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3. A PIECE OF GROUP THEORY

Let us collect here вой* basic information from group

theory [L\ which seems relevant for future study of the free

field realisation of WZWM and eoeet models.

3.1. HOOT SXSTBMS

Let n be a rector space of finite dimension, Aim rj • r.

We shall give the definition* of root system and it* Weyl

group in \\ . Consider reflection t^ with respect to the

hyperplase, orthogonal to the rector <*€ <] and passing

through the origin:

ъ
л
 с^)= л - (^

je
i

v
)si.

 t
 <*

 =
 ̂ nky (3.1.D

We are -interested in finite groups, generated by the reflec-

tions (3.1.1). Consider a finite set of non-vanishing vec-

tors Д=-{«б} „ satisfying the following conditions:

1. Л generates j as a vector space;

2. ^ Д ^ Д for every «^^^ (3-1.2)

3. (oC
 }
 &) 6 2? for every <^,jS€^ • >
%I J

i-

The system of vectors Д is reffersd to as a root ays- i

tern
t
 and the group W generated by all the reflections \j

(3.1.1) for all ot$Д - as a ffeyl group of A . /

Let the space J be a direct BIUT. of к subspaces,

=
 5 i ® j ^ ® ' • • 3fe

 a n d l e
*

 A
c be a root system in

Si-
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Then the union &• ~ ̂ i '
J
 ̂ '

 W
&K will be a

root system in fj . The ffeyl group is identified with the

product Wi.6^i) ^ к С ̂ .< ) • II no such expansion

exists, the root system is called irreducible.

It may be shown,that if ^ is a root, then only the

root -<>C is collinear to it (this is obvious) and 2 ^ ('£<*•)

may also be collinear» It turns out,that except for the lat-

ter case there is a one-to-one oorrespondense between irre-

ducible root systems and complex simple Lie algebras.

Consider a hyperplane in the space fj , such that it

does not contain any root. The roots, lying on one side from

the hyperplane are said to be positive with respect to the

ordering introduced.Let us denote these by Л
 +
 • Evidently,

Д = Д+ У (-&+ ~'^~)- Among positive roots ^ t one

can uniquely define a subset of roots П with the property,

that any сСб A + is a linear combination of roots й€ Г)

with non-negative integer coefficients,

j e
?n (3.1.3)

The roots ув€ /7 are reff ered to as simple and П is a

ayetem of simple roots. Evidently, simple roots form a basis

of the space rl . The number nt".
 =
 -^ ̂ jT is called the

height of a root «A. .

Different ordering in the apace defines another subsets

A
t
 and П . Two subsets &4.(")

}
 &+(rf)axe conjugate under
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action of Weyl group W(&) . Moreover, any <^£A is con-

jugate to some simple root: Ч,аСе П
 }
 4^ W.

Root systems of rank r>2 are isomorphlc to one of the

following three types: A
2
,C

2
,G

2
 (see Fig. 4 ).

In the set of positive roots one may find a maximal

one, i.e. a root & e Д+ , such that O + ct £Л for any

. The number

+4 (ЗИ.4)

is reffered to as Coaceter number. It is independent of the

ordering in И and thus of the choice of a system

The roots </£ Л generate a root lattice

The dual lattice Q is generated by weights Л

related to roots by the bracket product,

T&) У (3.1.5)

The basis in Q is formed by the set of fundamental

weights.satisfying

<^,£ъ>- £JK j < * K e П
- (3.1.6)

Let p be a half-sum of all positive roots,

P =
 J
~ 1 <*• • (3.1.7)

Then the reflection (3.1.1) with eCj€ П
 a c

t
s
 on p as

,!.

