?kd + m2et > hek),

Electrons can be treated as free particles, for 5. ~ 0.01 fm~3 the average distance
between two electrons is @ ~ (1/7,)*/525 fm. Their Coulomb interaction energy,
¢?/a$0.3, MeV is much smaller than the Fermi energy, {2120 MeV.

Finelly as temperatures are always one order of magnitude lower than e};f) during the
collapse, low temperature expansions can be used:

Q. 1 x2/7\?
E——ﬁp{z‘i‘;(b—;) i RER } s (4.1)

p,-Ea=oF{1_g3(01';)2+..- } , (4

where the electron number in the cell N, is equal to the proton number and 0 is the Fermi

temperature: 0p = hck};‘). The chemical potential u, is shifted by the lattice Coulomb
energy E, which comes from the proton electron interaction V.. For T, p. and p; given in
the cell, the calculation of . and u, follows 1.

4.2.4. Method of resolution. Frorm. the previous history of the star, the entropy per
barion and the lepton concentration are known at the beginning of the collapse: S/A4 =
1 and ¥; = 0.35. Three successive choices have to be made:

1. Y. ~ which we arbitrarily fixed to some value lower than Y}, e.g. 0.30. The
electron density is then given by: 5, =Y, 5.

2. T - of the order of 1 MeV for the lowest density we shall consider.
3. A. - The number of nucleons in the cell.

These three quantities are not known a priori, they can be guessed from a previo'ﬁsly
converged calculation for a neighboring density. The numerical resolution is performed
in three steps:

e Given A, Y, and p, one deduces N, Z and the cell radius. The mean field
equations (3.9) are solved for the chosen temperature. The grand potential {2, ,,
the chemical potentials x, and p,, and the barion entropy S,, are calculated
from their solution.

o f1., . and the electron entropy S, are derived from the proton density g,(r) and
from 5.. '

L As an exercise, one can show that if one neglects the lattice energy E, in (4.2), the electron pressure
is proportional to the electron density to the power 4/3.
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o The neutrino chemical potential u, is obtained from # equilibrium. Equa-
tions (4.1) and (4.2) are valid for the neutrinos, however their degeneracy is
1 - one state of helicity —, and there is no lattice energy (E, = 0 in (4.2)). They
give p,, the neutrino concentration Y;, the grand potential 2, and the entropy
Sy.

The next step is to obtain the minimum de f1./A. in the cell as a function of A..
The temperature is varied until the entropy per barion S/A = (S,, + S, + 5,)/ A, is
equal to 1. For each trial value of the temperature, A, has to be varied again. Finally
the electron concentration Y, is adjusted so that the sum Y, +Y, is equal to ¥; = 0.35.
Again, for each trial Y;, the two previous variations have to be repeated.

The result of these three variations is the equation of state P = —0,/V, as a
function of the mean density 5. For each value of 5, the number of nucleons in the
cell is also obtained, as well as thc temperature T and the electron concentration Y,
which characterize the collapse.

4.3. RESULTS FOR A SPHERICAL WIGNER-SEITZ CELL

The calculations presented below have been done with the Skyrme interaction

46 . . . s . .
Skm ™). For a given lepton concentration Y, the variation of Y, remains small during
the collapse. This can be checked by keeping Y, constant and calculating the resulting
Y;. In a first calculation the value of Y, was arbitrarily kept fixed to 0.25. The size of
the cell and the temperature are varied to minimize the grand potential 0, , + 0, for
an entropy per barion: (S, + S.)/A. = 1. The neutrinos are not included.

T P P Ac I S / A Yi o Bn Be 2
3.80 0.1357 0.02 300 139.3 0.9992 0.296 -29.38 -1.02 102.23 1.316
435 0.2309 0.03 400 225.0 1.0012 0.298 -31.61 -0.78 117.01 1.306
4.75 0.3356 0.04 500 3200 1.0011 0.299 -33.62 -0.55 128.77 1.299.
5.06 0.4482 0.05 600 450.8 1.0009 0.300 -35.46 -0.35 138.80 1.286
5.34 0.5655 0.06 900 892.2 1.0007 0.301 -37.02 -0.20 147.32 1.260
5,53 0.6851 0.07 1000 1081.0 1.0002 0.301 -3881 -0.12 15448 1.230

Table 3: Temperature T' (MeV), pressure P (MeV/fm?®), density p (fm~3), chemical potentials
Hp, pn and p. (MeV), and nucleon number A, in the cell along the adiabat S/A = 1. The
interaction is Skm, I is plasma parameter, Y; the lepton concentration (Y, is fixed to 0.25),
and ~ is the adiabatic index.

