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Some results from group thecry are collected, which
are important for free field representation of Kac-Moody

ulgebra and WZ¥ model on the lines of ref.1.
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3. A PIECE OF GROUP THEORY

Let us collect here some basic information from group

theory [1'1, which seems relevant for future study of the free '

£ield realization of WZWM and coset models.

3.1, ROOT SYSTEMS

Let ‘J ‘be a vector space of finite dimension, c'.imb - T,
We shall give the definitions of root system gnd its Weyl
group in 'J o Consider reflection 'Za( with respect to the
hyperplane, orthogonal to the vector &€ b and passing
through the origin:

V_ R&
- - v oL = ==,
,Zo( (J) - *) ()JJ )‘ ) (d,d() (301.1)

We are .interested in finite groups, generated by the reflec-
tions (3.1.1), Consider a finite set of non~vanishing vec-
tors A={d}, satisfying the following conditions:

e A generates h a8 a vector apace;
2, ZuA=4  for every €D {(3.1.2)

3. (°‘V;J5)€Z for every d,jBFA-

The system of vectors A is refferzd to a8 & root 8y 8-
tem, and the group W generated by all the reflections
(3.1.1) for all X€A - as a Weyl group of & ,

Let the e&pace b be a direoct sum of k subspaces,

6:‘_)‘6731@,_,@!]“ and let A( be & root system in

bi.
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Tnen the union A= A& YV & - ViR will be &
root gystem in ﬂ .« The Wey: group is identified with the
7, X N .
product Wi(4,) W (o) . I7 no such expansicn

exists, the root system is celled irreducible,

It may be shown,that if oL is a rooi, then only the
root - 1s collinear to it (this is obvious) and Rel (~3)
may alsc be collinear. It turns out,thsat except for the lat-
ter cagse there is a one-to~one correspondense between irre-
ducible root systems and complex simple Lie algebras.

Consider a hyperplane in the space \j s such that it
does not contain eny root. The roots, lying on cne side from
the hyperplane are said to be positive with respect to the
ordering introduced.lLet us denote these by A ; . Evidently,

A=A4A,V(-0+ '-'A-), Among positive roots 4L ¢ one
can uniquely define a subset of roots M with the property,
that any £ €A + 1s & linear combination of roots e 1

with non-negative integer coefficients,

= = nfg. »
A sen W B (3.1.3)

The roots B¢ [T are reffered to as gimple and (! is a
system of simple roots., Evidently, simple roots form a basis
of the spece E] « The number At‘: = hf is called the
height of & root « . £l

Different ordering in the space defines another subsets
A; aad (1’ . Two subsets A;,,(n) 5 A;(nja.re conjugate under the
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action of Weyl group W { A) . Moreover, any £ € 4 is con~-

jugate to some simple root: zXe /1, Te W.

Root systems of rank 1=2 are isomorphic to one of the
following three types: Ay 2,G {see Pig. 1 ).

In the set of positive roots one may find a maximal
one, 1.e. & root B e A s such that G+l EA for any

AEAQA4 * The number
h= htgt1 (3.1.4)

is reffered to as Coxeter number. It is independent of the

ordering in b end thus of the choice of & system A, .

The roots € A generate a root lattice (3=Z8in ﬁ .
The duel lettice (¥  is generated by meights J |,
related to roots by the bracket product,

(3.1.5)

The besis in (Y 1s formed by the set of fundamental
weights,satisfying

(\)J,l‘g>= SJKJ dK€n‘ (3.106)
Let f be & half-sum of all positive roots,
f = - z d’ - (3‘1a7)
c(GA+
Then the reflection (3.1.1) with o(J' € 1 gcts on f& as
A + = Z i = p-d
2u =TT R AEA s, ¥4, o, (3.1.8)

The first equality follows from the fact,that ‘?‘Q permutes
positive roots X (& ¥«() Comperison of (3.1.8) and (3.1.1)
leads to the following relationa:
v e
(‘P} ) = i > - f— >3 )J (30109)
- oo o) -

