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Abstract 

We exhibit a class of quantum field theories where particles interact with pair potentials and 
for wh ĉh the time evolution exists in the Heisenberg representation. The essential condition 
for existence is the stability in the thermodynamic sense and this is achieved by having the 
interaction fall off with the relative momenta of the particles. This can be done in a Galilei-
invariant manner. We show that these systems have some mixing behaviour which one postulates 
in ergodic theory but difficult to prove for classical systems. 
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1 Introduction 
The quantum dynamics of N particles interacting via 2-body potentials is by now well un­
derstood. Even if the potentials have 1/r singularities (or slightly worse) the time evolution 
determined by 

«=i * t> j 

exists as a 1-parameter group of automorphisms of the observable algebra. This is in contradis­
tinction to the classical problem where for v ~ 1/r (and JV > 4) there are orbits where particles 
go to infinity in a finite time [lj. That quantum mechanics got rid of these pathologies [2t is not 
all what people studying bulk matter want. There one does not count the number of particles 
and one reeds results which hold uniformly for large N. In these theories N should be con­
sidered as a dynamical variable. Frequently even phase relations between states with different 
local particle numbers become important. This situation is conveniently described by second 
quantization where (1.1) is expressed by creation and annihilation operators a*(x), a(x) as 

H = Y~ J dzVo'(i)Vo(i) + J dxdx'a"{x)a\x')v{x - x>(x ' )o( i ) (1.2) 

and we have to make sense out ofthat. Now N = / dxa'(x)n(x) is not fixed any more. What one 
usually does is to put the system in a volume V to go to the Fock representation, to quantize the 

fc-modes, and then in perturbation theory to get rid again of V by replacing — ] P by / . _. 
V ~ ( 2 T ) 3 

Since in reality V is fictitious and no system is completely isolated but has some interactions 
with the outside it seems more reasonable to take (1.2) as it stands in infinite space R 3 . Thus 
one faces the problem whether it determines a time evolution in the Heisenberg representation 
by 

a(x,t) = etHta{x)e-iHt. (1.3) 
It is usually assumed that this works, at least if v is a sufficiently well-behaved function. In 
this review we shall investigate this question and find that even for very smooth v the formal 
expression will not determine a time evolution unless the potential v is stable, i.e., there is a 
constant A such that 

HN>-AN V/V. (1.4) 

The importance of stability for time evolution was first emphasized in [3]. Lest the reader might 
think that this is a question of £-tics we hasten to say that it is just a question of realizing the far 
reaching physical implications of (1.3). If it determines a time evolution then the latter would 
be independent of the st^te of the system. Though from a philosophical viewpoint one wants 
a time evolution of the observables irrespective of the state of the system the equation (1.3) 
actually requires a lot. Since N is determined bv the state and will be 00 for a finite density of 
particles we need some limit for the velocities of the particles as TV -> 00. This is guaranteed 
by (1.4) and what happens for potentials where (1.4) fails is that a hot cluster develops and 
the mean kinetic energy per particle goes with N to infinity. This has been shown for classical 
mechanics by recent computer solutions of the equations of motion for v(x) = -e' [4,5]. To 
the extent that (1.3) also has to contain the classical limit, these investigations üxow that such 
a phenomenon will also occur in th<? quantum case and prevents time evolution to exist on the 
algebraic level. 
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The success of an optimistic treatment of (1.3) is due to the fact that the Coulomb interaction 
which is the relevant potential for condensed matter physics is stable for fermionic electrons 
[6,7]. Generally the question whether a potential is stable is rather delicate. Clearly, if v is all 
attractive (v < 0), then £i>j ~ ~^2 a n < ^ ^N l s n o t stable. But even Coulomb-type potential 
energies 

£ etejv(xi - Xj), ei - ±e, £ ] e« = °» 
»>i 

may or may not be stable. One finds: 

if v(x) = l / | i | , HH is staole for fermions but not for bosons [6,7], 

1 _ C -MM 
if v{x) = —. , HN is stable for fermions and bosons [8], 

|x| 
if v(i) = |xje~'xl, Hff is not stable, neither for fermions nor for bosons [8]. 

There is no local potential t; / 0 known such that both v and — v are stable. This shows 
that any expansion of (1.3) in a power series in v is doomed to divergence. If this series were 
to converge for any sign of v it would determine a time evolution for v and -v and this is not 
possible. However, the preceding intuitive argument points to the correct cure for the instability. 
Taking a potential which becomes inefiect;~e for high (relative) velocities of the particles the 
velocities should remain bounded for JV -+ oo and there is a chance that (1.3) gives a time 
development on the level of the algebra of observables. In this paper we shall exhibit conditions 
when it actually does. 

The reader might wonder why the Hamiltonian (1.2) with a smooth v, which looks so nice and 
sei fad joint can fail to determine a time evolution. (1.2) contains two dangers. It is unbounded 
since p(x) = a*(x)a(x) is an unbounded operator and because f cPxd3x' goes over R 3 x R 3 . 
The latter, though preventing H from becoming an element of the observable algebra, does not 
make any difficulty in a time derivative for a local operator ö(x) = i[H,a(x)]. As p(x') and a(x) 
commute for x ^ x' for a v with finite range the integrals go effectively only over a finite region. 
The real trouble maker is p(x) which in some representation like the Fock representation is well 
defined but in others, like the one based on the tracial state, is truly infinite. Though there is no 
doubt that for a smooth v H from (1.2) determines a time evolution in the Fock representation, 
an automorphism of the algebra of observables, which would be valid in any state, cannot be 
expected in general. For our potentials with momentum cut-off H will still not be a bounded 
operator but in any representation with a time invariant state it can be renormalized in such 
a way that it becomes selfadjoint. Then the unitaries e,Ht exist but they do not bflong to the 
observable algebra but depend on the state. Nevertheless, the time evolution a -* e,Htae~,Ht 

will be state independent. 

2 The Classical Many-Body System 

The problem of existence of the time evolution in quantum field theory is not primarily a matter 
of mathematical sophistication but of understanding the physics of the many body problem. 
For this purpose we shall first consider the motion of N classical particles as determined by 
(1.1). We are not interested in difficulties arising from a singularity of the potential or of its 
long range and hence we shall take v to be smooth and short range. The question is whether 
some typical feature arise in the limit JV -» oo. Recent computer studies [4,5] have shown that 
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there is a dramatic difference between potentials which are stable or unstable in the sense of 
(1.4). Typically N = 400 particles were studied on a toxus T 2 with a density such that mean 
particle distance = 10X range of the potential. For stable potentials, £e;eje~l X i - x - ' l , £ * • = 0 
[9], what happened was exactly what one learns in statistical physics: spatial inhomogeneities 
diffused away and the momentum distribution tended to a Maxwell-Boltzmann distribution. For 
unstable potentials and low total energy E the opposite happened, a hot cluster developed out of 
a homogeneous distribution. The lower the energy the greater the fraction of all particles which 
the cluster container1 and the bigger the temperature difference which was building up. This 
means that the system has a negative (microcanonical) specific heat and thermodynamics works 
differently than us aal. Nevertheless, the standard ergodic arguments to justify thermodynamics 
apply since these systems are presumably /f-systems [10] and thus certainly ergodic. This means 
that one particular macroscopic feature dominates the energy shell and almost any orbit will 
end up in these regions of phase space and the typical feature will appear. Though an analytic 
solution of the Hamilton equation is beyond the reach of present day mathematics the dominant 
features in phase space can be easily singled out and will be done first. 

Classically the microcanonical state is given by the probability measure 6(H^ - E)e~s^ 
in phase space. It becomes more suggestive when projected down to configuration space V1*. 
If we denote a point in configuration space (xx,X2,-..,xp{) by X and the potential energy 
J3i>j v(xi - Xj) by $(X) then (in two dimensions, and m = 1) 

„(*) = j T d*Pi... Snips- E)e-S& = 0Les(E){E _ * ( x ) y v - i ( 2 1 } 

Those X have the highest probability wheTe |$(X)| > |£ | and, if the system is unstable and 
E ~ N, there are always X where this holds. For instance, if v(x) — -e~x then inf* $(X) = 
-N(N — l)/2 and those X where all particles sit on top of each other have the highest weight. 
Of course, these X fill only a small volume and we shall now estimate the probability of one big 
cluster compared with, say, two somewhat smaller clusters. If Vb C V is a volume of the size of 
the range of v then to have Nc particles in one cluster small enough that all particles interact 
with each other costs volumewise (Vo/V)^" 1 . On the other hand we havo seen that there the 
probability density p(x) has for \E\ < JV * a value (N*)N~l so that to have one cluster with Nc 

particles has a probability 

Pi ~ (vT'1 {N<)N~l (22) 

where NlN~7 is the value of p(X) and (VojV)Nc~^ arises since the center of mass of the cluster 
2JV 

may be anywhere. Pi attains its maximum for Nc ~ • and thus the fraction 2/ln{V/V0) ln( V/VQ) 
of all particles likes to be in one cluster. To have 2 clusters with Nc/2 particles each ha9 by the 
same argument a probability 

and for large A' we see P? = P\ • TT-2~N and thus it becomes much more likely to have one 
Vo 

big cluster. These rough arguments can be substantiated by exact calculation by discretized 
versions of (1.1) [1,11]. In the computer simulation of the dynamics V/Vö iß about 104 and thus 
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one expects about 1/3 of all particles in the cluster. In fact, one found in the computer solutions 
that iVc fluctuates around 140 ± 10. 

