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Abstract

With the use of consistent orderings in ¢ = ps/a and 5 = k± ps model equations

are derived for the drift instabilities from the electrostatic two-fluid equations, Tile

electrical resistivity rl included in the system allows the dynamics of both the collisional

drift wave instability (77 # 0) and the collisionless ion temperature gradient driven

instability (r1 = 0). The model equations used extensively in earlier nonlinear studies

are obtained as appropriate limits of the model equations derived in the present work,

The effects of sheared velocity flows in the equilibrium plasma and electron temperature

fluctuations are also discussed.
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I. Introduction

In this work we consider the derivation of ro.duced nonlinear fluid eqlla,t.ions [or the descrip-

tion of drift wave turbulence and vortices in low beta confinement, s'.._,st,ems"_ ' with magnet,it,

shear. Numerous earlier works on drift waves contain more specialized derivations depending

on a particular ordering of the several small parameters in the system, ttere we generalize p,

these earlier results in. several aspects being careful to distinguish between the equilibrium

expansion parameters and perturbation expansion parameters. In order to consider situa-

tions relevant to current tokamak experiments, we assume that the ambient sheared ion flows

may exist in the plasma. On the other hand, for the reasons of simplicity, we neglect effects

associated with trapped particles. Although kinetic effects such as those associated with ion

Landau damping and trapped electrons are likely to play a prominent role in some circum-

stances, we only discuss the fluid model here, assuming that the fluid model approximates

the dynamics of the strongly destabilized mode reasonably well, as is commonly believed.

" One of the earliest accounts of the instability caused by ion temperature gradients is

found in the paper by Rudakov and Sagdeev, 1 where it is shown that the growth of the

"ionic electrostatic" wave is caused by "a continuous inflow of heat from a region with _t

high unperturbed temperature into the region where the temperature is rising on account

of the compression due to the plasma wave" under the conditions of zero density gradient

(n(z) = const) and finite temperature gradient (Ti(x) = T_(x) 7_ const). More detailed dis-

cussions on the fluid and kinetic models of this instability, the dispersion relation, the critical

value of rli for the marginal stability and localization of the mode are presented by Ka.domt-

sex, and Pogutse, 2 based on the local approximation. Coppi, Rosenbluth, and Sagdeev 3 have

derived the integral equation of the instability due to ion temperature gradients from the

Vlasov equation, using the normal mode analysis. The fluid limit of this kinetic model is

also discussed therein. On the other hand, the model equations for instabilities of the colli-

sional drift wave due to ion and electron temperature gradients are derived and discussed by
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Hinton and I-torton l and also bv Ilorton and \;a.rrna, '_based on t,he two-fluid eq;lations (_with

the effects of resistivity, viscosity and therrna] conductivity. Tl_e ion temperatt_re gradient

driven drift instability, modelled in _t slightly different way ['ronl l-)reviolxs model equat.ions

_md called the ion-mixing mode by Coppi and Spight, 7 is used to expl_tin the rate of density
gll

(. 78rise observed when neutral gas is fed into a tokamak plasma during a stable :tlscharge. '

If Simple fluid model equations of drift waves in the absence of the ion and electron temper-

ature gradients are derived in the collisionless limit by Hasegawa and Mima 9 and in the colli-

sional limit by Itasegawa and Wa.katani. 1°'11 These sets of equations provides simple models

of plasma turbulence, from which one can relatively easily perform mode-coupling analyses

and study plasma-turbulence properties such as wavenumber spectra. Horton, Estes, and

Biskamp 12 have also presented a simple set of fluid equations of the ion temperature gradient

driven turbulence in order to assess the anomalous ion thermal transport. In their model,

the electron-temperature-gradient effects are excluded and only the three scalar fields of

fluctuations, the electric potential ¢, the ion pressure/_ and the parallel ion velocity FII, are

involved. Several other simple fluid models have been proposed for the study of drift wave

turbulence under various conditions, la

There are two different branches of the ion temperature gradient driven mode. One is

called "slab type," which is the drift wave coupled with the ion acoustic wave that is desta-

bilized by the local ion temperature gradient. The other is called "interchange type, ''i'_'1s

which is destabilized by bad curvature of the magnetic field lines in the presence of th_. finite

ion temperature gradients. Since several experimental results suggested that the turbulence

associated with these two branches of the ion temperature gradient driven mode were likely
V

to be the cause of the anomalous thermal transport observed in tokamaks and stellarators, 16

numerous detailed studies of the ion temperature gradient driven mode have been presented.

The goal of this work is to derive a set of reduced equations governing the slab-type ion

temperature gradient driven mode, which is generalization of the model equations of Horl,on,



Estes, and Biskamp. t'e Although it is possible to derive the interchange-type ion-temperature-

gractient-mode equations from the reduced equations (,t9)-(52) derived in Ssc. II, we do not

present the final t'orm oi the in t.ercllange-type equations in t,he present work. The r¢?a.d_,rs

who are interested in the interchange-type equations are suggested to refer to, for examl)le,
L

Refs. 1,1 and 15. \¥hen the effect of magnetic shear is stronger than the effect of magnel;ic

field curvature, the slab-type ion temperature gradient driven instability is predict.cd to !1'

be excited and become a dominant source of the experimentally observed anomalous heal

transport. _7,_s

In deriving the reduced equations,, we start from the compressible two fluid equations

and ignore fluctuations of rnagnetic fieM and electron temperature, as in Ref. 12. It is

also assumed that the mode is localized on a particular magnetic field line (i.e., k± >> /'_'11)

and typical frequency and growth rate of the mode are much smaller than the ion cyclotron

frequency. The background fields such as the mean ion temperature gradient and the ambient

magnetic field vary slowly in time and space, compared to the fluctuations. The specific

" ordering of physical quantities of this mode is given in Subsection II.B as the s-ordering.

This ordering significantly simplifies the model equations as summarized in Sec. III.

II. Basic Equations

A. Electrostatic two-fluid transport equations
,b

We start from the electrostatic two-fluid equations, s For low-frequency modes with wave-

lengths longer than the Debye length, we may assume charge neutrality and discard the

•. Poisson equations (the plasma approximation). Namely, we take ni = 7_eand allow _'.E :fl 0.
w

We also consider the case of _'ero-electron-mass limit (i.e., rn_ --_ 0) and the constant electron

temp¢,rature 7;. Effects of electron temperature fluctuations will be discussed in Sec. IX/. *



The set of equations then becomes

(0 ) v,t?_,irt, i _ + Vi' V Vi = --Vpi + ec'n,i(-_7(D + --c x B) - cniqj + V " II,. (1

Ve
0 "-- --_']-'eVlZ i -- eT_,i(-V(I) + " X B) + eTziqj (2

C

()11,i
+ V" (niVi) -- 0 (3)

, Ot

OnE

o-7-+ v. (,_,v,)= o (_,_= ,,_) (4)

Opi

O-T + vi. Vpi + 7piV.vi = (7 - 1)(V.qi - Iii. Vvi) (5)

where

Pi = rr,iri

j = erzi(v i - v e) (6)

7 7ziTi
qi = -_- VTi + (b x VT,-) (7)

7- 1 (7- 1) wclmi

and

n; = -,...,w(°_- _;)w_'_- _Tw(_ - .p_w _ . (s)

Equations (3), (4), and (5) yield

V.j =0. (9)

In the equations above, subscripts i and e denote the corresponding quantities of ions

and electrons, respectively. Ttle magnitude of the electron charge is denoted as e, co_i is the