TN,
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3.2, GAUSS DECOMPOSITION

Let Ua, be a simple lie algebra. This means,that Aum Lj?l
and the adjoint representation of O} is irreducible. Con-
sider an element X ¢ OJ with the minimal possible dimension
of the zero-mode elgenspace of the corresponding adjoint
operator, cid, Y = L;X,y] . A meximal commutative subalgebra
bc ¢t which contains X is called Cartan subsl-
gedbra. Because of cammutativity it is possible to consider
common eigenspaces cJ & for all h G‘f] « The corresponding

eigenvalues are linear functionals on f] ’

Lh, o 1= 4Chygy, , «Chy= (L) e

The eigenspaces 63& are called root subspaces of Cy « In

accordance with (3.2.1) there is a decomposition
of=h+ Z 0. (3.2.2)
*o
Dimension »r of y is called the rank of ?‘ . (Comp~

lex) dimensions of all root subspaces ¢, are equal to

unity. ( Cfy = €, , X 1is a complex number, €, is a

step generator.)
Let G be a simple Lie group with the Lie algebra CJ .

G  acts by edjoint representation on o
-1
- e < of & oLl
lgeg 2 Y=3d 98- (3.2.3)
By means of (3.2.3) one can "diegonalize” Cg :

Ly:ﬂ(? ﬁ (3.2.4)
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Thus 6 parametrizes the set of conjugancy classes of Cy .

Consider the subgroup M genereted by transformations, pre-
serving Cartan subalgebra !j ,
. ~{ '

M:{%éél ?hﬁ :hi ) h)lqie 6}, (3-2-5)
In other words, M is normelizator of lj . It is worthwhile
to note,that M is a subgroup of maximal compact subgroup U

> !
o2 G .Let M vea subgroup generated by transformations,
4

commuting with ﬁ ( M is centralizator of ﬁ Y

M'={qge M| ghg'=h, hebj . (3.2.6)

The factor group M/M' is finite and acte on the set of root
subspaces ngk, by permutations.

Relation between the previously considered theory of root
systems end the theory of simple Lie algebras is based on .the
observation,that the set of linear functionals ol (h)€ 6 ’
is a root system in 6" with respect to the Weyl group,
which is isomorphic to the factor-group M/Mt.

Choousing an ordering in 6v one cen rewrite (3.2.2) as

og=h+2 gu=Yr gt
- (3.2.7)
o= =2 Gxa
This decomposition is called Gauss decomposition of the algebra,
and it may be integrated for almost all elements g of the
group G:

= 4. r‘/,, Yo LT E€xp f*/': G, (7% e.x/,ﬁ (3.2.8)
Ju€ exp g™ Gu . |
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Let €, be generators, corresponding to Qfd « In terms of
decompogition (3.2.2) the commutation relations take the

following form:

[h,ei]=cCh)e,

Le&) eb"J.z h“ d(h“) :_2’A (30209)

O o(.*p €
e = )
{ “eﬁ] {e‘,—rﬁ a(*ﬁ e A
If G = s1(n,C), then D 13 the subgroup of diagonal

matrices, Gy (6,) is the subgroup of lower (upper) triangular
matrices; M=D y M/ #’! ig generated by permutetion matrices
of the form  diag(1,{, 91...4591 1)+ (E,-Ep;)

(Eid is a matrix with zero entries, except for the element

_t1,J), which is equal to 1.) 6 is subgroup of traceless

diagonsl matrices, ¥ ={diagChy,... /i,.,) , 2h;=0%
the root generators are €y = £, (e<y) , @~ Eop €yl
the roots hy = Aiag (o :.( o. a.t,o.. o).

For other examples see next ss.3.3.