Next we turn to the question of the local temperature and define a map T : VN —• R + by 
( m = l ) 

T(X) = r rf2?!.. .d3

PAs(E - HN)c-sW = ( f ) x (2.4) 
J-OO I *• 

such that the local temperature is just the expectation value of the kinetic energy of a single 
particle at a given point X in configuration space. 

Remarks (2.5) 

1. At a given point X 6 VN the distribution is the same for all pi (we could have integrated 
l/NY,J% instead of p\). This means that in equilibrium the particles outside the cluster 
are just as hot as the ones inside. 

2. The microcanonical state differs from the canonical state by the X-dependence of T. If we 
replace 6(HN - E)e~sW by e-ß(HN-F(ß)) t h e n T _ yß jj^spective of X. F is the free 
energy. Of course, since the cluster c&n sit anywhere T depends only on the correlations 
between the particles and V ^ - 1 Jd?X2... CPXNT{X) becomes independent of X and in 
the limit N —» oo equals the microcanonical temperature (dS(E)/dE)~l. 

3. It has to be remembered that T(X) is the temperature for the configuration X in the 
equilibrium state. In the dynamical studies the following transient features appear. If a 
cluster with Nc particles is formed then locally the gain both in potential and in kinetic 
energy is ~ N"*. Thus in the cluster the system heats up to a temperature ~ Nc- However, 
the cluster is not thermally insulated, and eventually its temperature is distributed over 
all particles to give a common equilibrium temperature ~ N*/N. 

With the Hamiltonian (1.1) we calculate (m = 1) 

n * ) = l ( £ - * ( * ) ) . (2.6) 

Remarks (2.7) 

1. Since - $ ~ iV* we get T ~ N%/N as soon as E < JV*, for instance, if we start with 
E ~ N and Nc ~ JV/3. 

2. The definition (2.4) gives an ^-dependent temperature even for thermodynamically stable 
systems. However, if $(X) > -cN and E ~ N there will be only fluctuations aionnd 
T = foE-V~N j<Pxl...<PzN*{X)). 

Since we have seen JVC/AT ~ 2/ln(V/V0) we see 1 ~ N*/N ~ Ar/(lnV/V0)
2 and thus for 

N -* oo T increases indefinitely, irrespective of whether V or V/N remains constant in this 
limit. Thus if we start with the same particle density and mean velocity but increase N we end 
up with a motion which gets faster and faster. Actually, the derivation of the Vlasov equation 
[12] can be carried over to unstable situations. There the limit JV -> oo of the time evolution 
from 
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was considered. We do not have 1/iV in front of $ but we can produce N in front of the 
kinetic energy by reseating the time t -* r := tfy/N. Also for quantum systems with attractive 
regularized 1/r-potentialsone can show that the limit N -* oo of the time evolution exists only 
after some rescaling of t [13]. In these cases the result is that the time evolution is governed 
by a mean field theory provided we rescale the time to resolve the speeded up motion. This 
obviously excludes the possibility of a limiting dynamics without scaling of the time and thus 
a time evolution in quantum field theory without reference to the state which determines the 
number of particles involved. Such a dynamics is possible only for Hamiltonians satisfying the 
stability condition and in section 4 we shall demonstrate that it is actually true for a reasonably 
large class of potentials. 

3 Quantum Observables and Their Time Development 
Taking the thermodynamic limit N, V -* oo mear.s that we concentrate our interest on prop­
erties that are independent of the exact number of particles, i.e. we concentrate on quantities 
like density, the speed of particles and correlations between finite parts of the system. These 
properties which we can measure we call the observables. We can think of an observable A 
independently of a particular physical situation. Such a physical realization corresponds to a 
state u, where u(A) 6 R is the average of the results of measurements of A in the state u. As 
mathematical quantities we can add and multiply observables, so they form an algebra. Apart 
from the algebraic structure we can consider a topological structure: First we assume that re­
sults of measurements are bounded, so the observables are bounded. Next we call observables 
close to one another, if measurements give essentially the same results independently of the 
physical realization. So we can define a norm as ||y4 - J9|| = 6\ipw\u(A) — u(B)\. In fact we 
could deal with a Jordan algebra, where the product is symmetric but not associative. But it 
is mathematically by far more convenient to pass to a C'-algebra A with associative product 
that is not commutative. This requires the introduction of another mathematical operation, the 
adjunction A —• A*. In standard quantum mechanics this corresponds to going to the hermitian 
conjugate and the following rule relates this process to the norm 

Mil = \\A'\\ = \\A*A\^ = WAA'W1'2 (3.1) 

For a deeper insight into this algebraic approach to quantum statistics we refer to [14,15.16]. 
According to the previous arguments it seems clear that an observable has to remain an observ­
able in the course of time. Thus it appears as a minimal requirement that the time evolution 
corresponds to an automorphism group of A. For bulk matter this time evolution should be the 
limit of the time evolution of an increasing number of particles. For finitely many particles we 
have a Hamiltonian time evolution (Heisenberg representation) 

rt

N(A) = eiHfltAe-iHNt 

so the question is whether 
Jinw/V^M (3.2) 

exists and is independent of a particular limiting procedure chosen. 
Of course, such a time automorphism group rt : A -* A of the observable algebra also 

defines a t<me evolution of the set of states E (Schrödinger representation): 

ut(A) = w(r,4) =--: ( r » ( / t ) . (3.3) 



For N —> oo we can also consider 

lim wor, = r," o u , 
N-too 

but the existence of such a r(* on a convenient subset of E does not yet guarantee that there 
is an automorphism r ( with r(*w = u> o r ( . To see the various problems more clearly we shall 
first look at some elementary examples. Some difficulties occur even before the thermodynamic 
limit. 

Examples (3.4) 

1. The Observable Algebra of One Particle. 
Usually one considers the Weyl algebra as the relevant algebra, i.e., the algebra built by 
W(u, v) = exp[i(pu + vx)], u, v 6 Kd. For this algebra the free time evolution is given by 
the automorphisms group 

TtW(u,v) = W(u + vt,v) = eiMotW(u,v)e-iHot. 

Also for the harmonic oscillator the algebra is stable, 

TtW(u,v) ~ W(ucost + vsin( ;ticost - usint), 

but for complete'y harmless potentials V with H = Ho + v the time translate rtW(z) = 
etHiW(z)z~*Ht does not belong to the norm closure of Wj - £*€/ / ( 2 )W(z) , and I finite 
[17]. Taking instead as C*-algebra the algebra of compact operators every e,Ht would 
implement an automorphism. Since density matrices are compact operators all states of 
Wj defined by density matrices have a well defined time evolution. Of course enlarging 
Wj to its strong closure in the unique continuous representation ensures the existence of 
the time evolution as an automorphism group in this case. 

2. For bosons one considers the CCR algebra [18] as relevant C'-algebra, namely the algebra 
created by 

ei(«(/)+«i(/)) = W ( / ) ) 

WU)W{g) = W(f + 9YU'9) with a(f,g) = {f\g) - (f\g), 

\\W(f)\\ = 1 and \\W(f) - W(g)\\ = 2\{f?g, 

where a(f), a*(f) are annihilation and creation operators for bosons with wave function 
f(aU)=Jdxf(x)a(x)). 
Here we have two choices: 

(a) / 6 L2(R3) and has compact support. Then the observables are called strictly local, 
which has structural advantages. But free time evolution immediately takes one out 
of this algebra. 

(b) / e i 2 ( R 3 ) without restriction. Free time evolution is now an automorphism. But 
the thermodynamic limit of states becomes more problematic, because strictly local 
observables are no more dense in the algebra. 
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3. For fermions we take the CAR-algebra [18]. Here the creation and annihilation operators 
satisfy [a(/),a*(^)]+ = (f\g) and are bounded 

IH/)II = 1Mb-
Now the algebra built by functions with compact support is dense in the algebra of L2-
functions. The CAR-algebra is separable, since L2(K3) is separable. Free time evolution 
Tta(f) = a{tlhotJ) with Ao = P*/2 is an automorphism. 