' ion cyclotron frequency coci -- ZeB/mic, Z is the ratio of the ion charge to e, 7 is the ratio of

the specific heats, c, ni, ro., p, T, (I), and v a.re the light velocity, the numl)er density, mass,

pressure, temperature, electrostatic potential, and velocity, respectively. The magnetic field

B is assumed to be time-independent, satisfying V. B = 0, and f) = B/Bl is the unit vector

axw_.ll sin the B-direction. Since the electrostatic limil; is considered, we ma.y ignore the M _ '



equations. Therefore the current, density j given bv Eq. (6) and satisfying Eq. (9) need not

satisfy j = c'Ip' x B/4_'. \¥e note that the electron thermal energy balance equation is not

include_t in the system (1)-(8) since constant electron temperature T, has been assumed. In

the ,'xpression of the ion heat flux qi of Eq. (7), g denotes the heat conductivity tensor. Fh(=

traceless tensor Iii consists of the gyroviscous tensor II FLR -" -r ,FLa W vba and the collisional L

stress tensors --i]-[c°l-- -vii i W (°) - r,_li) W (1) - u}£_) W (2). In the Cartesian coordinates, the
B

(c_,/3) component of Iii defined in Eq. (8) is given 6 by

W(2)=_ (6%b_b, + 6"_,b,_b,) a,,, (19)

and

I,vFLR - 1 3

. where b_ is the a component of b (a .-= 1,2,3), _r,,, is the (#,u) component of the rate-of-

strain tensor

- 9

_,,,,= O_vi.+ O_v_- _ 6..W •vi ,

O, = d)/Oz_,, 6,,, is the unit tensor or the Kronecker's delta, 6,_ = 6,,- b,b_, e_/3^, is

an antisymmetric unit tensor and uFba = pi/2wei. In the limit of strong magnetic field

(ayciri _"_, 1, where "r'i is the ion-ion collision time), the viscosity coefficients are given by

viii = 0.96niTiri U(L2i) = O.30niTi 2, /_r_ and _,2_;)= _,_;)/4. The divergence of the tensor

in Eq. (1) is defined as (V. Iii)o, = 00II;_ _ and the contraction in Eq. (5) is defined as

II,' _TV i = I'Iia(j6_/3Via. We note that IIi' XTvi may be calculated from the formula

1 )2
W (e)' Vvi = _ tr(W "(e) (g = 1,2, 3)

and, in particular

W FLH' VVi "- 0 ,
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namely, tile gyroviscosity does not produce heat.

The parallel stress tensor 1-llli= --l,'lliW(°) can be written in a explicit vector form a.s

1-Ill;=-3L, iIi blo-SI ,\ , (14)
III

where

1

, ,_=g. ((g.V)v_)- 5V.v_ (1_)

and I is the unit tensor. Using Eqs. (14) and (15), we obtain

nlli. Vv_ = -aa = .

The other parts of the stress tensor generally have no simple vector expressions if I_ is a

function of space. However, if the dependence of b on the space coordinates x is weak

in the sense that c)_vio / vial >> Oub_,i (c_,/3,#,v = 1,2,3) or, in other words, the space

derivatives of the velocity vi are much larger than space derivatives of the unit vector b, then

the divergence of the stress tensor Rr. Iii in Eqs. (1) may be calculated from the following

expressions:

V. W (°) = 3Co(b . V)A - VA + O(e*) (16)

V' W (1) -- V' V.l.V/. na 0(£*) (17)

V. W (2)- b(/)ll(V±, v) + Vm. V uli) + o_](V±Vll) + c91_v±+ 0(,_*) (18)

v. WFnR= -V±(b.(V x v)) + 2b,C)li(Co.(V x v))

, + [, x v(v. v)+3(g.v)_(g xv) -([,. v)(v xv) + o(_*). (19)

Here O(e*) denotes the terms smaller than the leading terms by order of e* __

a,<l/(a_,el/_el), we h_v__lsou_d v, = e_%_e= v- g([,. v), vii= g. vii,

v_ = v- g(g. v)and C)ll= b.V. In Eqs. (16)-(19), the subscripts i were omitted

for simplicity.
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" m_/'r_.ie2 , "," -In tile system of E,qs. (1.)-.(5), we retain the resistivity r! = r,,, xxh¢.t :. re. (TS 1

0.5i. tJ,__ in terms of the collision frequency t/_ _ given by Bra.ginskii (;) is the electro))collision

time, as a possible nonzero coeft3cient while the electron mass and the electron diffllsion

coefficients are all set to be zero. The condition that the friction force R = 'l_.,.er!jin Eqs. (1.)
tL

and (2) has a significant effect on the dynamics is given by the f_Alowing argument. In the

parallel component of Eq. (2) to the magnetic field B, balancing the first term to the last ,

term in the right-hand side yields the relation kllniT_ nler]jll (hie) 2,,, ,,o rlv]li. We also expect

from Eq. (3) that the time derivative of the density is of the same order as the parallel density

flux, or wni _ kllnivlli. Here kll and w denote the parallel component of the wavenumber

vector k to B and a typical frequency of the mode, respectively. Eliminating 'viiifrom these

two relations, we obtain the condition for the collisional drift mode

?Tte Pe

where u_ = r[ 1 is the electron collision frequency. Since, as will be shown later, the

typical frequency w of drift waves is given by the electron diamagnetic frequency w* =e

(T_/rniw_i) (ky/L,_) with L_ being the ion density gradient scale length, the condition above

may be written as

TYreP'e

2 2 = u-:_/T_/ is the mean free path of the electronsSince T_/m_ = ,_mfpU_,where ,\mfp ,. rn_

the right-hand side of the condition (20) represents the inverse of the ti:ne scale of electron

diffusion in the length kli-1 along the magnetic field lines. On the other hand, the condition

for the collisionless drift mode (i.e., 77--+ 0 in Eqs. (1.) and (2)) is, given by

w* << ki_T_ , (21)
reel; e

W

that is, the wave motion is sufficiently slower than the electron diffusion along the magnetic

field lines. These two limiting cases--the collisional drift mode and the collisionless drit't

mode--will be discussed in more detail later.



B. The c-ordering

tie.... Since_ . pecifving a, c-" ' f physictd qua,nrl' ,s\Ve now simplit'v Lqs (1)-(c,_) by s ,. ..elta,in ordering o

we 'are concerned wit,h low-level ttuct;uations of tile plasrrla governed by Eq. (1)-(9), ca,eh

. physical quantity may be split into two parts' the mean part, which varies slowly in time

and space, and the perturbed part, which fluctuates in time and varies rapidly in space.
¢

For example, pi = Pio+ Pi, where the subscript 0 denotes the mean part tmd the subscript

1 denotes the fluctuating part. As typical scales, 12 we choose the ion cyclotron frequency

_; to measure the frequency and the sound speed c_ = (T_./rn_)_/2 to measure the velocity.

The lengths are then measured with the ion inertial scale length p,, = c_,_-}1 and the electric

potential is measured with T_/e.