Note now, that by means of decomposition (3.2.7) one can

R
remind, that b is an r-dimensional complex space 'f] ﬂ"‘ﬂ

and { (24} are generators of & ( 456 €. Then L!j R
is the Cartan subalgebra of 1{ ,and

c(€eyt e-l) . (€‘~€.¢)
are géﬁerators ot W . The pa.rticular caae is compact sub-
algebra su(2) of Of = 81(2,C),with Bhcoy | @r =0
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Let us introduce now an invariant non-degenerate scalar

produet on ¢] . Invariance means, that

Clzx1,y)+(X,12,97)= O for eny z €Y.

Such product is mown under the name of Cartan-Killing fcrm.
Its existence 18 equivalent to semisimplicity of the algebra.
Explicit expression for this invariant form is

(X,9)= £2 (adx'adg)civ a-"[le")']- (3.2.10)

In terms of structure constants

A < A
Jat= Cac ngc-v (3.2.11)

which ig obviously invariant andé non~degenerate for asny simple
Lie algebra.
From (3.2.10) end {3.2.1) we deduce,that for any
Chy, by )-— S (o, he) (% A2). (3.2.12)

Ve
The universal coefficient Cy 18 in fact quadratic Casimir

eigenvalue in the adjoint representation (it will be discus-

sed later,in 8503.5).
Root subspaces 9 eare mutually orthogonal,except for

7‘ and 9 :
Co w oj )~ S‘*ﬁ (3.2.13)

and (3.R: 43)
Ih fact eq.(3.2.12)Ydescribes the form (3.2.10) on &f

in coordinates (3.2.7).
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3.3e SOME EXAMPLES OF GAUSS DECOMPOSITION

In the previous gs.3.2 we have already discussed the form

of Gauss decompogition for the group s1(n). Here we genera-
lize this construction to other classical groups,
The key fact,allowing consideration of arbitrary simple groups
ia that there 1s s basis in adjoint representqation of the Lie
algebra ¢f in which the Cartan subalgebra has a diagonal
form, and v‘che subalgebras I z
may be realized in terms of the corresponding triangular mat-
ricea. Let us proceed to concrete sxamples,

3.3.1. q; = sol2n+1) (Bn):

Group elements satisfy the condition ¢ Ig =J
where J is non~degenerste symmetric matrix .For an element
of algebra we have: X J+JX =0 « In the above mentioned
bagis matrix J has the form of

L
et
O ! (o
J={ 4 where =\ .0 /- (3.3.1]
y ©

Then X & SOQn)it

X= Qo-?

cu-tnn‘ element is

/L:d;@,‘g(/.”,,/m,&,-/m, k). (3.3.3!

A - g
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The rooi subspaces, corresponding to the rocts e,-eJ. N
({ét‘,\/sh , 4"5\/) belong to the matrix N { and A )N
those corresponding to €L+QJ' -to B y €, €, "§)L'7
Generic element of subgroup GL is
/\_-1, ~L ~(
A 0 o) (ca )+ A pg/(-rcﬂ‘:o
2 1~4 2 { ?: ?r\’ Hee =1 (3.3.4)
C -Ay 4 Aiw=0C <k :
and - T ’
u- L ‘
3.3.2. Cc\f = sp(n) (Cn):
Defining relations are now
7 = J: O d
xS+ Jx=0 O ) (3.3.5)
Thus
ﬂ B B =B
I ¢= (3.3.6)

/l—dan (/11 . /1/,,"/““ ‘/11)

The root subspaces,corresponding to the roots €, (JJ‘ (c‘:.é‘/'/
are the same that those in the case of Bn. For the roots
29\/. {j=1).¢.,n) the root subspaces are matrix elements

{(jsn~-j) of matrices 8 and C . Subgroup GDL consists of

the matrices o,
(A O vl Ap=0 ey
. f ~ ~
\ € A AC=CAH (3.3.7)
and (; “:6’,_/:
3.3.3 ¢F = so(2m) (D,):

The form of matrices is just the same as in the cage of

go(2n+1). It 15 neceasary only to omit the centrel row and

column.
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3.4. CHARACTERS OF LIE ALGEBRAS

Irreducible finite-dimensional representations of e Lie
algebra OJ may be described in terms of the weight lattice
GV . There is a correspondence between a vector A€ QV
and an irreducible representation ~/7; in a space "EV\-
Representations J, and A,ry ere isomorphic for emny element
uw of Weyl group {/ .In other words ., , which is called

the highest weight of representation 7& is defined bty A

up to conjugations from the Weyl group. Representations ."7_:\’
Nj
with .)‘/' given by eq.(3.1.6) are called fundamental.