Table 3 summarizes the main results along the adiabat S/A = 1. The concentration
Y} remains remarkably constant, which justifies the approximation of constant Y,. The
plasma parameter I' is always small enough to ensure that the core of the star is a solid at
all considered densities. The calculated entropy per barion is equal to 1 to better than 1073.
The approximation of ultra-relativistic electron gas is very good as . is always larger than

31



T=553 Mev
Ps 0803 MW Fm-d
9007 Fm=?

T 534 Mev
P= 0545 MY Fm-)
=008 Fm

V=508 MeV
Pe0.4482 MW Fm-3
o005 Frvd

"

V475 MV
Ps0.2008 My Em-3
P o004 Fm-3

A

\LTR 1.
P s 02200 MV Fm=
#2063 Fm-2

T=3.00 MV
PeQ1NTMeVFm?
P00k Fm~}

Figure 7: Density profiles (fm~*) of neutrons (upper curves) and protons (lower curves) along
a line joining the centers of two cells. Distances along this line are in Fermi. The electron

concentration is 0.25.

100 MeV. The adiabatic index, ¥ = dlog P/3log p is given in the last column of Table 3.
Its average is 1.29, slightly less than 4/3, which guarantees that the collapse will not stop
for densities up to the largest one for which this calculation is done: = 0.07 fm™3.

These results are illustrated on. For the values of g listed in table 3, figure 7 shows the
neutron and proton densities along a line joining the centers of two adjacent nuclei in the
crystal. Up to the largest density, most nucleons are bound in nuclei. Hence, the pressure
is expected to come mainly from the electrons and to vary as p#/3.

Between the maximum density of 0.07 and the infinite nuclear matter demsity, the
solution crystal of nuclei is no longer stable and a transition is observed toward a solution
where protons have been driven out into the interstitial space by the Coulomb repulsion.
Because of the nucleon-nucleon force, the neutrons follow and the final solution corresponds
to a crystal cf bubbles with a low barion density at the sites previously occupied by nuclei
and a connected bath of uniform matter filling the interstitial space. At high density,
matter distributions are no longer constant in the vicinity of the surface of the cell: the
approximation of spherical cell becomes very questionable.

For the above calculation (Y, = 0.25), the lepton concentration is about 0.30.
The study of this equation of state has been repeated with the neutrino contribution
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included, varying Y, until Y¥; = 0.35 62). The contribution of the bubble and uniform
matter phases have also been analyzed. For the bubble phase, the approximation
of spherical Wigner-Seitz cell is not quite justify: the matter distribution resembles
a thin layer glued onto the surface of the cell. Nevertheless, one can compare these
different solutions and find out which of them is the most stable one. For that purpose,
the appropriate variables are the entropy S, the pressure P and the particle number
N. According to the discussion of section 1.5, the relevant thermodynamical potential
is the enthalpy. It is obtained from the internal energy which depends upon S, V and
N, by the Legendre transformation: H(S,P,N) = U + PV ). Figure 8 shows the
enthalpy per barion as a function of the pressure. The uniform phase has a larger
enthalpy for all densities, it is therefcre always less bound. At a density of the order
of 0.05 nucleons/fm®, the nucleus phase becomes less bound than the bubble phase.
This this is only an indication of a possible phase transition: the approximation of
spherical cell being less and less justified as the density is increased.

S
)
=
<
~
I
40 - -
0.03
0.02
30 + 0.02 o Nuclei _
» Bubbles
o Plane waves
1 1 1
0 05

P(MeV/fm> )

Figure 8: Variation of the enthalpy per barion as a function of the pressure for the nucleus
phase (o), the bubble phase () and the uniform matter phase (o). The entropy per barion is
unity and Y; = 0.35. The values of the density g at which the calculation has been done are

also quoted.
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4.4. THOMAS-FERMI APPROXIMATION IN THREE DIMENSIONS

To further confirm this nucleus-bubble phase transition, the calculation must be
repeated in a more realistic model with three spatial dimensions.

Unfortunately, the exact resolution of the Hartree-Fock equations in a polyhedral cell is
at present out of reach of the most powerful computer. To avoid this numerical difficulty,
it has been suggested to solve these equations in an approximate way by utilizing the
Thomas-Fermi approximation 63). It is known that this approximation is too crude to
account correctly for the main properties of stable nuclei. It can be improved to take into
account shell effects by including higher order terms in the expansion in A from which the
Thomas-Fermi approximation is derived 7 ). However, at the temperatures encountered
inside a supernova, these shell effects are no longer present and the normal Thomas-Fermi
approximation is qmte sufficient. The calculations presented below are done with this lowest
order a.pproxxmatxon ) The agreement with Hartree-Fock calculations is excellent, which
assesses the validity of Thomas-Fermi in this context. This result is very fruitful: whereas
the Hartree-Fock functional depends upon a large number of single particle wave functions,
hand the Thomas-Fermi approximation involves only the neutron and proton densities and
their gradients for the calculation of the energy and the entropy.