Since typical fusion plasmas satisfy the condition that p_ << a, where a denotes a macro-

scopic scale length such as the minor radius of a toroidal confinement device, we use e = p,_/a

as an essential small parameter in the system. Smallness of the fluctuating quantities are

then assumed to be of order e or

~ v,,/c,~ ~ g/p o ~ ~

whereas the mean quantities are of orde',- 1, such as plo/minioTe _: CO(I). The variation of

the fluctuating and mean quantities in space may be characterized by the following orderings

of space derivatives: the perpendicular derivative Vi is of order 1 or p_Vz ,-_ O(1) and

the parallel derivatives _1 is of order e or P.,_l "_ O(e) when these operators are applied to

fluctuating quantities, whereas p_O± ,-, O(e) and p_ 011,-_ O(e 2) when these operators are

, applied to the mean qua,ntities.

For fluctuations localized on a particular rational surface at '_ = '4,_,where _/2denotes an

appropriate magnetic flux coordinate, the mean ion velocity vi may be expanded around the

rational surface as

= V;o(¢.,)+(¢- ,l,,)Ov olO%+...

9



"File second term of this expansion may be regarded as of order s; i.e., _/,- _['._/ _/', "_ O(s)

in the neighborhood of the rational surface. On the moving frame with the constant velocity

V_ = vi0(_/'s), the mean velocity vi0 may be expressed as vi0 = ('_/,- 'l/_)Ovi/&/,._ +... of

O(s), whictl significantly simplifies the system of equations by eliminating terms involving Vc.

From now on, therefore, we always use this moving (inertial) frame to describe the sysl,em of

equations. On this moving coordinate system, we may assume that: vm/c., _ psVxVio/C_ --,

O(e), Vio(_ -- _,) = 0, P,OllVio/C_ _ O(e2), e4oo/Te _ O(e) and time derivatives osg_ 0/Or of

fluctuating quantities and mean quantities are of order ¢ and ea, respectively.

We now consider relative sizes of the diffusion terms of gqs. (1)-(5), assuming that the

diffusion coefficients are given in the limit of high collisionality and the strong magnetic field.

With the use of the natural units of the mode introduced above, the scales of the diffusion

coefficients of Eqs. (7) and (8) are then given by

e2rti
r] _ "_ ((-Oce'/'e) -1 (22)

17ZiCOci

minip,c,- _ coeiri (23

,,f R ~(T,)m_nip,c, - _ (25

xI,, _ (T,.)nip_c_ - _ o&iri (26

X.Li _ (Ti ) (27 .

w_;mi - _ , (28 lt

where t,'lli = niTi ri u{_} _- 4u(2_1i) niTi co2 - niTiri/mi, _±i -' _-- / ci ri, Xl[i "" "-' n, iTi/m, iao2ciri arid

_7 -- /,_li_r.L + _lli_Yll. From Eqs. (20) and (21), the ratio of the electron collision frequency

10



r_ I to the electron cyclotron frequency _.Oce= e.B/meC satisfies

(Wcere) -1 ")C (e:) for the collisional drift mode '2(9)

and

(w_r_) -1 _ O(e) for the collisionless drift mode. (30)

Here we have used le,li ,-,,L_ 1 and ky L,_ ,-_CO(e).

For the collisional :1rift mode, therefore, the diffusion coefficients have the following scal-

ings under the relevant normalization specified above;

Collisional drift mode

vii i _ _JJi _ gZ----_- ,,

r'ili ,_" _.l.i _'_ g Z2 (m_e)l/2 (__.)1/2

niTi 77
//FBR

_ci TtXe Te

Here we have used Eq. (29) and the relation (w_, rl)/(w_, %) _ (m,/ml)l/e(Ti/T_)n/2Z -'2.

When the collisionality of the plasma is low, some expressions of the diffusion coefficients

used for a collisional plasma need to be modified. In particular, the parMlel diffusion coef-

ficients viii and nii should be chosen to model collisionless ion Landau effects. 17-m For the

, collisionless drift mode, therefore, we assume that the resistivity and ali the perpendicu-

lar diffusion coefficients are given by the classical collision theory as in Eqs. (24) and (27),
lt

whereas ulli and _;11iare given as quantities of order 1. From Eq. (30), we have the following

conditions for the collisionless ctrift_mode:

11



Collisionless clrift mode

q <<c ,

/]Iii ) /212/) Fol. i _<_ ca 2 /TY_i/1/2 /_,/1/2,Y/_e '_,

r_LR n{Ti Ti
tOcimi T_

kinder the scaling _ssumptions of magnitude of fluctuations described above, Eqs, {16)-

(19) may be further simplified and the following expressions of the stress tensor are obtained:

-(v.n)ii= 2.11011,_+ ,.i_)v_,.,,i+ ._ Qlx+ o(__), (a2

where

x = g.(v± x vx) ,

1

"\ : 011vii- ,5(v. v),

and the subscripts / are omitted. As we will show shortly afterwards, the divergence of vi

is small or V'.v; -,, O(c '2) and, therefore, ,\ ,,, O(e2). In estimating the order of ma_gnitude

of the terms in Eqs. (al) and (32), we have used the collisional drift mode scalings of the
.,

diffusion coefficients without taking into account the magnitude of the factor (m_./mi) 1/9".

Therefore, the first term of Eq. (31) Ulli VxA _-,O(e), the second term _i ) V_. v.Li "_ O (¢2),

the third term u/_'tmVx_ -,, O(e) and the fourth term is of order e2. We note here that

X= g.(Vx xvxi) _O(e:). For Eq. (32) ali the terms are ofe 2.

We now derive equations for fluctuating quantities, assuming that the mean quantities

are given. We first note that taking the lowest order of the continuity equation (3) yields

12



_'vi- O(:::). Ttle_rel'ore. we need to determine the perpendicular ion flow velocity v,i tlp

Io O(,=-_] as wall as ¢'!1,uI) _¢) C0(c) in order to estimate V.vi to the lowest order. Writing

V L, = \,(_1 + Viii C')(_:_ (o) ___ -:- . - ) wilh v "-, C")(_,)and v (I) _ CO(_::), we require tha.t v (°) satisfy

, where _,FLR=.o po/2,'.:, and ,\(o1= i)llUlli_ (1/3)_'. (v (°) + v (_1). Equation (33)is the lowest

order contri!)lltio_l from the pert)endicular components of Eq. (1). It follows from [:q. (33

lhal we may write

v__1= vs + v,_+ VR , (34

whore

b x Vj.cI)
vE = c (35

B

g ",<'IF.L/);
v4 = c 36

eniB

and vK satisfies

en, x B = _!I,VL,\(O) -F ,,_'rm V:B. (V x v_. ) . 37

In the case of the collisionless drift mode where l),ll; _ 0(I ), the term t_,ll,._'_.,\ sho_:ld be

dropped from Eqs. (33) and (37) It should be noted that v(__1 contains non-fluctllatiilg

mean flows vE0 and v,m. In Appendix A, it is shown that the following identity (Eq. (:\-7))

holds'

1 _a × V±p;. W_'lli + (_' I'I,FLR)II = P,011(b " V x v,) + O(-a) . 38)

The parallel component of Eci. (1) the_, becomes to the lowest order

11

) vr:,m,. r,.,o \_ + (vu + v,.-). VVll; = -OiiP_ - en;oOllO - p;oOil(b V ": )

-en,0q.Jll 4- 9tql,.011t(°) + p_)A m t,,i; . :19)

13



The electron momentum equation yields

0=-T_V±ni-en; -V±_-I-n- xB , (40)
c

0 = -7) i:)lln.i+ en.i 011q)+ enir/Jll . (41

From Eqs. (3), (5), and (9), we ha.ve

0f/i
0---7--F vE' _'ni + ni0_ ' vE + _' (niv4 + niVF) H"nio(XT, v}_)) + ni0011t,lli -- 0 , (42