The first equality follows from the fact,that ^ permutes

positive roots <*- C<̂  ̂ < 9 Comparison of (3.1.8) and (3.1.1) ./

leads to the following relations:

*** (3.1.9)
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3.2. GAUSS DECOMPOSITION

Let (Л be a simple Lie algebra. This means,that d<.ft

and the adjoint representation of CQ is irreducible. Con-

sider an element -X <c <Л with the minimal possible dimension

of the zero-mode eigenspace of the corresponding adjoint

operator, Cid
x
 ^ - [j^w] . A maximal commutative subalgebra

^ which contains -* is called Cartan subal-

gebra. Because of cammutativity it is possible to consider

common eigenspaces c\ . for all h <= П . The corresponding

eigenvalues are linear functionals on H ,

^ ^ ) (3.2.1)

The eigenspaces СИ are called root subspaces of Oi .in

accordance with (3.2.1) there is a decomposition

* ^°l*- (3.2.2)

Dimension r of h is called the rank of of . (Comp-

lex) dimensions of all root subspaces Of. are equal to

unity. ( Ci^ ~ Ct ̂  , <l is a complex number, G.^ is a

step generator.)

Let G be a simple Lie group with the Lie algebra CV .

6r acts by adjoint representation on Ct :

By means of (3.2.3) one can "diagonalize" of •

Oi ~ Jtcta fj. (3.2.4)
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Thus h parametrizes the set of conjugancy classes of &j .

Consider the subgroup И generated by transformations, pre-

serving Cartan subalgebra Ь ,

М-{<Ъ*&\ f^i^1**- , b)iriletj}t (3.2.5)

In other words, N is norraalizator of n .It is worthwhile

to note,that И is a subgroup of maximal compact subgroup TJ

of 6 . Let M be a subgroup generated by transformations,

commuting with jj ( M is centralizator of h ) ,

The factor group M/M' is finite and acts on the set of root

subspaces <^j^, by permutations.

Relation between the previously considered theory of root

systems and the theory of simple Lie algebras is based on the

observation,that the set of linear functionals oL(h.)e fj
V b

is a root system in л with respect to the Weyl group,

which is isomorphic to the factor-group M/M».
Choosing an ordering in у one can rewrite (3.2.2) as

(3.2.7)

5
This decomposition is called Gauss decomposition of the algebra,

and it may be integrated for almost all elements g of the

group G:
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Let ^ be generators, corresponding to Of, . In terms of

decomposition (3*2*2) the commutation relations take the

following form:

If G • sl(n,C), then -Ь is the subgroup of diagonal

matrices, SL (&U) *
S
 *

n e
 subgroup of lower (upper) triangular

matrices; M ~ D
J
 ^/м' ie generated by permutation matrices

of the fora diag(4, /, О i -io I
С у/

(£.j is a matrix with zero entries, except for the element

(i,j), which is equal to 1.) у is subgroup of traceleas

diagonal matrices, 5 -{&<*$ С hi, ••• &*)
 t
 T hj =Oj-

the root generators are ^ = C<j C"J) j € v " ^ V Ci>j)

the roots dj.

For other examples see next as.3.3.

Note now, that by means of decomposition (3*2*7) one can

construct the maximal compact subalgebra -Us С &i . Let us
ft i/A

remind,that ^ is an r-dimensional complex space jj-$ *
L
[j

and {€4} are generators of O^ ( ̂ Л ^ ) . Then

is the Cartan subalgebra of tt- ,and

are generators of ^ . The particular case is compact sub-

algebra su(2) of ^ » sl(2,C),with §
 = c 6

3 )
 e
xdr^"~- .



Let us Introduce now an invariant non-degenerate scalar

product on ej . Invariance means,that

(l*,Xl,y) + C*,l*#2)= О for any ze<$.

Such product is known under the name of Cartan-Killing form.

Its existence ie equivalent to semisimplicity of the algebra.

Explicit expression for this invariant form is

^
 =

/ ^ - J . .(3.2.10)

In terms of structure constants

^d^ (3.2.11)

which is obviously invariant and non-degenerate for any simple

Lie algebra.

From (3*2.10) and (3*2.1) we deduce,that for any

(3.2.12)

The universal coefficient Cy is in fact quadratic Caaimir

eigenvalue in the adjoint representation (it will be discus-

sed later,in ae.3*5).