4. A favorite test algebra for structural considerations is the CAR-algebra on a fermi lat­
tice. Here / 6 L2(R?) is replaced by / 6 I 2 (Z") . Quasifree time automorphisms are 
defined by rta(f) = a(exlttf). Furthermore reasonable interactions lead to a well-defined 
automorphism as long as the interactions are sufficiently decreasing for long distances 
{18,19]-

5. As last example consider a system of particles with hard-cores and with short range 
potentials. From a physical point of view the time evolution does not seem to rise any 
problem, the system is stable and only finitely many particles can influence another par­
ticle at a given time. But we are not allowed to take the algebra of free or interacting 
particles (i.e. the algebra built by creation and annihilation operators) any more, because 
the possible states differ: For hard-cores every state reduced to a bounded region A corre­
sponds to a Fock state representation H\,a where the wave functions if>(xj ,...,xn) vanish 
if \x{ - Zj\ < a [20], where n < Nmtx(A). Instead we can consider the C-algebra as the 
inductive limit of B(H\%a)- But this algebra is not separable any more nor can '••- express 
its observable» in such an explicit way that we could handle the questions of how to extend 
the time evolution of H\,a

 t o the limiting algebra. In which sense time evolution exists 
for hard-core particles in the thermodynamic limit is an open problem. 

In the following we shall always think about electrons and thus take as observable algebra the 
CAR-algebra A over R 3 . Therefore we shall use the terminology that A £ Aha local observable. 
Global observables will arise by the weak closure ir(A)" in a particular representation * and 
will be state dependent. For the ronvenience of the reader who is not so familiar with this 
terminology we shall summarize it in the Appendix. 

Once we will have shown the existence of a time automorphism of an infinite system this 
will enable us to find relations between the thermodynamic behaviour and properties of the 
time evolution. A first requirement for an equilibrium state u is its time invariance W O T ( = U , 
Whereas there is no general result about the approach to equilibrium the conditions for return 
to equilibrium can be spelt out easily in quantum mechanics. Let 

uA{B) := u>(A'BA)/u(A*A), A,Be A, u(A'A) ? 0, 

be a local perturbation of the state w. We say that w is stable under local perturbations if 

lim uA{rtB) = u(B) VBeA. 

This property is related to notions of mixing [21] 
(u> is mixing <=*• Umt-,±oo<<>( Art(B)C) = w(AC)u(B))VA,B,C € .4) and asymptotic 
abelianness [18,22,23,24] (u; is weakly asymptotic abelian if \\mt-,±<x>u(A[Tt{B),C)D) -
0VA,B,C,D£ A). In fact, in the purely quanta! context where the center Z^ is trivial these 
notions coincide. (The center are those elements of the weak closure of A in the representation 
given by u which commute with all elements of A.) 



Lemma (3.5): If w is an invariant state with Z w = {zl\z € C} then the following are 
equivalent: 

(i) w is stable under local perturbations, 

(ii) IJJ is mixing, 

(iii) Tt(B)-*u(B), 

(iv) (A,T,oj)ic weakly asymptotically abelian. 

Proof: 

(i) =*> (ii) by polarization, 

(ii) => (i) is trivial, 

(ii) & (iii) is trivial, 

(ii) =• (iv) u(A[Tt{B),C]D)-*u(ACD)v(B)-u;(ACD)cj(B)=0, 

(iv) =>• (ii) Any weak limit point of rt(B)\t € R has to be in the center and therefore a multiple 
of unity, c l . Since u; is r-invariant rtn(B) -* cl implies c = w(B) and thus all weak limit 
points are c and rt(B) —- u(B). This implies (ii) resp. (iii). 

Remarks (3.6) 
1. The operator topology in which the limits are attained is essential for us. In (iii) and 

(iv) only weak convergence is possible, (iii) means that for any vector j 1 ) in Hu 

perpendicular to \Sl) the limit of etHt\ 1} is zero. As strong limit this would contradict 
the unitarity of e,Ht. Similarly, rt(a) -* u(a)Va € / would imply Tt(a*a) -* u(a"a) and 
Tt(a*a) -* u(a*)u(a) since strong limits respect products. This would mean 

0 = u(a'a) - w(a*)w(o) = <•>((«" ~ w(«"))(° " w(<*))) 
or that u> is dispersicnfree for all a 6 A. For non-commutative systems this is impossible. 

2. Bounded regions are weak* compact in von Neumann algebras but not norm compact in 
C*-algebras. Thus any infinite bounded sequence in n(A) has weak accumulation points 
but they may not belong to n(A) but only to *{A)". Only norm limits are surely in *{A) 
but norm convergence is in many cases impossible. 

3. The conditions (3.5) imply that u> is extremal invariant, i.e. not of the form w = Au»i + 
(1 - Xp2 with WJ invariant, u\ ^ «2 and 0 < A < 1. If this were the case then TW = 
tfu-i © Twj and (iii) required n^Tta) —» w(a). Taking the expectation value with u\ gives 
(1 - A)(wi(a) - u>2(a)) - 0 implying u\ = u>2. 

4. The essential message of (3.5) is the following. The opposite requirements of the system to 
be completely quanta! (Z v = cl) and to be classical for large times (asymptotic abelian-
ness) constrains it to the extent that all observables have to approach their equilibrium 
value (or equivalently all states tend to equilibrium). This is a special bonus of quantum 
theory, classically the construction of mixing systems is nontrivial. 

Deeper are the results concerning the existence and the properties of those states which are 
the generalization of the canonical Gibbs states. 
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Definition (3.7): A state is called an equilibrium or KMS state [25,26,27,28] if it has the 
KMS property, i.e. u(ArtB) = gAß(t) is a continuous function in the strip {t = fo + n ; *o € R, 
0 < 7 < ß], analytic in the interior and it satisfies 5AB(* + iß) = w{rtB • A) V A, B £ A. 

For finite systems with Hamiltonian H the KMS states are given by 

u{A) = Tr e-ßHA/Tr e~0H 

and the question arises how such states can be constructed for the infinite system. For a quasifree 
time evolution Tta(f) = a(e,htf) the KMS state for given temperature ß and chemical potential 
/x over the CAR is given by 

*ß(«-U)o(9)) = (9\l + e

1

ß{h_fl)\f) 

and vanishing truncated n ^ 2 point functions. A special state is the tracial state 

*o(a*(/)a( S)) = i07|/>. 

The following lemma shows that once we have solved the problem for the time development it 
is easy to find a limiting KMS state. 

Lemma (3.8): Assume w„ is a KMS state for an automorphism group rf. Assume that 
VAtA 

lim\\T?A-TtA\\ = 0. 

Let w be a weak* limit point of un. Then w is r-KMS. 

Proof: 
lim wn{Ar?B) - lim un{ArtB) = u(ArtB) 

n—-»oo n—+0G 

foi t € R resp. t G R -+- iß, so «„ converges on a set of uniqueness. Furthermore these functions 
are equicontinuous in compact regions in the strip. Therefore they converge in the strip and the 
limit, is again an analytic function [29] with the KMS-property. 

The iemma can be used in two ways: either we consider an increasing set of finite subsystems 
An, n 6 JV, such that A = An ® AnVn € N and linin/ooA» = A and a time evolution 
rn :An -* An with corresponding KMS states un, i.e. 

rnA = eiHntAe-iHnt, A,HneAn and unA = Tr pnA i g w ^ , 

where pn = e~,3Hn/Tr e"0Hn is trace class, w^c can be chosen at will and disappears in the 
weak* limit. Because of the weak* compactness of the state space Tr pn®<*>\A% always has some 
weak* cluster points ü. According to the lemma Q are T-KMS if r n -> r. Uniqueness does not 
follow beciuse the limit can depend on the chosen subsequence. 

An alternative to find KMS states is to choose r° to be an automorphism group of A with 
KMS stats u>o. Let r" be a local perturbation of the dynamics, i.e. 

%-T?A = i[Vn,T?A] + 60T?A 
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where V„ € A and 6QA = aji"t°|t=o so that 

r M = T»A+ £ ) ( t ) n fdtk ['"dt^... / ' ' Ao[V„,...T°jV n,r°jK,T°/l]]]. 
J^i ''O ^0 ./O 

Then a corresponding rn-KMS-state [8,18] is defined by 

, „ fa>o(exp^exP-^±J^ylexp-a»|^exp^) 
U n [ A ) ~ u , 0 (exp^exp-( /? 0 + V n ) e x p f ) ^ 

where exp iHot implements r t° and 

e x P Y ^ P - " = T / c- T .7 V "d 7 

7o 

belongs to JT0(-4)"-

Again weak* limit points of u)n must exist and are T-KMS-states if limr/M = rtA. So the 
existence of a time automorphism constructed as limit of r n with known KMS states already 
guarantees the existence of equilibrium states. The converse is not true. un —- u does not yet 
guarantee that limit points of r n represent an automorphism group of A- A counterexample is 
constructed in f30]. Alternatives, where there exists a time evolution corresponding to the limit 
state, though not on the C* ievel but only for the weak closure, are discussed in [31,32,33] and 
occur in the framework of mean field theory [34]. 