/)---_+ (VN -t- VF) ' _Tpi 4-, 7PiO V' (VN + VN)

4" "TPio V" V_ ) + 7p;o011 vii i 4- _'W b x _(Pi Tj) = V' (t_vri) (43

and

v. j = o. (44

In deriving Eq. (43), the following identity is used'

7pi_'v,i+(')'-" 1)_''q FLR =7_'' b x W'(piTi) ,

wheFe

qFLR = 7 ]'i (b x VT)) ,
7- 1 m,wci

From Eq. (40), the perpendicular components of the electron flow velocity is given by

Vie -- VE -- Vde ,

Wtl e r e

x 7; Vn;
V_/e -- C ' _

en_B
II

Since j = en,(v, - v_.), EcI. (-1,1)may be written as

V, (n,, (va -4-v,z_)) + V • (n,vz=) + nioV' v_ ) + e-1 011Jll= 0 (45

t4



(1) and Jllto the lowest order. This equation gives a relationship between v k

The higher order correction v_ ) to the velocity field may be calculated from Eq. (1).

Writing down the terms of Eq. (1) up to O(¢ 2) with the use of v(_) and Eq. (32"). we oi)rain

" mini \(0_+ v_ ) .V//v(_ ) + en/r/J(_)+ (XTc ""rli)± =--ehi (VY + v_)) xBc , (46 )

, f,
where j_) = en(va + v_,) = cb x _'± (pi + niT_)/t3. Applying X7 . x to Eq. (46)

m, ia)ci

yields

V,f_x _+ ._ (vE + vr) -t V±¢ + _V. II,TT_iOdci ?TZi_ ci

= V. (n;vF) + n.i0W ' v(_) , (47)

where we use the following relation

rain{ + . "_7 Vt1 + ( _7 . -- × _7 7_, Pi + ' _'Pi + _'± (_ (,IS)
Wci

with

¢= _ P__5_'_. v x v_°)
2wci

Equation (48) is shown to hold up to O(e 2) in Appendix A (Eq. (A-6)). Using Eq. (45) as

well as the relation

T_. (O,,ni e 0l,_ )
J[I

obtained ft'ore Eq. (41), we rewrite Eq. (.I7) as
J

V.b x _ + .V (vE+vy)+c--ffJ_ _)+_xza¢+_V'II_ °le \ Cu,ci _ .D_i_X)ci .?TZiO,)ci

_im,il L_± ( 0-._ )
Np;-5 (rE + VF). Vp;a

1 ( 0_ enioT"O_'i) " (49)= -v. (,_,(v_+ v_)) + .7-

15



Similarly, Eqs. (39), (,i2), and (,13) may be written a,s

)m., ,,io \--0_ + (vE + vF). _Tvlli = Oiipi - T_ Oiin_ - pioOpl(g. 'W x v_ ))

+ 2UlliOll,\(°) + u_ ) _l i..';lli (50)

0"--'t'-,+ VE' '_rn, i + nio('_'' VE)- '_7. (n,i Vde)+ nioO_lulli + etl eTtio

0--7 -i- (vE + "rF)" Vpi + 7P,o (V'VE + 0li t, ll;) - 7Ti V. (ni (vd + v_)) - 7Ti vr" Vni

etl e rt io 7"I$iCOci

Equations (,19)--(52) gives the evolution equations for the fluctuating quantities _, /_,i, pi,

and _;ll;"

The electric field potential $ is uniquely determined in the following wa_y. Dividing

Eq. (,11) by ni and integrating the resulting equation, we obtain

= ' +_ _ o;11d_' ,

where c_ and /3 denote general magnetic coordinates and s' denotes a distance along the

field line B = Wc_ × W/3. The integration constant is chosen in such a way that nio(a,/3)

represents the mean number density, in the case where e_/T_, etl jlld/r_. << 1, we oblain

_i e_ e77f" ;Hds',_,o= Z+Z Lo

In order to determine _ uniquely, therefore, we rna5, require that

- (,53) ,
_,io Te

at some plane .s' = So (e.g., .So = --cx_ in the case of infinite domain).
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C. Long-wavelength approximation

In this section, we introduce a stlbsidiary ordering, assuming that wavelengths of the modes

are much longer than p.,, that is, km P., 4< 1. More precisely, using kt small paralneter _S

., sa.tisfying s << _ << 1, we assume that p,V± = O(_), P.,_'N = O(_f2s) and _7/_ O/i)t. =

O(_52e,) when these operators are applied to fluctuating quantities and p,, VI = O(,%:) and
i

P, VII = O(b''2e2) when these operators are applied to mean quantities. We also ass_lme that

rl "" O (_2_), ,ZI ,_ v_l ~ O(s) and vll_"_ O (¢/_2). Under these assumptions, it follows fron_

E.'qs. (35)-(37) that vE "_ v,¢ -,_O(_s), _\(0)_ O(_2s2), and vF "-,O(_as) whereas t,ii ,,_ 0((,).

Using the lowest order expression of v}_) = vg + vd, we obtain v}_) ,-_C")(_3s2) ft'ore Eq. (46).

(_1 XT. Vy CO(_4s2),it follows thatSince V.v± _ -_

V.v =v. + 011,,11,~ co

to the lowest order. Therefore the terms _'.v(_ I and V'VF in Eqs. (42) and (43)are neglected

under the subsidiary orderings in this section. Taking the lowest order contributions from

Eqs. (49), (50), (42), and (43), we obtain

en, lo

m., n,o \ O_ + vE . Vvll, = -Oiip, - T_ i;_ln,+ 2vll,i_l,\I°) + ,.,_2),.Xivii, (55)
0'5_

"_ VE " Vni + nioV . V E + _7 . (niVd) + ni0 DII t,lli - 0 (56)Ot

i')[ii fo x V(pi Ti')

Wh e re

. 9 1

A(°) = 3i)llVlli, - _V • (vE + v,:) . (5S)

" D. Cold ion approximation

In this section we consider the case where the ion temperature is significantly smaller than

the .lectron temperature; i.e. << _ T,./T_. << 1. In this case, the ion Larmor radius/9;e _ _ -- :=

17
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(Ti/mi)l/2/wci becomes much smaller than p.,, and therefore we assume that perpendicular

wavenumber kl satisfies k± Pi << kj. p, ,_ O(1). We also assume that the ion temperature

gradient can be inuch greater than the typical gradient of a mean quantity or (z/LT, =

0(_5 -_) (L_ _ = O&zpm/Or), so that the perturbed ion pressure _ could scale as fi/l'_o = _.