Representation {/7) is completely characterized by the
following formulae: , ,
%('A)gsq('é)§ (%'G'R,\ ned
Ta(Cx)3=0 X EA+
The finite-~dimensional space RA is spanned by the vectors:
- hy - Py
=/ 2 ’ ‘ ) Z oo
bR ) L. T (ey,) \g « ell, neZ (3.4.2)
These are eigenvectors of operators -/7/\ (/1 ):

V3 ('/L)'?:/”(A)g (3.4.3)

where eigenvalues /I/[ /1 )a.r’gc given by the following expression:

Juh)= Ah) = 2 ik (4) (3.4.4)

(3.4.1)

which ig in sccordance with (3.4.1).
Evidently, /i€ (Y end the set of weights %:{/L/f

(the weight diagramm) is invarient under the action of

Weyl group.
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Let us define now the characters of representations org .

The character of representation JZX i3 a complex function,

defined by
ch, (x)=te Ty(xy, X€q. (3.4.5)

In view of (3.2.4) we can restrict X under the trace sign
to elements of Cartan subalgebra, /7,':?)( g"f . Then due to
(3.4.4) we can rewrite (3.4.5) as follows:
- Mih)
h,(h)= 2 dimi, e (3.4.6)

‘/llélD,\
where clim V), stands for multiplicity of M
It follows from (3.4.2),that h 5 A /‘ should naively look
2 - =24 £
e [l (1re+re’ . )= 7
’(/2 < (30407)
AEN + o(/ZA"’ (e™-€7),
This formula is not correct,sinee it contains the infinite

seria of descendants. In fact 04)(4)18 inveriant under the

action of Weyl group. This property is a consequence of its
invariance with respect to the action of 405, « Sincte the de-
nominator in (3.4.7) ig Weyl-antiinvarient,

L, - LY
1 (¢ /2~e '(/z)-.-_- > o/efj-e’o
dent Se A
it is necessary to take antiinvariant combination in the nume-
rator of (3.4.7) as well. After this correction we immediately
[
obtain a finite combination of exponentials e/" ) » This is

the celebrated Weyl formula for chaza.cters:
/ SAChL) -
S els e SO -SPH)

ch, ()= 2 3507
= E ({gf‘s‘ e P ) . (3'408)
Ny 324
As follows from {3.4.5), in the limit A—>(O (3.4.8) turns
into a formula for dimenaion of representation .
) CAep,<) ‘ '
7 = /7 e (30‘09)
Cﬂ/ﬂ /f) oLEAS Go, 0‘} .

St e Vemee e

A
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3.5, CASIMIR OPERATORS

Consider representation 3} ot gj . There are some polino-
misl combinations of generators of Qf which commute with
all the generators in representation space. They are reffered
to es Casimir operators. In eccordance with Schur lemma they
become c-numbers within any irreducible representetion.

The algebra of Casimir coperetora is finilfe genersited. The
orders of Cesimir orerators in original generators of Qj

are called invarients of the Lie algebra qf . The lowest or-
der is equal to two, while the hignest one -~ to the Coxeter
number h. Let € f be generators of the algebra Of inm Ay .