If in addition we were to know that the time automorphism is asymptotically abelian, we 
could also motivate why we consider exactly the extremal KMS states as equilibrium states: 

Lemma (3.10): Let {A,r) be a C*-dynamic system VA,B,C,P € A. Assume that 
f\u{[P,rtA])\dt 3 and further that 

Urn u>(Artl(B)Th(C)) = U(AMBp(Q. 
\ti |-»oo,|tj|-»oo,|(i - <2|-»oo 

Then u; is an extremal KMS state for some j36ÄU {±oo} iff 

Jw([P,TtA])dt=0 VP,AeA. (3.11) 

The proof can be found in [8,18,35]. There are two equivalent physical interpretations of this 
condition. One is dynamical stability: Let P correspond to a local perturbation of the dynamics. 
Then we demand that in the neighbourhood of w (more precisely in its local folium) theTe 
exists exactly one rp invariant state. This state can be obtained as limt_±oo u(rpA) = up(A). 
First order perturbation theory in P gives as condition for the equality of the two limits the 
above equation (3.11) [35]. The other interpretation is the time honoured condition of adiabatic 
invariance in the setting of infinite quantum systems [36]. Let u> be an r t invariant state. Let 
the time dependent perturbation P(t) be adiabatically switched on and off. Then the time 
dependent state returns to u iff (3.11) holds. 

We have seen that asymptotic abelianness is the key feature which makes quantum ergodic 
theory work. This property does not occur for finite systems where the Hamiltonian has a 
point spectrum and quasiperiodic obsembles. The latter may also appear in infinite systems 
where some finite parts are completely isolated. Therefore asymptotic abelianness has always 
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been one of the questionable unproven assumptions. Intuitively it is plausible that Galilei or 
Poincare invariance will exclude that some finite parts are somewhere completely locked in and 
might r >en the way for asymptotic abelianness. Lattice systems do not have this invariance and 
actually there we do not have any proof of asymptotic abelianness apart from quasifree systems 
[37]. In section 5 we will show that Galilei invariance guarantees some asymptotic abelianness 
provided the time evolution exists at all on the algebraic level. In section 6 we will discuss which 
further mixing properties follow. Though from the fundamental point of view the Poincare group 
[38,39] would be even better we will not use it since for these systems the existence of the time 
evolution on the algebraic level has been demonstrated only for free fields. 

4 Field Theory of Particles with Pair Potentials 
Usually in many body theory with particles interacting via pair potentials one uses the formal 
Hamiitonian 

H = J d*xVa'{x)Va(x) + J ^ z d V a ' ^ a *(*>(* - x')a(x')a(x). (4.1) 

As we have explained in section 3 one cannot hope in general that this Hamiitonian satisfies 
the stability condition (1.4) and there is no chance that it defines a time evolution of A. To 
stabilize (4.1) for fermions we will cut off the high momenta in v. This will reduce the potential 
energy of a cluster of fermions since by their concentration in configuration space they have 
to get high momenta. We realize the cut off by letting v also depend on the momentum. To 
exploit this we shall use instead of creation and annihilation operators in configuration space, 
a*(x) and a(x), such operators in phase space. In this way we shall be able to retain Galilei 
invariance [40] which is lost in other cut-off procedures [41,42,43]. 

The operators localized in phase space are defined by 

„,,„ = *-*'* f ^xe-^-x^2+i"xa(x). (4.2) 

They have the virtue of being bounded operators, in fact we have normalized them such that 
IK.pll = *• Since the coherent states are total in Hubert space, any a(J) can be written as 
limits of linear combinations of a, i P and so the a, i P generate the whole algebra. Accordingly we 
replace the potential energy by 

V = (2*)" 6 J d3q<fipdiq'4ip'a;ipa;,ip,v(q -q',p- p')<V ya, , p . (4.3) 

Remarks (4.4) 

1. If v is momentum independent, v(x,p) = v(x), then V equals the second term in (4.1). 

2. The kinetic energy Ho and particle number JV become expressed in phase space 

( 2 * ) - 3 | A A a ^ M p 2 - 3/2) resp. ( 2 T ) " 3 f < fVpa ,> ? , „ . 

3. Though a,,p is bounded all these operators are unbounded since we integrate over un­
bounded regions. Thus we will have to inspect whether the time derivative dA/dt = i[H, A] 
also belongs to A. 
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Proposition (4.5) 

V>-N\\v\\u Mi = J^0jTH''p)l 

Proof: To ease the notation we shall henceforth denote a point in phase space (q, p) by z € R 6 

and dz = d3qd3p/(2icy. Because of the general inequality 

!|o;a*<ax.a,|| < a X l t e ' M l =• a*t>t 

we have 

V > - (dzdz,a'zaz

,,az.az\v{z - z')\ > - Jdzdz'a*az\v(* - *0l = ~N\\vh- D 

Remarks (4.6) 

1. Since Ho > 0 we have H > -JV||t;||i and thus we have proved stability for fermions if 
||v||i < co. In the local limit v(x,p) = v{x) we have ||v||i = oo and in this case stability 
requires special features of v [6,7,8]. 

2. For bosons a ? f P is unbounded and our argument doas not work. In fact, in this case even 
2 2 

for nico v, f.i., t{x,p) = -e~x ~p , there is no stability. This can be seen by taking as trial 
function 

\N) = ~a^0\0), 

|0) the Fock vacuum. In this case {N\H0\N) ~ N but (JV|V|JV> ~ -N2. 

To construct the time evolution rt generated by H - Ho + V we use the standard pertur­
bation expansion 

r1(a) = a 1 + X ! i T l / [V^Wt-A-Vu^ •••]] (4.7) 
£[ 'o<<„<...<<,<< 

with at - e,fIotae~%f{ot. A priori this is derived for V bounded. Our V is not bounded but can 
be considered as the limit of V\ = f^dzi J^dzja^aj 2»(zi - Z2)aZ2aZl where A is a region of 
finite volume in R 6 . In the following we see that in (4.7) L | R 6 exists as norm limit and thus 
we shall work with V without dwelling on this point. We shall now show for any az that 

(i) each term in £ „ 16 a bounded operator, 

(») £ £ : i converges in form for |*| < t0 where i 0(l + tl)3/4 = 1/32||«(|1. 

Since the series is norm convergent the usual formal rearrangements to show rt(ab) = Tt(a)Tt(b) 
are legitimate and rt can for t < t0 be extended to an automorphism of A. Furthermore (4.7) 
guarantees r < 1 + < 2 = rtl o rt3 if |*i|, |*2!, |*i + tj\ are < to. Then we can for \t\ < 2fo define 
consistently r< = rti o rti for any \t\\, \ti\ < to, h + <2 = '• By iteration we get a one parameter 
group rt, t 6 R of automorphisms. 
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Proof of (i): Since 
Vt= I dzdz'a^a*, tt>(z - z')az><tax>t 

the n-th order term in (4.7) can be written »n /O« 1<...<J„<« dtidtt • • -dtnln. 

In = J dzidz2.. .dz2nv{zi - z 2 )•• .«(zjn-i - 22n)[a* 2 B > t „a; 2 B _ l t { B a Z i B _ l i , „a W n , [a*X2n_2(tB_1 . . . 

From the free time evolution of Gaussian wave packets we know 

[a z, <,a;, >,.] + = S ( M ; * , 0 

with 

|S(̂ ,.')I = (1 + <•- .?r"^P[-j(P-Pf - P^fffiflr^ 
Thus the innermost commutator is 

« , A * ( * i < ; *2'*i) ~ a * 2 , t , 5 (M;*i><i))°*j .<i a *2,t2-

In the next commutator each term produces a sum of 2(2 + 1) similar terms and finally we end 

up with 2 • 2 • 3 • 2 • 5 . . .2 • (2n - 1) = 2n~^ terms. Since \\ax<t\\ = 1 we can majorize | | / n | | by 
replacing v and 5 by |v| and \S\ resp. and dropping the n factors a* and n + 1 factors a. Thus 
| |/ n | j is bounded by (2n)!/n! terms of the form 

/ 
dzi ...dz2n ]\ \V{Z<XJ - z2j-\)\ J ] \S{za},tj;zß.,tr,)} • \S{zuh;z,t)\. 

To each term corresponds a distribution of cij,ßj 6 ( l ,2 , . . . ,2n) ,r j € (1,2, . . . , j - 1 ) which 
is best illustrated in a graph where the v's are dashed lines and the 5's solid lines. Typically 

*2n- l *5 z3 z \ 

z2n ^6 ZA *2 

By construction one sees that the graphs are tr<*<>: They are connected because *2* and Z2k-i 
are connected b> v and one of them is connected by an S with Zi,i < 2fc-l.They do not contain 
closed loops since each commutator brings in an S with new z's. To carry out the z-integrations 
we note that 

' dza\S(za,ty,zß,tr)\ = 23(1 + (t, - tiff* < 2 3(1 + t2f* / < 

independent of zp. As a consequence we may keep integrating the end points of the graph until 
it is reduced to ||r||"8 n(l + t 3 ) 3 n / 4 . Since in In we have a finite number of graphs and the 
^-integrals go over finite regions we have established the existence of the n-th time derivative 
of az. 
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Proof of (ii): To prove real anaiytj'-ity we recall that J n has (2n)!/n! graphs contributing. 
Thus with / 0 < { i < < t n < ( d t i d l i ...dtn = tn/nl the sum in (4.7) is bounded by 

Since (2n)!/(n!)2 ~ 4 n we have established convergence for |f| < to with 

Remarks (4.8) 

1. The time unit which enters in the 1 + t2-factor has the physical significance of (spread in 
i-spacfc)/(spread in velocity space) in c, ) P . However this is chosen, the resulting to goes 
to zero in the limit of the local interaction (4.3). For them v(x,p) becomes independent 
of p in which case ||w||i = oo. 