O(e/_) << 1. In this scaling, we have Vj. pm _-' V±pi _ Vj.Ti "_ O(e), Pio _ z_[LR _" 0(_5),

and q" _ CO(&). Although the diffusion coe,_ici,mts ulli, v_i ), v_2i), _ll, tmd nj_ have Ti/TL . "

dependence, we ignore this dependence and assume that rI _ O(¢), Ul',i _ _11 "_ (-9(e-t)

(2)
and t/_li} _ _q.i "_ t,-.j_ -,_ O(e) as in Sec. I!-B so that the terms involving the diffusion

coeflqcients are still kept in the lowest order equations. Under these assumptions, it, follows

from Eqs. (34)-(37) that VF becomes of order & whereas vE and va are of order e. The

(1) is then obtain from Eqs. (46) and (48) to the lowestpolarization drift velocity vp = vr:+v l

order as

(1{0 )
1 bx V( 0~ ) 1 1.i_.o,)

f = _Pi + Vs ' VPi + V. ,r_.i Yrli_ c, e12 i172i¢oci

Taking the lowest or{1 . components of Eqs. (49)-( 52/ we obtain

V'.gx \_;_ _+(vE+vd).V vE+---B--j_ +_V.m;_o_, rI_°_

l ( b x V (piTi) 5)+ ,-----T_j._/V.-- - V. (,_V¢,
rTli _ ci rlz i¢,Oci

-- --V. (n; (va + va_))+ etl enio

" ( 0_'l' ) (2' _l _,,i , (60) •mi nio -._ + v E , Vvlli = --OiiPi -- T_. Olin i Jr- 2VlliOiiA(°) + v.j.

i:)_i 1( T)

18



+ rp; + -yx;'. = v. _
Frl,i_ci

where

2 1

,\(o) = ,_Ollt,lli _ _,. (ME + Vd) .
,.A

Equation (62) has been used in deriving Eq. (59) from Eq. (49).

If

III. Slab Models with Magnetic Shear

, In this section we consider _ simple geometry of magnetic field and further simplify t.he basic

equation of the ion temperature gradient driven mode obtained in the previous section. In

the usual Cartesian coordinate system (x,y,z) with the unit vectors ,_, _ and _, we assume

that the magnetic field is given by

B(z) = B_ _ + L'----'_- '

where L, denotes the shear scale length and the equation x = x0 gives the magnetic surface

on which the modes are considered to be localized. This sheared slab magnetic field models

a local magnetic field configuration near a mode rational surface in a fusion device, such as

tokamaks and reversed field pinches. In this section we are particularly concerned with a

weak shear case (a << L_, where a denotes a typical macroscopic length such as the minor

radius of a tokamak), which is appropriate for a tokamak with small toroidM curvature.

lJnder this weak-shear assumption, we have B - S(x)] _ B_. and ali the terms which have

the form V. (lh x V f) such as V'VE and V.nvd drop from the mode equations since these

. terms can be shown to be too small, tlere we also assume that all the mean quantities are

functions of only x and evaluated at the mode rational surface x = x0. in particular, we use

" the following space scales

Ln =- d en nio , LT =-- _n Tio
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and the nondimensional parameters

L,_ 7T_
K= T_(l+r/i)" r=__'= r_' Z ' To '

Ln d Vllos_=L"Vg, SiI= ,
Cs Cs dx _.

where the perpendicular shear flow V0 is assumed to be given by the E x B flow caused by

the mean electric potential
1

• o= Tg(=- x°)_BVg

with Vd = dl/o/dx evaluated at x = Xo. The appropriate nondimensional st)ace-time variables

are

" tcs

p= p, L,_ Ln

and the nondimensional dependent variables are

e(_ Ln ni L_

T,_ p= nio p=

:511iLn Pi Ti L_
v=_--, p=

c= p_ PioT_ p.,

With the use of the nondimensional variables defined above, Eqs. (54)-(58) of the long-

wavelength drift waves may be further simplified in the slab geometry. Equation (54), which

becomes 0_(¢ - n) = 0 in the slab geometry, and the condition given in Eq. (53) yields

¢ = n. (63)

Using this relation, we derive from Eqs. (55)-(58)

0¢ 0¢ _ 5_,v (64)07 = -(_ + &_)_
w

o, o, o¢ - (_)- gila(°)0--fT+ {_,v} = -&__N+ $1,c-5-jj-Oll(p+n)+ _ A±v+ #l, (6,5)

Op Op 0¢ ~ -
/)---_+ {¢,p} = -Sm_ N - I< N - F 01lr + X± Azp + X'II/){_p, ((3(3)

2O



where

~ 8 0

_nd
II

0f 0g of Oj
{f'J} = o._a_ o;7o_'

In deriving Eq. 66), the term V. (_VTI) oi' Eq. (C-4)is replaced by V, (,7.o"t_Vpi for

simplicity. The normalized diffusion coefficients are given by

4Ulli _11
fill = 3'minioc_L,_' Yll nioc,_L,_

u_2i)L,_ _±L,_
#(_) = rninioc_p_ 'Y± = 'TZiOCsfl_

In the case of the low-ion temperature drift waves, we obtain the following nondimensional

form of Eqs. (59)-(62)'

8_AI¢

+ _'o_ + N'o_J-_1-_

- ,-;li91_(¢- ,_)+/.,2_£_(¢+ ,) 67)

On 0¢ _,,.
a_+ {¢ ''} = -s,_ a,-,. _ ' . o_ 0.,7 o,lv- ,.7,,o,i(¢- ,,.) (_s)

Oy 4)====(OY 8¢ _)/_±v +fill Ii]I ,\(0) 6,9). a_,_-¢'v-=-s_,/+s'_'(_y -a_I'p+')+#

ap a_ aC 5_ 7o)
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Itere the normalized electric conductivity GIIand perpendicular viscosity tt_ ) are given by

17ti_ci p s

Crll= niofle2Ln

and

(1) vii)Lh
t.tt. --=

rninioc.,p] '
II

We note that Eqs. (63) and (64)may be reduced from Eqs. (67) and (68), respectively,

under the long-wavelength approximation, whereas Eq. (70) of the perturbed pressure p is

the F _ 0 limit of Eq. (66). The equations for the parallel velocity v (Eqs. (65) and (69))

are the same in both of the approximations. Exploiting these similarities of both the sets of

equations, we combine these equations and propose the following set of equations, which holds

both in the long-wavelength approximation and the low-ion-temperature approximation irt

the sheared slab magnetic field. From now on, we will drop the tildes fi'om the independent

variables for simplicity in this section.

0 82p
. oata_¢+ {¢,_x_¢}= (zt"- S'_x)_ zx_¢+s_ o_oy

{0¢ Op} {0¢ Op}+{_'¢'P} + o_' _ + _' o_ +o31J+ _2)Lx_¢, (71

On On 0¢
O--{+ {¢,n} = -Szx Oy Oy OIlY+ OIIj ' (72

, Oy av 0¢
a---i+ {¢,,} = -.s',_._N - sliN - olt(p+ ,..)+ #_)z.,_,.,+ _,.lla[_,..,, (r3)
Op Op 8¢
o-7.+ {_'P}= --s._gj K _. - rol,_+ ._ _p+ xjlo_p (74)

where the nondimensionalized parallel electric current is given by

li

J/_ll= _1(_ - ¢). (7._)

In Eq. (71), the diffusion terms GI_-'AL(p+n), A_L(X±A±p -t- XiiOl_p)and i t(_)A_p, which

are kept in Eq. (67), have been dropped for the reasons of simplicity. Although dropping these
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diffusion terms from Eq. (71) is not consistent from the point of view of the collisional-drit_t -

wave ordering discussed in '";_ec. II-B, it does not change tlm relevant dynamics of strongly

destabilized modes, which tend to have smaller wavenumbers /_:±and k:[i. We also tlote

that' since plasmas in most fusion devices are either collisionless or marginally collisional,
d

the diffusion coefficients #_), #(_), X±, and Crl]-Iare small whereas the parallel diffusion

, coefficients #11and N'IIare of order unity, which model the ion Landau effects. The diffusion

(1 #(_)A±v in Eq. (73 and X±A±p Eq 74) however, ret,dnedterms #±)A__ 05in Eq, (71), ) in . ( are,

as t,he energy sinks of high k± modes in a turbulence state of the mode. In Eq, (73), ,\(0) is

replaced by 011viiand the term #ll0_v, together with the term )(llO_pin Eq. (74), is retained as

a simple model of the ion Landau effects associated with the parallel motion of the plasma.