Then the second-order Casimir operator has the form of
3 a ¢
€z = Gab €, €, (3.5.1)
where Bab is the Carten~Killing form (3.2.1C). It is easy
PN |
to check,that [c;,e)]:o. Omitting the sign of representeti-

on,we may rewrite (3.5.1) in ierms of orthonormal basis
(h1....,hu) in ﬁ and step generators €, (see (3.2.9)):

Y 2 o ,
CZ = Z{ llJ + Z ed_ e:’( + e<‘( ‘,( . (30502)
J< LED+
Using reletions (3.2.9 ),one geta the expresaion:
Y 2
AEN,

Thus,according to (3.4.4) the eigenvalue of Cg is equal to

) )
C, —= ('\J)‘fzf) (3.5.4)
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¥ote,that the highest weight of the adjoint representetion

coincides with the maximal root € + Therefore for this rep-

resentation

. {
cy= (6, g+‘2ﬁ)-§_ (3.5.5)
Let ? be a dual Coxeter number,

2

j‘: f'f z “9 (3-5-6)
J:(

where integers m; are defined from decomposition

?

Q= S : (3.5.7)
©,6) = V& <)
mo= 26/ (3.5.8)
v 56
Now from {3.5.5) we obtain the important identity:
z
¢, =(8.9)(4+ i@ﬁ)}: {+3m; =5. (3.5.9)
Z (919) V=
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3.6, KIRILLOV-KOSTANT CONSTRUCTION {3}

3.6.1. The structure of Lie algebra o] gives rise to sym-
vlectic structures on some representations R ot of « In
order to have Poisson brackets on functions on R, , which
satisty Jacobl identities, one needs at least an invariant
antisymnetzric tensor of the third rank. Such tensor obviously
exists in the case of sdjoint or coa.djoint representation
and consists of structure constents o’ < of the algebtrad.
Whenever Cartan-Killing form on ‘% is non~degenerate (i.e,

oJ is semisinple) adjoint and coadjoint represemntations
are equivalent, It is no longer the case for non-semisimple
Lie algebras.For exanpls,when there U(1)-factors, the sction
of group in coadjoint representetion is preferable,since
U({1)~generators do not act in adjoint representation at all.
In what follows we shall take R to be coadjoint represen~
tation end consider semisimple Lie algebras GJ, ‘

Let us dencte generators of the algebrs O} by ed
4= 14000 ,DndinG, and coordinates in coadjoint representati-
on by X* . Let us consider the set of functions on the
dusl space g" « Then there is a Lie-Berezin bracketl #1,

{560, P(x) ] = CLx . f 3p (3.6.1)
which aatisfies Jacobi identity, ain_t;e it is satisfied by

the tensor of structure constants Cg'. (Note,that eq.
(3.6.1) d be rewritten in terms of vector ticlds

5 =0 ¥ f
[V;, 9 ]= V'Uv ‘P 9 + possidle cocyclss (3.6.2)
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where va vy] stands for ordinary commutator of differential
operators.) However, , - the matrix &) (x)= C"Jx‘in (3.6.1)
is degenerate at any X , singe there are invariant functions
{2 (%) such, that
£x% fax)y =0 (3.6.3)

Independent functions of this kind are labeled
by the subsceript & , running through =»r =irr'1igge? values,
which lie between 2 and Coxeter number h, and are related
to Casimir op'e;a‘bor?. If a Casimir operator looks like

.= 9 ..£q_e"...€"“ then corresponding
(
ENCIER T X“ LX, (3.6.4)

Other invariant fumctions,which satisfy (3.6.3) are arbitrary

functions of these independent fq' .
1f the values of all independent functions are fixed,

Fa (X)= fUa - - (3.6.5)
the whole space of functions becomes resiri~ted, and in this
restricted space the Lie-Berezin fomm sz from (3.6.1) is
non-degenerate. Since functions f,(X)are invariant,conditions
(3.6.5) define orbits of coadjoint representation of G, The
inverse of non-degenerate restriction of Lie-Beregin form on
s coadjoint orbit, &k, 1s inown as Kirillov-Kostant form.