2. In previous proofs of the divergence of the perturbation expansion in bosonic field theories 
[44,45,46] the same combinatoric situation arose. There one calculated a matrix element of 
the remaining operators rio=i K Il/8=i a'p a n < * a n additional factor n: from the r.umber of 
possible combinations of the a's with the am,s appear. For bosons this gives a permanent 
where each contribution has the same sign. Then the extra n! reduces to to zero. For 
fer: '^is we get a determinant and the alternating signs give a lot of cancellations. In 
fact, our norm estimate proves that in absolute value it has to be less than one. 

2 2 

3. Computer studies of N = 132 to 1600 particles interacting with v = -e~x ~p potentials 
show [9] that though clus'ers are formed by increasing N they do not heat up beyond a 
temperature determined by v. Thus it is possible that rt also exists for bosons but our 
method of proof is not adequate for this case. 

4. That we need a velocity cut-off in v may seem artificial for local interactions which are 
stable. However, since we are free to cut-off at arbitrarily high velocities we can argue 
that for stable interactions where these high velocities do not arise the cut-off should not 
change the dynamics essentially. 

5. Since the aZit are complex analytic operators in I we could even prove complex analyticity 
but this will not be needed for our purpose. 

Summarizing our results we can state 

Theorem (4.9): If ||J;||J < oo, then Ho + V defines the time development as a one parameter 
group Tt of automorphisms of A. It is continuous in the sense that 

lim Hrt.i4-rfo.4Hs0 VAG A. 

Corollary (4.10): For all 0 < ß < oo there are KMS states for rt. 

http://Hrt.i4-rfo.4Hs0
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Proof: Consider 

Vn = / dzidz2a*Zla*3v{zi - z2)at2aZl. 

This is a local perturbation and HQ + Vn generates an automorphism r t

n . It has the KMS states 
ijjn given by (3.9). Since we hav« seen that in the construction of r t all phase space integrals 
converge in norm we infer 

Um \\T?A - TtA\\ = 0. 
n->oo " * " 

Thus by (3.8) the weak* limit points of {w„} are r-KMS states. 

Remark (4.11): There is no norm convergence l im n _ 0 0 supjĵ u—j \\T?(A) - rt(a)\\ = 0. Con­
sequently also the representations given by the KMS states u and u/o corresponding to r and r° 
will not be quasiequivalent, which means that there will be no weakly continuous isomorphism 
between the corresponding von Neumann algebras. This is not possible by general theorems, UQ 
is space translation invariant and the extremal translation invariant components of u will not 
admit another normal translation invariant state. 

5 Consequences of Galilei Invariance 
Having shown that our mollified pair potentials do define a time evolution r ( for the infinite 
system we want to inspect to what extent it possesses the properties we need for the foundations 
of statistical mechanics. The hope is that they are not a special feature of some interactions 
but hold if the time evolution exists at all. We will show in this section that this hope is born 
out to some extent and discuss in the next section how these results fit into the general ergodic 
hierarchy. 

We have seen in (3.8) that the existence of the time automorphism as limit of inner per­
turbations already guarantees the existence of equilibrium states. In this sense our continuous 
systems are neither better nor worse than the known examples of quantum lattice systems [18]. 
But for quantum lattice systems a proof under which circumstances time evolution is asymp­
totically abelian is missing. The existence of the time evolution - as in section 4 - is shown by 
expansion in t, and this makes us lose the control over large time behaviour. But in our situ­
ation the boost relates space translation and time translation. For the shift the large distance 
behaviour is well under control [47] and, as will be shown, the time translation inherits some of 
its properties. 

Let us first collect general results: 

Lemma (5.1): Let A be the C*-algebra built by fermionic creation and annihilation operators 
<*(/), <*'(/) w»th / e L2(Rd)(L2(Zd)). Let va be the gauge groups uaa(f) = eiaa(f). Consider 
an automorphism group an that satisfies o n o va - va o a n and 

l im| |[a(/) ,a B a'(p)] + | | = 0. 

Then 
fan ||[i4,anJ?J_ || = 0 A or B even e r(A). (5.2) 

Let w be a gauge invariant o-invariant faithful state. Then 

w-lim[/l,anB] = 0 V4 , f l e ir(A)". (5.3) 
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Proof: (5.2) follows simply by algebraic calculation, writing then even B as product of creation 
and annihilation operators. Now take u? to be an invariant state. Since it is faithful there exists 
a modular automorphism group m such that (see Appendix (A.4,2)) 

u{AB) = w(m,fl • A). 

More precisely, vectors of the form D\tt), D analytic with respect to mt are dense in H* so 
that (5.3) is equivalent to limn-,,» u(C[anA, B}) = 0 V A, B € if (A)", C analytic. Furthermore, 
Kaplansky's density theorem tells us that for every A € *(A)" with ||i4|| = 1 there exists a 
sequence {Ak,Ak fc n(A)} such that ||i4*|| = 1 and st-lim f c_ 0 0(i4-i4 t)ft = 0 (ß the GNS vector 
of u). 

Therefore, for A or B even elements € ir(A)" 

\imn^ccu(C[anA,B]) = 

limit-,«, lim n_ 0 0[a;(C • anA • Bk) - w(C • B • anAk)} = 
(5.4) 

lim*-.« limn-00[u;(QnJ4 fcBfe • m^C) - u(BkanAk • m_iC) = 

limjfc_00lim„->oou;(C[ttn>ljt,5t]) = 0. 

Now take A and B odd. Then again it suffices to study 

lim w(C[anA, B]), A, Be *(A)", C analytic. 

It converges to zero if limu>(Can/l) = 0 VA odd, C arbitrary. If C is even, CanA is odd and 
w(CanA) = 0 Vn. So we can concentrate on C odd. We know from the CAR that 

lim u(anAB + BanA) = limw((ß + miB)anA) = 0 V A 6 *{A), B G it{A)" and analytic. 

Now (B + mj5)|fi) = (1 + e~*)B\Ü) is dense in the odd subspace, i.e., there exists to every 
C 6 *{A)" some B with ||(C - (1 + e-)B)\tt)\\ < e. Therefore 

\\mu(CanA) = 0. D 

Corollary (5.5): Let a„ be a quasifree automorphism, i.e., ana{f) = a(exnhf) with h some 
operator acting in the one particle space. Then an satisfies the condition of (5.1) if h has purely 
absolutely continuous spectrum. Special examples are the boost and space translation 

<r*«U) = «(/*). f*(v) = / ( * + J')* 

7»o(/) = o(e**/), 

which means for aPi<l of (4.2) 

"fb<lp,q = flp+6,,-
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Proof: 
[a\f)Aeinh9)}+ = <#-''•* l/>-

For h an operator with purely absolutely continuous spectrum the right hand side goes to zero 
according to Riemann-Lebesgne and so does the norm of the anticommutator. O 

Lemma (5.6): Though in this article we deal mainly with fermions, we refer to the corre­
sponding result for bosons: For h as above with purely absolutely continuous spectrum define 
anW(f) = W{einhf). Then 

\im\\[WU),^W{g)]\\ = 0. 

Proof: With a of (3.4,2) (the difference of two scalar products) 

[W(f), anW(g)] = W(f + ang)i sin <r(/, einhg). D 

Corollary (5.7): The free time evolution is weakly asymptotically abelian. 

Proof: h = p 2/2m has absolutely continuous spectrum. O 
It seems plausible that our interactions should not make mixing pioperties worse. Clusters 

of particles that might be formed by the interaction should keep some kinotic energy which 
makes their effect on the commutator for local operators disappear in the course of time. This 
feeling can be substantiated by using Galilei invariance. 

Lemma (5.8): Consider the shift ax, the boost % (defined in (5.5) and the gauge transfor­
mation va (denned in 5.1). They are continuous in the sense that 

Urn \\atA - A\\ = lim \\uaA - A\\ = lim I M - A\\ = 0. 

They satisfy 

as 0 Va = Va O <TX, 7J, 0 Va = Va 0 fb, 1\>OOx = <>x1bV-bx• 

Proof: The commutation relations between the automorphisms are determined on the level 
of an annihilation operator and can be seen by direct calculation, and the continuity properties 
follow from \\a(f) - a(g)\\ = \\f - g\\. D 

Definition (5.9): A time evolution is called gauge and Galilei invariant, if 

rt o ua = i/a o Tt, rtoax = axoru rt o % = % o r, o <j_bt o v_biyv 

Remark: If we turn to finite ' terns (with finitely many particles in an infinite space) we 
consider potentials of the form J2i<i<j<N V(x* ~ x i ) > a n ( * t n C 8 e potentials are invariant under a, 
7 and v (which acts trivially when we fix the particle numbers). Added to the kinetic energy they 
generate a time evolution satisfying (5.9). We refer to [48] for the study of the structure of the 
Galilei group in this context (u acts trivially) and its representations. (The correct commutation 
rel« ons in the second quantized theory can be checked by the action of the free time evolution 
on one annihilation operator.) 
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Lemma (5.10): The time evolution of (4.9) is Galilei-invariant. 