One would need to use the kinetic equations in order to study the dynamics which could be

strongly affected by the diffusion, such as the dynamics of the marginally stable mode.

The domain on which Eqs. (71)-(74) are solved may be given by the cubic box -L, _<

x _<L,, 0 _<y_< L_, and 0 <_ z <__L,, Here Ly and L_ are constants of order unity (note

that x, y, and z are normalized here: x/o, -+ z, y/p, --+ Y, and z/Ln -+ z) whereas L_

is taken to be large enough, so that when there is magnetic shear (L., 7_ c_), single helicity

modes localized at x = 0 decay suffÉciently at x t --+ L,, In the case of zero magnetic shear

2L, represents the width of the constant background fields, The boundary conditions of

Eqs. (71)-(74) for this domain are that all the de["endent variables are assumed to vanish at

x = L, and to be periodic in the y and z-directions.

The energy balance equation associated with the set of equations (71)-(74) is given by

" a E'= oy -s,, - -i (rG)
. where the energy Et of the fluctuations is given by

1 ((hz) + ( _7±052 1 (t,2)) (7T)
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and tile energy sink by

Here ( ) denotes the space average of the contained quantity over the domain or

{ ) = 2L_LyL, L, dx dy dz .

If L, is taken to be e¢, the normalization factor 1/2L, needs to be chosen appropriately. 17

The four transport fluxes in Eq. (76)

( )y

and

PN ,

where '_E_ = -cB-lO_/Oy and Say = c(eniB) -10gi/Ox, are proportional to the transverse

transports of the y component of the perturbed diamagnetic flow Vdy, the perturbed parallel

flow 'viii, tLe perturbed density ft;and the perturbed ion pressure/_i, respectively.

In the collisionless limit or ¢11--* oe, the set of Eqs. (71)-(75) may be further simplified.

From Eqs. (71), (72), and (75), the adiabatic electron relation ¢ = n (or _zi/nio = e_/T_)is

obtained in the limit crll_oo. Eliminating the term 011j from Eqs. (71) and (72) and setting

¢ = n yields the evolution equation for ¢. The set of equations thus obtained provides the

fluid model of the ion temperature gradient driven mode or the r/i mode in shca.red magnetic
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fields with finite sheared flows ....

oa oa _ q oi)

{Op O¢} {op o¢}. -OHv+ {p,a_¢}+ ox' 0_ + 07_'oy - #_)_'¢ (rs)

Oy c Ov 0¢
" o-7.+ {¢'v}= -_'_'g - s_N -o_l(,.,+ ¢)+ #_a_, + #11o_,, (r_)

Op+ ,, Op 0¢
{¢,p} = -_z,cyy - I(-g-_y- ['O,v+ _,aap + :_llOi_p. (so)

The same domain and the boundary conditions as those for Eqs. (71)-(75)ma.y also be used

for Eqs. (78)-(80).

The energy balance equation associated with the set of equations (78)-(80) becomes

a--iEr:Sa _Oy -_11 vN -'p-\PN -l'Vz_'

where

and

"\'± I_

We note that in the limit _rll --+ ,2 there is no particle flux ((n0C//)y)= 0) since we have

, assumed the adiabatic electron response (n = 05).

. IV. Effects of Electron Temperature Fluctuations

Since the introduction of of the Hasegawa-Wakatani rnodel m it is common to take tile electron

temperature as constant. With the neglect of electron temperat_re fl_ctuations it is only l:he
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parallel electrical resistivity theft drives the drift wave branch' unstable. As shown by Hinton

and Horton 4 and Horton and Varma, s however, in tile presence of electron temperature

fluctuations the processes of electron parallel diffusivities Vileand K,ileand the thermo-electron

effects _thermorte 011Te in the electron momentum equation and a'th_moTe c)lljl',/e in tile electron ,

energy balance equation (ath_mo = 0.71) also contribute to the growth rate of the collisional

drift wave. In particular, it is known that positive r/e(= L,_/LTe) can be a strong stabilizing

effect on the collisional drift wave. 19In this section, we include these effects in the formulation

presented in the previous section.

The inclusion of the thermo-electric effect and the electron parallel viscosity generalizes

Eq. (2)to
4 ,2

0 = -Oil n_ T_ +ene _1_ + en_ rTjll-/3n_ ?)11T_+ 7.3.Vll_01iql_ (81)

where the electron parallel viscosity vile = c_viscne TcPe with a_i_ = 0.4. The thermal energy

balance equation is

[0 ] 9" 7n'e..., 0--t, "4- (VE ht Vlle) ' V T¢+n_T_OllVlle-C)ll(eZlleC)llT_)+-T_C)llJll+qJl_e (82)

with the electron parallel thermal diffusivity
I

'rte _e

h;lle = C_heat---- , C_heat "--1.6 ,
, T/%e /ge

where the ratio of specific heats is assumed to be 7 = 5/3. We note that r_ = ni from charge

neutrality.

As in Sec. III, we write the electron temperature as T_ = Tc0+ Te and the electron parallel

flow velocity as viie = vile0+ _lle' For simplicity, the mean flow velocities are taken to be zero

(vo_0= v;0 = 0) in this section. With the use of dimensionless dependent variables

T_ r_ L_ _lleL_-- , _)e "-- ,

To Ps Cs Ps

Ln

J = Jll
erto Cs Ps

and dimensionless parameters

26



4c_ Ull_ = 4Ull_
ltll_ = 3no .T_oL, 3mi no c, L,, '

- _ = d(ln T_o)/(ln no),

• Equation (81) can be written as

J/all = 011(n - 4)+ (1 + ath._mo)T_)- t,.11_i)1_v.. , (83)

where j also satisfies

j = v --t,_ . (S.t)

Similarly, the nondimensional fe-m of Eq. (82) becomes

:3 (0 ?)Q'_ - - - 1 j., ,-
8 k _ _ + {4, ")_} + r/,._,_ / + 011t',.= \ I1_?-)1_T, + athe,.mo0tl j + -- (s.))- ali

This election thermal balance equation brings in the parameter 77, from the i;ExdT;/,t.r

convection. Replacing Eq. (75) by (83), we obtain the set of equations (71)--(7-1), (83)-(,_5)

i (with ,b'_j= SII = 0 since the inean flow velocity is assumed to be zero in this section ). which

governs co]lisior_al drift waves under the influence of electron temperatllre fl_lcl_ations.

V. Linear Dispersion Relations

In this sectiol_, we discuss linear dispersion relations of the syszems derived in Secs. III and

IV. Here the local approximation is employed, in which the parallel derivative/)11 is replaced

"' by a constant i kll" It is also assumed that the mean shear flows are zero (S± = .S'll= 0) for

simplicity. Under these a.ssumptions, t,he space and time dependence of the normal mode
I*

may be given by exp i(_'_2 + k_._+ k, 5- £t') with kl = _'_+ k'_ and the constant, kll models

the operator ?)11with the relations kll = sA_ ky + k_, where A, denotes a. t.ypical mode widt.h

in the x-direction. In the case of zero magnetic shear (s = 0), the local approxinaation gives
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the exact dispersion relation of the linearized systems with the relations _11- _' With t,he

use of fl = £'/_:v, the dispersion relation of the system of Eqs. (71)-(75) is given by

(1 + k__)f_2 -(l -/,:__ A')f_ - 1 + -_
1-iY

= i % a={ f_ + K ) _ i ( k_HIl_ 2 K + fl
r" 4

where

f--rr --

crllk_ '

k = 7,ivand all tile tildes were dropped for simplicity. We also note that ali the diffusion

coetiicients in Eqs. (71)-(75) are ignored for simplicity.