Let us consider two infinitesimal veriations of paoint X
within the seme orbit, &,X* d, X, since G acta transiti-
vely on the orbit,these meay be represented as
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F 3
¢ —1 .X1
sX=ady (3.6.6)

Kirillov-~Kostent form allows one to construct two invariant
functions on the orbit:

9 - 0 () 8y xIs x® (3.6.7)
and . .
D=0, ¥ Y= cin XYY® O Gues
We shall reffer to the second one, _Q. »&89 Kirillov-Kostent
form, since in 83.4.6 we shall demonstrate,that _fl {but not
.ﬁ._ ) appears related to the WZW action.

3.6.2. We shell often consider generators of algebra (Z-I
and elcments of the dual space OJ* 83 elements of metrices
(oee the end of 5s5.3.2). For example,in the case ofg},:sl(n)
these are nxn tracelcas matrices, Relation between C‘J

and cg* is dictated by the pairing

<¥,y>=tr(xyy, (3.6.9)

Adjoint action of the group G an GJ i3 defined by

JAd 4= 3‘39" (3.6.10)

end 1% 13 coavenient to define coadjoint action by

ﬂd;x = 3-1}((3‘ | (3.6.11)

Invariant Caoimir operators look like

it g

Te x¥ (3.6.12)
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The orbit of coadjoint representation, Tr(x}‘ = ,'“k’ ney
be alternatively defined by pointing out one of its points,xo.

Then any other point on the ordbit is

X=§' Xy (3.6.13)
for some gE&€G. The 1-form Y in (3.6.6) is given by
. - -{
5)(:631)(0?'4 g¥Xed9 = Mt”é—';?x  iee.
Y= 5"55 ' (3.6.14)

Kirillov-Kostant 2-form -Q- in (3.6.8) ia equal to

L= <x, [Y,¥I> = < %1589 97891> = (3.6.15)
=< x. LIg57", 947>

Generic orbit of coadjoint representation may be naturally

parametrized with the help of Gauss decomposition

4=9.904u= 9 9u 9o 979 D), 9.°G543.6.16)
It xo is teken to be generic dlsgonal matrix, then diagonal
elements Cé.n :I.n: fact do not aif on 'xo, and the orbii is
parametrized by J and twisted Y (its dimension is thus

D-r). Kirillov-Kostant form in this parametrization is
-1 ¢ * ~ ;. -f
= T’?.(.Xc. 9 JjL x) Jyu v )fe ¥] ). (3.6.17)
{(For particular choices of X, this form is still degenerate,

and the ordit has lower dimension and is perameirized by some

[, 93
subset ot‘]' 's and ¥ 's.)

et
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Since two-form L is closed,it is possible to define &
~4
1-form & , d=d* ) ,Land K  gives rise to the sction

p
ﬁ = J dl (306:18)
which is generelization of the shoxrt action

S Pdﬁ, (3.6.19)

ariging in the case of Heisenberg group. The form of Kirillov-
~Kostant form,arising when Gauss decomposition is used, in
fact gsppears very close to representation (3.6.19) after ap-
propriate choice of veriaeblea. Before we proceed to detailed
discussion of this point in the next secticn, let us note,
that Gauss decomposition 1s not valid at some manifolds of
non-venishing co-dimension on the orbit, Therefore appropriate
boundary conditions should be specified at these points.
See the first paper of ref.3 for detailed discussion of bounda-
' -dimensional
ry conditions in the case of finitergroups G, In the case of
infinite chiral algebras the ﬁroblem of these boundary conditi~
ons is closely related to accurate construction of Felder's

projection operators [5].

In 88.4.6 we shall briefly discuss generelization of
Kirillov-Kostant construction to the case of EM algebra. For
this purpose group elements g shoyld be considered as func-
tions of z, and all formulae should be accurately centiral

sxtended.
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a) The roots of elgebra 81(3)5!'A2
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Correspondense between the fields \US
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et Mg Sy
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%5 = Ja;



e b s o e a A ST, S SeaTL b v nrens L4 .

A4

¢) The roots of algebra Gy

dg s -1y +@ *8y ; g ex-e, d\jdsénj\? =Sdet Rd,

dy= ~ 2051 Q.+Qy'olfe‘—es‘;asz')_e‘{l.g.&g.e\_gl
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