Proof: The free time evolution T° is Galilei-invariant. Therefore (with the usual region for 
the time integration) 

axrta = axT?a + £)FoxJdti...dtn[T?nV,...[T°V,T?a}..] 

- r?* + £ * " / * i ...dtn[T?nV,...[T°V,T?vxa)...} = Ttoxa, 

where we used axV = V or more carefully in the sense of section 4 

lim [axVn, A] = liir. [Vn,A] for A local. 

Similarly 

Hbna = -ybT?a + 5 3 ' J * i • • • <fc»lr°„^ • • • [ r ° V, TA7""0] • • •] = nfb^bt^t/2 

since again 
l im[ 7 6 K. , / J= lim[V;,>l] 

n—*oo n—*oo 

and thus 76T"°V = T^jff^i ' ja^V = T?V. To «'»udy the consequences of Galilei invariance we 
have to distinguish between two cases: first we concentrate on states which are invariant under all 
automorphisms a, 7, v and r . Among the states 4>p from (3.7) this holds only for the Fock state 
4>oo and the tracial state <fo, the latter corresponds to ß = 0 and satisfies <f>0(AB) = <fo(BA). 
For the CAR algebra this state is uniquely determined by this commutativity behaviour. In 
4>oo and <£o <dl automorphisms are unitarily implemented and we could use the representation 
theory of the Galilei group [47,48] to study the mixing behaviour. We prefer to extrart the 
mixing behaviour directly from (5.9) because this method enables us to make some statement 
also for other space- and time-invariant states. 

Lemma (5.11): Let A € A. Then to every s > 0 there exists some a > 0 such that 

\\A - £ Jdadbe-la,+b,Va<7aybA\\ < e. 

Proof: This follows from the continuity of aa and 74 (5.8) and the fact that fa{a) = 
y/xjäe-*9'" tends to 6(a) for a ->0 . 

Theorem (5.12): Take B with <f>o(B) - 0. Then 

lim ipoiATtB) - 0. 
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Proof: According to (5.11) and the fact that r t is an automorphism and therefore norm 
preserving we may replace 

lim \M*rtB)\ = Ihn lim | [ dadädbdbfa{a)fa(b)fa(ä)fa(b)M^albATt<räTbB)\ 
t—»oo Q—»Ol—>oo J 

= lim lim I / dadbdääfa(G)Ub)fa{ä)jS)MT-tAl 
Of-*0 1-+00 J 

< lim lim \\A\\[[dadb...dbdc...ddfa(a)...fa(c)...f0(d) 

Ml-bOä-a-btV-VtßTbB'l-dOc-e-dtV-PtftliB)]112 = 0. 
Now we have to see what happens for t —• oo. For B a monomial in creation and annihi­
lation operator Vt(i?-iP)/2 gives an oscillating factor (= 1 for gauge invariant elements) and 
ac-c+a-ä+(b-d)t makes the expectation value go to zero for b ^ d according to (5.1) and (5.5). 
Thus we have a bounded integrand which goes for fixed b - d for t —• oo to zero almost every­
where. By Lebesgue's lemma the integral then goes to zero. 

We can immediately generalize this result to the 

Corollary (5.13): 

lim <h(ATtB) = lim [<h(Art{B - MB))+ <tx>(A)MB)] = MA)MB). 
I—»Of' X—*00 

Again by using the same estimates as in (5.4) this holds for all A,B G *o{Ä)". 
The Fock representation T«, is not faithful. Here the automorphisms are inner for itoo(A)" 

and there exist noncor.imuting time-invariant elements in Xao(-A)". Thus (itoo{A)",Tt) is not 
an asymptotically abelian system. Nevertheless, we have some kinds of clustering. We first 
concentrate on the properties of space translation. 

Lemma (5.14): 

st- !im Xoo(o*a(/)) = 0, w- lim i r o o ^ T I « ' ^ ) ) = 0. 
i 

By Wick-ordering a general element of A can be written as 
A = <M>*) + 5>"( / i ) • • -aVnWgx)• ..a(9m). Then 

st- lim iroo{axA) = (f>oo(A) for m ^ O , 

w- lim 5r00(<TIi4) = <f>oo(A) for m = 0. 

Proof: This can be seen by direct calculation using the relations (5.5). (See [47].) D 
The analogous results for rt warrant a more detailed investigation. 

Theorem (5.15): 

a) 8t-limj_ 3 OT o o(T to(/)) = 0, 

b) w-lim^oo ^oo{na'(f)) = 0. 
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c) st-lim<-.003r0o([a*(^),7ia*(/)])= 0. 

For the above general A of (5.14) 

d) st-limt-oo *oo(TtJ4) = <t>oo{A) for m £ oo, 

e) w-linif-oo TgofaA) = 4>oo(A) for m - 0, 

f) st-lim (_ roo([i4, TiUk) = 0 where ± deperds on the grading of the elements. 

Proof: The proof needs two distinct facts which we collect in separate lemmas. 

Lemma (5.16): T ^ I T « ^ / ) ) ) converges strongly to zero for t -> ±oo. 

Proof: In Hoo the N = 0 sector consists only of the vacuum and since a(/)|0) = 0 we can 
turn to the N > 0 sector. We may separate the motion of the N particles in a center of mass 
and an internal motion such that 

W<"> = Hc ® Hi, UJN) = r**!™ ® e-iHlt-

Since the total momentum P has an absolutely continuous spectrum e~'tP l2N — 0. We shall 
now show that a(f) acts like a compact operator and converts this weak convergence into strong 
convergence. To see this we note that a*(/)o(/) acts in the momentum representation of HN 

as the integral kernel 

N 

The partial trace over Hc corresponds to the integral kernel 

t r « X ( / M / ) ~ JdqKitn + 9, • • Pn + 9i/i + q, • • P/v + ?) = 

=*r n <(w -ftf *i/(«)ia -* • w i s 
in the space H; with E^Pi = £p{ = 0. 

Since the a{f) are bounded operators it suffices to demonstrate strong convergence on a 
total set of vectors. For these we take vectors of the form ij> = vc ® vj, vc 6 Tic, vj t Hj and we 
know 

UlN)xfi = e-itpi/*Nvc®e-it»>vI and vc(t) = r ' ^ V - 0. 

In finite dimensions weak and strong convergence coincide and thus for any projection q 6 B(HC) 
with tincq < oo and any £ > 0 3T such that ||gi>c(t-)|| < £ Vt > T. Furthermore, V A e B(HW) 
with ||trWcy4*y4|| < oo exists a projection q € B(HC) with ttHeq < 0 and ||(1 - Q)A*A(1 - Q)\\ < 
£2 *> \\A{\ - Q)\\£ for Q = q ® 1. For such an .A we have AV\N)rl> -» 0 since 

IW (%®*/II = IIM(i-g+gK(0®*/(*)|| < ||>*(i-Ö)ll+l!i*||||̂ (i)||||t»/(0ll < (i+M||)e 

assuming ||» c|| = ||i>/|| = 1. Now a(/) qualifies in H^ for A if | j / | | < oo and thus Lemma (5.16) 
is proved. 
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Corollary (5.17): A of the form (5.14) converges weakly to <f>oo(A) if m — 0, otherwise 
strongly. 

Proof: At -*• 0 implies A; —• 0 and fltAt - • 0 if \\Bt\\ < c Vt. Furthermore A{ 1 ; 2 ) - • 0 implies 

Lemma (5.18): [o*(^),r1a*(/)]+ converges strongly to zero for t —• ±oo. 

Proof: A general vector in the iV-particle sector can be written A^O) with Ay = 
fdx\...dxNxj>[x\.. .XN)O*(XI)...a*(x/v). From the identity 

( a W / ) + ( r J f l W W M ; = 
( r ta - ( / ) )a ' (*M + (-A - (ffM5rrM*(/) + « ^ ) [ ( r l o ' ( / ) ) ^ + (-f^A^AV)] 

we infer that (5.18) is satisfied if {(Tta
m(f))A*N + (-)? A%Tta

m(f))\0) goes strongly to zero. The 
vector 

( r i o ' ( / ) ^ + (-)-ii;r 1o*(/)]|0) 

corresponds to the wave function 

n+l n+1 

e-iHn„t £ KXj){-yei«ntMxi.. .* . , . . > i w + i ) _ £ ( - ) V , ( x , > „ ( * , , . . .* ; , . . .*„+.), 

Xj means that this argument is deleted. This vector converges strongly iff 

We call this property 

Definition (5.10): Asymptotic triviality of the Möller operators holds if 

tt-]imeiHite~iHnteiHn-,t => 1 

or, equivalently, 

8 t - l imc , 7 f l < e~* H n < e" , / , , ' c '< , / "- 1 + w , ) ' = 8 t - l i m e - , ( W " - | + H , + v , ( t ) ) V ( H n - , + W l ) < = 0 

with Vi(«) = e^'Ke-***1. 