A. Collisionless ion temperature gradient driven modes

File collisionless limit (e, = 0) of Eq. (86) gives the well-known dispersion relation of the

slab-type ion temperature gradient driven mode (Eqs. (67)-(70) with Sz = SII = 0). In the

presence of strong ion pressure gradient (K >> 1), the fastest growing mode is given lr by the

relation _'_"I = l/K(<< 1) with the eigenfrequency

There are also two stable branches with k_. = 1/K given by

Q= (k'll It* and -1-iv/3" _'_1_']K

Thus the unstable branch travels in the ion diamagnetic direction and the non-damping

stable branch travels in the electron diamagnetic direction. In the dimensionless form, the

unstable eigenfrequency may be written in terms of co = (c,/L,)f_ky as

-1;iv/_ 2= (-4  :il
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when

km p, = (Ti(1 + ,li)lTe) -*12 ,

where * = = -co* = =%,, -(cTi/eB)(]%/C,.)(1+ ,_) _ Sr,.,* = (c<l_B)_,,.,_,,, _,,ia.,_'ii _'lilC,,

. and/`:a = k±/ps. This instability results from the coupling of the ion acoustic wave with the

• lr More detailed physical interpretation of this mode is giventhermal mode arising from %,i'

" in Sec. VI.

B. Collisional modification of ion temperature gradient driven
modes

The presence of small resistivity e,7 in Eq. (86) affects the growth rate of the ion temperature

gradient driven mode given by Eq. (87). Taking the ordering assumption that/,:2 = 1/K << 1,

(k'll/k.v)2 << 1, K/f_ >> 1 and %A" << 1, we obtain fl = ((1 + ix/'3)/2)l(1/a(kll/k_)2/a(1 +

z¢_I{/3), or in terms of the dimensional form,

• 2 (___% (1 + r/,))2 _ '

where

[ "

where "ra denotes the growth rate 7c = Imw and ?)th.e "" _/Te/me . It is shown that the

finite resistivity reduces the growth of the ion temperature gradient driven mode.

C. Collisional drift wave

9,10Hasegawa and Wakatani have shown that finite resistivity destabilizes the drift wave. This

is a different branch of instability from the instability discussed in the previous subsection

and occurs even in the absence of ion temperature gradients. Under the ordering assumption
P

that (kll/ky) 2 ,,_ Cg(e_) and fl = ft0 + f_ with la,/_ol ~ o(_,),we obtain to the lowest order

ft0 = 1 - k_. li
t+ _I (~o(_)).
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Here, unlike subsections V.A and V.B, it is assumed that _'± ,-, K _, O(1). From Eq. (86),

it is easy to obtain the next order expression

a - (i- _I +rc):+"--'\_,,+,/+ i,+,+,(i + _r()(l- _i zt')' - (1+ +ii)+

The growth rate is then given in the dimensional form by

If the wavelength is long (kj. ps <<1), therefore, finite ion pressure gradients (1 + 77i> 0) are

shown to further destabilize the unstable collisional drift wave in Eq. (88).

D. Effects of electron temperature fluctuations

Finite electron temperature fluctuations, together with electron diffusivity and thermo-

electron effects, alter the growth rate of the collisional drift wave. 4'+'2°Based on Eqs. (83)-(85)

that describe these effects, we examine the growth rate of the collisional drift wave in the

• subsection. The dispersion relation obtained from the system of Eqs. (71)-(74), (S3)-(85) is

given by

(1+ __)f_:+- (t - __I¢)a -i_,.,a+.(a+r¢) i + 0-i,#i,+__+ °I' (i + _U,°,+mo

+/e"i' °'llf_2"_'l++_l(i+c+th'_"m°)i [_ ( k@+)aK+f_(l-ie+(I(+Q))f_:+I + (+I( + ,,++ ( )++,+.,.,+,+:.] . _ ,,,.+

(+)"++Jt-+'(++++>1__++(+>+. ,+9>.
where k = k+ and all the tildes were dropped for simplicity. It is easy to see that Ect. (86)

is obtained from Eq. (86) in the limit of "glle"-+ _ and #lie --+ 0. Here the large _'11+limit

prevents electron temperature fluctuations from being excited by allowing fast heat transport
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along tile magnetic field line while the small #ii* limit corresponds to the assumption made

in deriving Eq. (86) that the electron parallel diffusion #11_is small.

PThe eigenfrequency f/of the collisional drift wave may 1)eobtained from Lq. (8!)) under

.... , 7._,..,O(11,the following ordering assumptions: en = fv ki/erll k_ << 1, etl1 _ _lle, crllk'llekll ,
o

-k_. _, (kll/ky) 2 _ O(%--1/2).Writing f_ = f_o+ f_ with In,/a01<< _, we obtain the lowest-

, order frequency f/0 of the long-wavelength collisional drift wave as f/0 = 1.. Calculating the

higher-order contribution t21, we obtain the normalized growth rate

_il_,,#,,o
f._ (I+K) ,

where

~ (til

In terms of the dimensional form, the growth rate is given by

e Me 2 O'thermo ]ciics Ti

v_= k_,_ klp, t +--(1 +,;) A,- _,_+ 1+ (1+_)th,e Te _heat _ _ee -

•t.,ok_c__:li _ (i+,;) (90

where

4 _Te ]c_ "Jr" (1 -6- C_th¢._no) 2
fk, = 1 +._ a vi..¢ v:me e C_heat

Here we have used the classical expressions of the parallel electron diffusivit, ies

" /_:lle "- O_heatne ".Fe/'m, e l/e ((Yheat -- 1.6) and '/lie - cv_i._n,_,T_/v_ (c_i_ = 0.4) and the thermo-

electron effect _thermo -- 0.71, as given in Sec. IV. We note that the first term in { } of
0

the expression of 7a in Eq. (90) corresponds to the growth rate of the collisional drift wave

(Eq. (88) with kj.p_ << 1) enhanced by J'kllover the value obtained by only including elec-

trical conductivity (fklI _ 1). It is shown in Eq. (90) that a substantial, positive q_. can
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be a strong stabilizing effect on the collisional drift wave. The role of the parallel electron

viscosity avi_c is more complicated since it contributes both to increasing the enhancement

factor f_'tl and to the direct clamping irt the last term of the "Yaformula.

VI. Discussion

In this paper, we have derived from the electrostatic two-fluid equations the sets of equations

governing the nonlinear dynamics of the drift waves in the presence of ion temperature

gradients. The derivation is based on the consistent orderings, in which the modes are

assumed to be localized on a particular magnetic field line and to fluctuate much faster than

the evolution of the mean fields but much more slowly than ion-gyromotion. The effects

of mean shear flows and electron temperature fluctuations are also discussed. The final

equations for the collisional drift wave [Eqs. (71)-(75)] and for the collisionless drift wave

[Eqs. (78)-(80)] provide the basis for nonlinear analysis of the collisional drift wave instability

and the collisionless ion temperature gradient driven instability, respectively.