Root subspaces ^ are mutually orthogonal,except for

and ^ «

and с )
Ih fact eq.(3.2.12jv3escribes the form (3.2.10) on

in coordinates (3.2.7).
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3.3. SOME EXAMINES OF GAUSS ДЕС0МР051ТЮД

In the previous ss.3.2 we have already discussed the form

of Gauss decomposition for the group sl(n). Here we genera-

lize this construction to other classical groups.

The key fact,allowing consideration of arbitrary simple groups

is that there is a basis in adjoint representation of the Lie

algebra <ty in which the Cartan subalgebra has a diagonal

form, and the aubalgebras <H —

may be realized in terms of the corresponding triangular mat-

rices. Let us proceed to concrete examples.

3.3.1. (Я = so(2n+D <
B

n
)

:

Group elements satisfy the condition О I $ ' = J

where J is non-degenerate symmetric matrix .For an element

of algebra we have: J- J~
+
 SM - 0 .in the above mentioned

basis matrix J" has the IOTA of _л-~

(о -M
where ^

 =
 \^'Oj- (3.3.1]

Then

y ^ i . - . i . ^ ^ * (3*3#2
r f

1
 с -Г -J-

Cartan element is
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The root subspaces, corresponding to the roots £L-£j

( ^.^Cjji-h, ̂  с £j) belong to the matrix Jt (and •* ),

those corresponding to -ё
ч
 +• Q. • - to " , С

 }
 ^ ^ ̂ j p

Generic element of subgroup a £_ is

с -л
2
 Л'

3.3.2. Су = sp(n) (C
n
):

Defining relations are now

(3.3-5)

Thus

(3.3.6)

Ix- dcoy
The root subspaces,correspoiiding to the roots {L^'itfj (c4j'J

are the зате that those in the case of В . Рог the roots

n

£• J (3=1t«••»») the root subopaces are matrix elements

(jtn-j) of matrices & and С . Subgroup (j^ consista of

the matrices „ . ,

L / /
 (3.3.7)

and UQ -

3.3.3 &f * so(2n) (D
n
):

The form of matrices is juat the same аз in the caae of

ao(2n+1). It io necessary only to omit the central row and

column.
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3.4. CHARACTERS OF LIE ALGEBRAS

Irreducible finite-dimensional representations of a Lie

algebra Ol may be described in terms of the weight lattice

(2 . There is a correspondence between a vector JL € Q

and an irreducible representation ~^ in a space H. j, •

Representations Л_д and Л^И are isoraorphic for any element

W of ffeyl group W .In other words J>\ , which is called

the highest weight of representation
 y
'x is defined by Л

up to conjugations from the VVeyl group. Representations jf^ •

with Jj' given by eq.(3.1.6) are called fundamental.

Representation ~Уд is completely characterized by the

following formulae: ,

The finite-dimensional space R-д is spanned by the vectors:

These are eigenvectors of operators.

where eigenvalues /ll(h ) are given by the following expression:

(3.4.4)

which is in accordance rd.th (3.4.1).

Evidently, Jl( € 0 V and the set of weights P^

(the weight diagram) is invariant under the action of

Weyl group.
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Let us define now the characters of representations of<t

The character of representation Cf^ is a complex function,

defined by

In view of (3*2.4) we can restrict J( under the trace sign

to elements o£ Oartan subalgebra, ti-QXQ , Then due to

(3.4.4) we can rewrite (3.4-5) as follows:

/, ,3.4.6,
/tie Pj,

where ccnv ^,i< stands for multiplicity of /Ц .
It follows from (3.4.2),that Ы1, (tij should naively look

like
-JL

This formula is not correct,since it contains the infinite

seria.of descendants. In fact oAjCn)±B invariant under the

action of Weyl group. This property is a consequence of its

invariance with respect to the action of Дсч- . Since the de-
<7

nominator in (3.4.7) is Weyl-antiinvariant,

it is necessary to take antiinvariant combination in the nume-

rator of (3.4.7) as well. After this correction we immediately

obtain a finite combination of exponentials •€•' ', This ia

the celebrated Weyl formula for characters:

As follows from (3.4.5), in the limit /-*<? (3.4.8) turns

into a formula for dimension of representation ,

/ 7 - / 7 f"-*<tA*O
JTj. = '< •„ Г (3.4.9)
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3.5. CASIMIR OPERATORS

Consider representation T^ of Crf . There are some polino-

miel combinations of generators of C-f which commute with

all the generators in representation врасе. They are reffered

to as Caaimir operators» In accordance with Schur lemma they

become e-numbers within any irreducible representation.

The algebra of Casimir operators is finite generated. The

*

orders of Ca3imir operators in original generators of <M

are called invariants of the Lie algebra Cf . The lowest or-

der ie equal to two, while the hignest one - to the Coxeter

number h. Let ё
 л
 be generators of the algebra Of in Л'л .

Then the second-order Casimir operator has the form of

c

where g
& b
 is the Carton-Killing form (3.2.10). It is easy

to check,that [^ ,^
л
]-0, Omitting the sign of representati-

on, we may rewrite (3.5.1) in terms of orthonormal Ьаз1з

(h
1
,...,h ) in h and step Generators 6^ (

Ge
e (3.2.5)):

c/ -= Г Ь*+ Z е± е^ + e^ e
x
. 0.5.2)

J - * "i^ Л t

Using relations (3.2.4 ),one geta the expression:

с* ~ 2b*-+ Z(e.^ e^ + ^ ) . (3.5.3)

Thuo,according to (3.4.1) the eigenvalue of C. is equal to

(3.5.4)
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Note,that the highest weight of the adjoint representation

coincides with the maximal root @ . Therefore for this rep-

resentation

(3.5.5)

Let 4 be a dual Coxeter number.
?
 1

/Z О.5.6)
f

where integers пь are defined from decomposition

& Z; 2L : (3.5.7)

ht. У ^ (3.5.8)

Now from (3.5*5) we obtain the important identity:

C
v
 = (&в)('+ *&>№) sr /^ / ^ =/. (3.5.9)
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3,6. URILLOY-KOSIAHT COHSTRUCTIOH \b\

3.6.1. The structure of Lie algebra erf gives rise to sym-

plectic atrueturee on some representations R. of oj . In

order to have Poieaon brackets on functions on /L , which

satisfy Jacobi identities, one needs at least an invariant

antisymmetric tenaor of the third rank. Such tensor obviously

exista in the case of adjoint or coedjoint representation

and conaiata of atructure conatants ô J of the algebra ̂f.

Whenever Cartan-Killing fora an dj Is non-degenerate (i.e.

CA is aemiaifflple) adjoint and eoadjoint representations

art equivalent. It is no longer the ease for non-semisimple

Lie algebras.For example,when there U(1)-factors, the action

of group in coadjoint representation is preferable,since

U(1)-generatora do not act in adjoint representation at all*

In what follows we ahall take K- to be coadjoint represen-

tation and consider eemiairaple Lie algebras <K ,

Let us denote generators of the algebra O\ by €^

je 1,.,.,IVdimG, and coordinates in coadjoint representati-

on by jf* . Let us consider the set of functions on the

dual apace CM . Then there ia a Lie-Bereein bracket L ̂  1,

which aatiaflea Jacobi identity, since it ia satisfied by

the tensor of atructure constants C^T • (Vote,that eg.