It becomes possible to study not only cells with more complex geometries but
also different kind of crystal structure. Besides the three-dimensional periodic struc-
tures we have considered, namely nucleus or bubble crystals, we can investigate the
possibility of two-dimensional structures 72). In these more exotic phases, nucleons
arrange themselves in crystals of rods or tubes, or also in slabs of matter. Thomas-
Fermi calculations for symmetric nuclear matter (/N = Z) at zero temperature have

shown that a microscopic study of these configurations is possible 73).

Different geometries have been studied: 65)

¢ nuclei or bubble crystal, either cubic centered, or cubic face centered. The elementary
cell is then a cube.

e two-dimensional configuration: cylindrical rods of high nuclear density, or a nearly
uniform medium with tubular low density regions. In both cases, the cell has a
prismatic shape corresponding to a two-dimensional close packed hexagonal crystal.
This is realized by imposing a v/3 ratio between the two dimensions of the cell in the
plane of the crystal. The third dimension is irrelevant.

e one-dimensional configuration: nucleons are distributed in slabs of matter arranged
in parallel planes, the cell is defined by the only inter-slab distance.

For a given mean density g, several phases may coexist. They appear as local or absolute
minima of the variational problem. There is no systematic method to get all these possible
minima and also to be sure that one of them is the absolute one. The resolution of the non-
linear equations with an iterative algorism gives a minimum close to the trial configuration.
Several initial configurations have to be tried to explore as many solutions as possible. On
the other hand, each solution can be studied as a function of the mean density 7, even when
it becomes metastable. In this way for the same cubic cell and the same given density p, it
is possible to construct either a cubic centered or a cubic face centered crystal by choosing
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Figure 9: Variation of the enthalpy as a function of the pressure. The quantity AH is the
difference between the calculated enthalpy H and its average trend H (see text).

an appropriate geometry at the starting point of the iterative calculation for the regions of
low and high density in space.

Amongst the possible solutions, thermodynamic considerations will decide of the
optimal solution. The most stable one has the lowest enthalpy (see section 4.3).
Figure 9 shows the enthalpy for different phases as a function of the pressure along
the adiabat S/A = 1. At a fixed Y, of 0.285, the lepton concentration is remarkably
constant, with a value of 0.35. In the range of studied pressure, the enthalpy varies
by more than 50 MeV while the differences between phases rarely exceed 0.2 MeV. To
render more evident possible phase transitions, figure 9 gives the enthalpy difference
AH(P) with the mean enthalpy H(P):

H = 49.7 + 13.68log P + (logP)? + 0.09(log P)*

For the lowest pressure, the most stable configuration is a crystal of nuclei immersed in
a neutron gas. The curve drawn on figure 9 corresponds to the cubic centered solution, the
cubic face centered crystal has almost the same enthalpy and is not distinguishable from the
other on the figure. With increasing pressure, one finds the sequence of phases predicted
by Ravenhall 72): nuclear matter rods, slabs, hollow tubes, the bubble phase we found in
the previous section and finally infinite nuclear matter. .
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Figure 10: Variation of the adiabatic index - as a function of pressure.

In addition to these solutions, there exists another phase called mixed phase which
remains metastable at all pressure. It is made of a crystal of nuclei connected by bridges
of matter between nearest neighbors so that both the low and the high density regions are
connected. At low pressure, the transition toward a crystal of nuclei is achieved by the
breaking of the matter bridges, whereas at high pressure it becomes a bubble crystal by
filling the tunnels of low density until the bubbles are isolated from each other.

At low pressure, the rod phase becomes metastable, eventually each rod breaks in' an
alignment of nuclei, arranged from one rod to the other so as to form a nucleus crystal. At
high pressure it is the opposite: the tube phase transforms itself in a bubble crystal.

In the region where the infinite nuclear matter phase is not the most stable, the adiabatic
index remains always close to the critical value 4/3. Above the transition to nuclear matter,
it reaches 1.9 which is larger than the value corresponding to a free nucleon gas (5/3),
because of the nuclear interactions. Figure 10 shows the evolution of  with the pressure.
The discontinuities observed at each intermediate transition, together with the fact that 4
is sometimes slightly larger than 4/3, might slow down the collapse of the core, at least in
the initial stage. The dynamical consequences of such an equation of state are still to be
studied.

It should also be remembered that these results are obtained within the mean field
approximation which neglects the effects of thermal fluctuations. In view of the small
differences of energy between the phases, these fluctuations may well smooth out the dis-
continuities and destroy long range correlations 3t""). In such a case, only the mean behavior
of -y which can be extracted from figure 10 will be relevant for the evolution of the collapse.
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