Lemma (5.20): For our Hamiltonian (4.1,4.3) in three (or more) dimensions the Möller 
operators are asymptotically trivial. 
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Remark: The Lemma (5.20) «s proven in [49]. It is plausib.e because st-lim Vi(t) = 0, since by 
H\ only particle 1 is carried away to infinity and so it will rot interact with the other particles 
anymore. On the other hand, it should be noted that this argument is not sufficient. In one 
dimension one particle can overrun the other so that nevertheless interaction occurs and in fact 
in the proof of [49] the spreading of the wave functions in three and more dimensions becomes 
an important ingredient in the estimates. 

The results (5.16) - (5.20) prove Theorem (5.15). Its intuitive content is the following. 
For t —» ±oo Tt(a"{f)) converges weakly to zero since it creates a particle far away and such 
vectors become orthogonal to the other vectors in H<x> which live mainly in finite regions. But 
norms of vectors where particles are far away do not go to zero and thus r t(a*(/)) does not 
converge strongly to zero. On the other hand, rt(a(f)) wants to annihilate particles which are 
far away. Since far away there are no particles it converges strongly to zero. Norm convergence 
is impossible for automorphisms. Finally [a*(g), ff a*(/)]+ should go to zero since creations of 
particles at vastly different points should not influence each other. Here it is possible that our 
results are not optimal and [ ] + converges even in norm. 

Though the asymptotic abelian properties deduced so far will allow us to draw quite strong 
conclusions in § 6 we have been falling short of norm asymptotic abelianness. Therefore we 
have no proof of weak asymptotic abelianness for the KMS states and the mixing properties 
guaranteed by (3.5). This is the case for space translations and (3.5) assures as that all extremal 
space translation invariant states are spatially clustering. 

Passing from space clustering to time clustering is asking for too much, because clustering 
can only occur in an extremal invariant state and we must keep in mind the possibility of a 
crystal where the space translation invariant state is the average over a crystal cell. Therefore 
it is not extremal time invariant and cannot cluster in time. Examining the proof of Lemma 
(5.12) we notice that the states are clustering in the average in the following strong sense: 

Lemma (5.21): Suppose u is an gauge and time invariant and extremal space invariant state. 
Then 

lim lim J w o ib{ATtB)fa{b)db = u{A)u>{B). 

Proof: 

lim lim I(Sl\%AibrtB\Sl)fa{b)db = lim lim /(ft|75>l7t'-«^5|ft)/Q(6)/a(a)<iad6 

= lim lim /(il\ATtffa4.btv_hti/2B\n)fa(b)fa(a)dadb 
a-*0 i—»oo J 

where we used the fact that l im^o ||7i>i - A\\ = 0 and therefore we returned to the previous 
estimates (5.12). 

Remarks (5.22) 

1. With u> also w o 7;, is gauge and time invariant and extremal space translation invari­
ant. The convex combination ua = / dbfa(b')u) o % tends for a -» 0 to u and the 
lemma shows lim a_ol<ni|_ 0 0 ua{ATtB) factors whereac clustering of u means the same 
for limi-fooMnia.+oVaiATtB). 
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2. Whereas the property u(ArtB) -* u(A)u(B) is lost by taking convex combinations of 
states the property u(C[A,rtB]D) -* 0 is preserved. Thus our method to deduce the 
latter from the former is not optimal and it may be that in the example of a crystal 
qnoted above asymptotic abelianness holds whereas clustering fails. 

6 The Ergodic Hierarchy 
Boltzmann's ideas about the behaviour of large dynamical systems have developed into two 
mathematical disciplines, topological dynamics and measuretheoretic ergodic theory [10,50]. In 
our present setting they can be described as the study of the asymptotic behaviour of a one 
parameter automorphism group r ( of a C*-algebra A and the properties of invariant states u 
and their associated W-algebras nu(A)". The latter also contain extrapolations depending on 
the observer described by u> whereas (A, r ) should be looked at as the objective reality. Thus 
we will be mainly concerned with the topological dynamical system (A, r ) but the most useful 
information will come from the existence of faithful extremal invariant states. We start with 
discussing a list of ergodic properties for a dynamical C-system (A, r) . 

Proposition (6.1) [21]: Between the conditions 

(i) The only invariant elements of A are multiples of 1. 

(ii) The only quasiperiodic elements of A are multiples of 1. (Quasiperiodic elements A are 
those for which there exists Vc > 0,t a t' > t with ||7«»(;4) - i4|| < e.) 

(iii) A does not contain proper invariant subalgebras. 

there are the implications (iii) =*• (i) •<= (ii). 

Proof: 

(ii) =• (i): invariant elements are quasiperiodic. 

(iii) => (i). {a £ A\ra = a] is an invariant subalgebra which cannot be all of A since we have 
the standing assumption r / id. 

Remarks (6.2) 

ad (i) Traditionally ergodicity is defined by (i). Unfortunately the strength of this condition 
depends very much on how large A has been chosen. Consider for instance the motion 
on the E - 0 energy shell on T'(R) which is determined by the double well potential 
-x1 + x*. There are three orbits whose projections on R are (-1,0), {0}, (0,1). If A are 
the continuous functions there is no other invariant function then constants since they have 
to be constant on the orbits. There are two linearly independent L°° functions B(x) and 
0(-z) . If one considers all bounded functions then the cardinality of linearly independent 
invariant functions equals the cardinality of the orbits. Taking the latter algebra (i) could 
be never satisfied if there is more than one orbit which classically is always the case if 
the energy shell has more than one dimension. In any case (i) is strong enough to exclude 
inner automorphisms and thus the usual finite quantum systeii.«. If r(A) were U^AU, 
U € A, then U would be a constant ^ cl. (For a finite quantum system where T is not 
inner, see [51].) 
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ad (ii) By a famous theorem of Poincare almost all classic 1 orbits on a compact energy shall 
have quasiperiodic properties. Nevertheless, for such classical systems the ccntinnous func­
tions may satisfy (ii) and never come close to their original forms. This does not contradict 
Poincare's theorem since neighbouring orbits will return close to their starting point at 
quite different times. What (ii) excludes is a time evolution T(A) = UAU'1 where U 
has a pure point spectrum. In particular finite quantum systems and systems with finite 
dimensional invariant subalgebras do not qualify for (ii). (We did not use the absence of 
invariant finite dimensional subalgebras as ergodic criterion because the usual algebras of 
continuous functions do not have finite dimensional subalgebras to start with.) 

ad (iii) The trouble with (iii) is that on the one hand it is too weak to imply (ii) as is shown 
by the trivial example: 

A = {zi + Azi, Zi€C,A* = 1}, TA = -A. 

A does not have proper subalgebras but A ;6 quasiperiodic. On the other hand, for our 
purposes (iii) is far too strong and will never be satisfied for the CAR algebra if r respects 
the particle number. There the subalgebras of elements of the form 

*+ £ «*(/ iK(/ 2 ) . -«*(/n)a(g 1 )a(g 2 ) . . .o( 9 n ) 
n>n„ 

are for n0 > 1 proper and invariant, (iii) would exclude the splitability, i.e. A - A\ ® Ai, 
T - T\ ® Tj, but systems with the best mixing properties, namely if-systems can be 
splitable (as Bernoulli shift) and in any case have sub-if-systems. In fact the tensor 
product of two K-systems is in an obvious way again a AT-system. 

In (3.5) we introduced mixing of state and one might wonder how this property can be 
expressed in topological dynamics. There the convergence of observables to their equilibrium 
values is impossible since the structure of (A, r) only contains norm convergence. Classically 
the weak convergence of any function f(x) to its equilibrium value 1 • / / means that every 
part of / becomes dispersed over all of phase space such that f gft -* f g f f for all functions 
g. Thus also sup.,. \g(x)ft(x)\ should approach supz|<7(z)|supz |/«(x)| which motivates the 

Definition (6.3): (A, r) is called mixing if 

lim ||i4r(B|| = ||4||||£|| VA,BeA. 
t—*00 

[47,52,53,54] 

Remarks (6.4) 

1. If A is abelian then it is the algebra of continuous functions of a compact Hausdorff space 
X and r is induced by a homeomorphism r' : X -* X such that ( T / ) ( I ) = /(T*X) 
V/ c A. In this case (6.3) agrees with the classical notion of topoiogically mixing. It is 
equivalent to the existence of a dense orbit or that every open invariant set of X is empty 
or dense in X. 
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2. If ||i4|| = | |5|| = 1 then (6.3) means for operators in a Hubert space H that Ve > 0 
3 T € R a n d V > 6 t t such that \(A1>\Btil>)\ > 1 - £ Vt > T. If A and £ are propositions 
(A 2 = A = A*, B2 = 3 = B*), and we call propositions compatible if they have some 
common eigenvectors then (6.3) means that eventually all propositions become compatible 
within e. Thus the system is chaotic in the sense that no definite predictions about the 
future can be cade. 

(6.3) clearly excludes the possibility of quasiperiodic observables. 