(3.6.1) may be rewritten In terms of veotor fields

* possible ooeyoles (3.6.2)[Vi V», Js
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where [y, VMJ stands for ordinary commutator ot differential

operators.) However, , the matrix td (jc^C^X^in (3.6.1)

is degenerate at any X , since there are invariant functions

J"a0<) such, that

Independent functions of this kind are labeled

by the subscript CL , running through r integer values,

which lie between 2 and Coxeter number h, and are related

to Casimir operators. If a Casimir operator looks like

; € ' €'"a then corresponding

Other invariant functions«which satisfy (3*6.3) are arbitrary

functions of these independent j ^ •

If the values of all independent functions are fixed,

the whole space of functions becomes restricted, and in this

restricted space the Lie-Berezin form CO from (3.6.1) is

non-degenerate* Since functions £a,(x)are invariant,conditions

(3*6.5) define orbits of coadjoint representation of G. The

inverse of non-degenerate restriction of Lie-Berezin form on

» coadjoint orbit, ̂ -чк » is known as Kirillov-Koatant form*

Let us consider two infinitesimal variations of point /.

within the same orbit, <£*** Sz X . Sirce G acta transiti-

vely on the orbit.these may be represented as
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(3.6.6)

Kirillov-Koetant form allows one to construct two invariant

functions on the orbit:

S L
K

i ^X (3.6.7)
and

Л = *?jk/*) Y
J
 Y * = c

t j K
* ' Y

J
Y * (3.6.8)

We shall reffer to the second one, S.L ,as Kirillov-Kostant

form, since in as.4.6 we shall demonstrate,that ЛЬ. (but not

jQ_ ) appears related to the SifZW action.

3.6.2. We shall often consider generators of algebra СИ

and elements of the dual space O\ as elements of matrices

(see the end of 35.3.2)» For example,in the case ofcX=sl(n)

these are nxn tracclca3 matrices. Relation between O\

and Oi 1з dictated by the pairing

(3.6.9)

Adjoint action of the group G an O£ ±a defined by

(3*6'1O)

and it is convenient to define coadjoint action by

lx = g x<j|. (3.

Invariant Caalroir operators look like

Тгх
к
. (3.6.12)
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The orbit of coadjoint representation, Tr(Xy * rff. , may

alternatively defined by pointing

Then any other point on the orbit is

be alternatively defined by pointing out one of its pointa,X.

XC£ (3.6.13)

for some g€G. The 1-form Y in (3.6.6) i s given by

Y^ j"'^| (3.6.14)

Kirillov-Kostant 2-form J-L ±n (3.6.8) is equal to

; J f | J j = (3.6.15)

Generic orbit of coadjoint representation may be naturally

parametrized with the help of Gauss decomposition

If X is taken to be generic diagonal matrix, then diagonal

elements £д
л
 in fact do not act on X , and the orbit is

parametrized by "L and twisted ^ (its dimension is thus

D-r). Kirillov-Kostant form in this parametrization is

SI ̂  T*(X
C
 fi'Sfc (}) &$'

u
 (Щ(?)]'). (3.6.17)

(For particular choices of X
Q
 this form is still degenerate,

and the orbit has lower dimension and is parametrized by some

subset ofJ 's and f
 (
s.)
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Since two-form -t- is closed,it is possible to define a

1-fora <£ , d~ d Si. fand oi gives rise to the action

J - J oC (3.6.18)

which is generalization of the short action

(3.6.19)

arising in the case of Heisenberg group. The form of Kirillov-

-Kostant form,arising when Gauss decomposition is used, in

fact appears very close to representation (3-6.19) after ap-

propriate choice of variables. Before ire proceed to detailed

discussion of this point in the next section, let us note,

that Gauss decomposition is not valid at some manifolds of

non-vanishing co-dimension on the orbit. Therefore appropriate

boundary conditions should be specified at these points.

See the first paper of re&3 for detailed discussion of bounda-
-dimeneional

ry conditions in the case of finite/groups u. In the case of

infinite chiral algebras the problem of these boundary conditi-

ons is closely related to accurate construction of Pelder'e

projection operators [5"].

In es.4.6 we ahall briefly discuss generalization of

Kirillov-Kostant construction to the case of KM algebra. For

this purpose group elements g should be considered as func-

tions of E, and all formulae should be accurately central

extended.



Pig.3

a) The roots of algebra sl(3)—

J

Correspond ense between the fields W v' and positive root

subspaoea
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о) The roots of algebra G-.

«Ц
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