Proposition (6.5): (6.3) =• (6.1,(ii)). 

Proof: Suppose A 6 A is quasiperiodic. Then also A + A* and J4/||.I4|| are quasiperiodic so 
that we might assume A — A* and \\A\\ = 1. If A ^ 1 then it must in addition to 1 have another 
spectral value a with |Q| < 1. Now pick a continuous function / 6 C(R) such that / (a) = 1 
and s u p z € R \xf(x)\ = |o|. Then f(A) G A, \\f(A)\\ = 1 and \\Af(A)\\ = |Q| < 1. Now consider 
| | / ( i4M| | Ve > 0, T 3r* with ||/(>l)rt.(A)|| < \\f(A)A\\ + \\f{A)\\\\A - rt,(A)\\ < \a\ + e. Since 
we may choose e < 1 - \a\ this contradicts (6.3). 

Next we will show that our Galilei-invariant quantum field theories are indeed mixing. 

Theorem (6.6): Let A be the C-algebra generated by the creation and annihilation op­
erators a*(/), a(/), / € L2(K3) and r the time evolution constructed in § 4. Then {A,T) is 
mixing. 

Proof: Since A is simple KooA) is faithful. Furthermore we know that the Fock vacuum is 
mixing for (A,T) and (roo{A),T) is asymptotically abelian (or antiabclian) [49] which means 
st-limj_f±00[/l, Bt]± = 0 with Bt = rt(B) and ± depending on the grading of the elements. Now 
use the general operator inequality 

CDtABtB;A'D*tC < \\ABtfCDtD;C, A,B,C,D€ A. 

Taking the expectation value with the Fock state 4>rx> we deduce 

^{CDtABWA-DlC*) 2 

—<MCAA-c-)— " U H • 
Now let t go to oo. Irrespective of the grading of the elements the left hand side converges to 

<t>O0{CAA*C,)<t>ol>{DBB'Dm) 

Now use faithfulness of JT^ which implies 

^{CAA'C) .. All2 

sup y o ° ; ( r r . , ' = \A\7 

and similarly take sup 0 in the second factor. Then we arrive at 

|M||W<lim|M*«ll2-

But generally \\ABt\\ < ||/l||||ö (|| = ||/4||||5|| and thus we have verified the condition of (6.3). 
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Our results so far have shown Galilei-invariant QFT => ;opologically mixing => absence of 
quasiperiodic observables / zl => absence of constant observables ^ z\. Thus we have climbed 
up the ergodic ladder a few steps but we have not yet reached the top. The most satisfactory 
foundation of quantum statistical mechanics is provided by the so-called AT(olmogorov) systems 
[55,56,57,58]. 

/f-systems have the maximal possible uniformity in A and B in the convergence u{ArtB) —• 
u(A)u(B) and this entails [56,57] the desired behaviour of relative and dynamical entropies. It 
is tc be hoped that all the systems for which we have shown the existence of r< are actually 
if-systems but so fa r there is no proof for this conjecture. 

Appendix 

For details we refer to [15,18,59]. 

A.l The GNS Construction 
A C*-algebra is an algebra with a norm which satisfies (3.1) and is complete in this norm. 
Positive operators are those which can be written A*A, A G A, and stales are linear 
functional u with u(AmA) > 0, u>(l) = 1. If A ? 0 => u(A'A) > 0 we cail u faithful 
Since A is a Banach space any A & A is represented as a bounded linear operator on 
this Banach space by B —• AB, B 6 A. If u is faithful it endowes A with che structure 
of a pre-Hilbert space by (A\B) = u(AmB) and thus any A is represented by a linear 
operator xu-

lA) in a Hilbert space 7iu, the completion of A in the {•) norm. (If u; is not 
faithful one has first to divide by the null space {A : u(A'A) = 0}.) In Hu the vector |ß) 
corresponding to the unit element is cyclic which means that A\Q) spans all of Jiu. If <*> 
is faithful |ft) is also separating which means ^(AJIfi) = 0 «> A = 0. In this case tw(A) 
is also faithful. (iru(A) ^OifA^O.) 

A.2 C and W* Dynamical Systems 
A C* 'dynamical system consists of a C*-algebra A and an automorphism r / id of A. 
A state u is called invariant if u o r = w. The r can be represented unitarily in Hu, 
ITW(T(A)) = Vitu{A)U~x, by defining Uiru{A)\fl) = irwr(j4)|ft). If r in addition can be 
imbedded in a one parameter group rt with lim<_o IW-A) - A\\ = 0V A £ A then by 
Stone's theorem L't can be written e~'Ht with the Hamiltonian H a self adjoint operator 
in H« though neither Ut nor H may belong to A. In this case rt can be extended to an 
automorphism of a larger algebra, the weak closure of irw{A). We shall denote this by 
iru(A)" since by von Neumann's famous theorem it coincides with the double commutant 
of *U(A) (the commuUnt is defined by ir^A)' = {B € 0(7C)> [B,A]=0VAe *u(A)}). 
ifu(A)" is not only a C*-algebra but a W* (or von Neumann) algebra which enjoys the 
following additional properties: 

(a) For every increasing bounded sequence in n{A)" the supremum is also contained in 
*(A)n. 

(b) As Banach space ir(A)" is the dual space of another space, the predual. Thus by a 
general theorem the closed bounded sets in x(A)" are compact in the weak* topology 
given by the predual. The positive normalized elements of the predual are called the 
normal states. Any state over A can be extended to a state over *{A)" by the theorem 
of Hahn-Banach but not all extensions will be normal. 
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We shall call (ir(>t)", rt) a W*-dynamical system and it iias tne virtue that it contains many 
limiting elements not contained in A. Typically time limits or time averages exist in i (.4)" but 
not in A- On the other hand, the additional elements in *(A)" may destroy some jf the nice 
features of A and we always have to worry what extends to *{A)" and what not. 

A.3 Examples 

1. The CAR algebra is simple and therefore has trivial center. However, Z u = ^(A)' n 
iru{A)" may be nontrivial as is the case if u is a convex combination of two states leading 
to inequivalent representations. 

2. The CAR algebra is weakly asymptotically abelian for the free time evolution in the Fock 
representation ir«,. However, ».»(.A)" is not asymptotically abelian since *ao{A)" contains 
the generators of rotations and translations which are constant but do not all commute. 

3. If u o r ^ u then in general T cannot be extended to xu(A)". Furthermore, if w o r = u 
then T can be extended to TT(A)" but if lim*-^ \\n(A) - A\\ = 0 V A G A, V A € *{A)" we 
can only conclude that the strong limit of rt(A) goes to A. 

If the state is faithful, even when extended to JT(.4)", then the tie between the C*-algebra 
and its weak closure becomes stronger due to the existence of a modular automorphism group. 

A.4 The modular automorphism 

1. If A € * (A)" and i4|ft) = 0 implies A = 0 then SI if not only cyclic but also separating 
for *(A)" and therefore also separating and cyclic for A'. 

2. There exists a modular automorphism group mt that can be extended to the strip 0 < 
Im t < 1 such that 

u(AB) = u(miB • A). 

rrn itself is only defined on a dense set of analytic operators. Analytic operators are easily 
constructed, for instance, 

i o ( 0 = 4 = r dt'e-Wamt,A 

is analytic in t. Because mt is strongly continuous on if(A)" we see that for a -* 0 Äa{t) 
converges strongly to mtA. Thus analytic operators are strongly dense in t{A)". For the 
expectation value the analytic extension is possible for all A, B € K(A)". 

3. If the representation has a nontrivial center the modular automorphism leaves the center 
pointwise invariant. 

4. If « is invariant under the automorphism r then r o m = m o r . 

5. If r is weakly asymptotically abelian on A then it is weakly asymptotically abelian on 
n(A)" (see 5.4). 
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A.5 Decomposition of states: In section 5 we referrevl to the decomposition theory of 
states. The basic facts are the following: 

1. Consider two states ut and a>2 such that ui(A) > Ah^(i4). Then there exists some T e 
iti(A)' with 0 < T < A such that 

o;2(/l) = (ft1|T7r1(A)|n1>. 

Thus if u can be written as linear sum of other states we can find corresponding positive 
operators in the commutant that add up to 1. 

2. If u is invariant under an automorphism group and is decomposed into other invariant 
states then the corresponding operators € *ui(A)' are also invariant. 

3. If we know that the invariant operators from *u(A)' belong to the center - as is the case 
if the automorphism group is asymptotically abelian - they form an abelian algebra and 
we can use the isomorphism of an abe>:an algebra to L°°(dn) for some measure dp to find 
a decomposition into extremal invariant states: the decomposition of 1 in L°°(dfi) into a 
finite sum of projectors defines a corresponding decomposition of the state. Refinement of 
this decomposition has a unique upper limit [22] and this gives the (unique) decomposition 
into extremal invariant states. Since the invariant operators are contained in the center, 
the decomposition into extremal invariant states is coarser than the one determined by 
the center, which is the factor decomposition (and for KMS states corresponds to the 
decomposition into extremal KMS states). 
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