" It is worthwhile to exercise our intuition to draw physical pictures of the instabilities

discussed in the previous sections. For this purpose, we consider the simplest possible case,

namely, the case of no mean sheared flows (S. = SII = 0), no magnetic shear (s = 0) and no

diffusion. In order to understand the physical mechanism of the collisionless ion temperature

gradient driven mode, however, we need a finite ion pressure gradient (pi(x) 7_ coast. ), which

is the free energy source of the mode. On _,heother hand, for the collisional drift instability,

we consider the effects of a finite density gradient (n(a:) 7_ const. ), which is the driving force

of the drift wave; and finite resistivity, which give rise to the bre,_kdown of the adiabatic

electron response (n ¢ ¢). A finite ion pressure gradient plays a secondary role in the

collisional drift instability, modifying its growth rate as shown it: Eq. (88).

Starting with the collisionless ion temperature gradient driven mode, we consider the

fastest growing mode whose perpendicular wavenumber k j_ satisfies k2, __ A"-1. Suppose
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we have a small positive perturbation of the electrostatic potential ¢ in the pla,sma. This

potential perturbation induces a E x B flow circulating around the l_erturbation, as shown

in Fig. la. The high pressure ions and low pressure ions are mixed by the E x B flow

and this n_xture creates a high pressure spot and a low pressure spot on each side of the
G

potential perturbations as shown in Fig. lb. This convection of the ion pressure is described

, by Eq. (80) or

Op 0¢
0-7=-.K

where the effect of P is ignored. The parallel dynamics then plays an important role: into

the low pressure spot, plasrzas flow from the outside along the magnetic field lines whereas

plasmas in the high pressure spot are pushed away along the field lines (Fig. lc). The

left-hand side and the third term of the right-hand side of Eq. (79) or

Oy
0-7 = -_lP '

describes this process. This process, coupled with the effect of nonzero P (or the parallel

compressibility) of Eq. (80), induces the ion acoustic wave, which is destabilized by the ion

pressure gradient in this case. Finally, through the balance between the first term of the

left-hand side and the parallel compression term of the right-hand side of Eq. (78) or

0_ _ -ali ,v,0t

the parallel motion of the plasmas inc.reases the electrostatic potential at tlie low pressure

spot and decreases it at the high pressure spot.

. The increased electrostatic potential at tl'e low presslire spot repeats the same seclllence

of processes and generates more potential perturbations in the negative "/-direction or the ion

' diamagnetic direction. This mechanism thus induces a growing mode travelling in the ion

diamagnetic direction (Eq. (87)), which is the ion temperature gradient driven instability. It

should be noted that this instability exists even in the absence of the density gradient a,nd
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magnetic shear. On the other hand, the high pressure spot in Fig. lb, whictl induces l,lle

decrease of the potential, generates a stable branch of the mode travelling in the electron

diamagnetic direction.

The collisional drift, instability is a higher order correction to the sta,ble drift wave caused

by finite resistivity. Ignoring the ion parallel flow and the smal.1contribution from the para, llel

current 011j, we have the linear equation of density fluctuation from Eo, (72) ,

On 0¢
aY- '

This is a similar situation described in Figs. la and b, namely, the E × B flow convects the

density, instead of the ion pressure. In the case of the adiabatic electrons, the equation above

gives the stable drift wave f/= 1 (or _o= co*)_,. However, in the presence of finit;e resistivity,,,

-pthe electron density fluctuation is related to the potential fluctuation through Lq. (75)or

n = ¢+ j/(i_:ll ali). The parMlel current j is then related to the polarization current through

the relation V .j = 0 (Eq. (9))or

. Oq ~

which is a simplified form of gq. (71). Here we note that the right-hand side of E¢t. 91) is

proportional to the divergence of the polarization current. Therefore the difference between

ii and _; has the 90° phase shift from 0 or n = ¢ + iw k_ ¢/erll k'_, which destabilizes the

drift wave. When a finite ion pressure gradient is present (K _ 0), Eq. (91) is replaced by

(0/0t,"-/(0/c)_)z_ c¢ = OIIJ,as in Eq. (71). This modification by finite li : T_(t + ,I_)/T_,

means inclusion of the diamagnetic flow convecting the polarization current. As shown in

Eq. (88), a finite ion pressure gradient increases the growth rate of the long-wavelength

(kj_/), << 1) collisional drift wave instability.

Although the linear analysis based on the local approximation presented in See. V reveals

generic properties of the instabilities, the eigenvalue analysis is necessary for study of the

cross-field mode structure of the instabilities in the presence of the sheared magnetic and
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flow fieldsl In fact, it has been shown lr'is that the strong magnetic shear has a stabilizing

effect on the collisionless ion temperature gradient drift insta%ility, which cannot be shown

from the local analysis. Our more recent study also shows that finite E x B mean shear
i,

flows (Si # 0) reduce the growth rate and consequently reduce turbulent transport in the
a

plasma. These stabilizing effects by magnetic and flow shear are of significant importance in

, practical applications; for example, it is widely believed that improved energy confinement

observed in H-mode discharges 21 are related to reduction of instabilities by the E x B shear

flows near the plasma edge. Analysis of such effects by using the linear eigenmode analysis

and nonlinear numerical simulations are beyond the goal of the present paper and will be

presented elsewhere.
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Appendix A

In this Appendix we derive Eqs. (38) and (48), It is easy to show that the following identity

holds exacl ly:

rain _-_+ v. _7 neB = ---_cin(b × _Tp) (_+v,V n

+--f)wci x V g+v'V p+-- ((v.V)g x rp) ---(b x Vvc_)O_p, (a-l)COci ¢Oci

where v = (vl,v2,va), the repeated indices are summed from 1 to 3 as before. We also

assumed that the unit vector 1_= B/IB I is a function of space x only but B = lbl = const

in time and space, mi, e and COci= eB/rni are also constants, and n,p and v are functions of

times t and space x. The last term of the right-hand side of Eq. (A- 1) may be simplified with

the use of the following identity, which can be shown to hold exactly after rather tedious

calculation

. -2(_ ×v v_)a_p+ rp. w _ = (oljp)(f, ×v_.vlj- v_(f,× v_.)bo+ f, ×O_jv__)

+2b ((Vzp x f)). Vvl,- v_ (('_xp x b)" '_)b_ + (_xP x b)OllV)

-b ' (V x v)Vp+ (V x v)OIIp+ (V±p x b)V± ' v . (A-2)

Taking the parallel component of Eq. (A-2) yields

(rp. WFLa)I I = 2 ((V±p X b). Vv[i-'vo,(V±p x b). Vb_ + (V±p x b)OllV) . (A-3)

Here the tensor W FLa is given by Eq. (13), f) = (b_,b2, b3), o_1= f). _7 and vii = b.v. lt

should be noted that in deriving Eqs. (A-l) and (A-2), no assumptions are made on the

vector v and the scalars p and n, except that v, p and n are functions of t and x.
i

We now assume that n and v denote the ion density and the ion flow, respectively, and

satisfy the continuity equation On/Ot + V.(nv) = 0 (Eq. (3)) and p denotes the ion pressure.
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Uncler the ordering assumptions made in Sec. I-2, or

pot'n.ioTe : 0(6), V± I,o(p.,InioT,.) = O(c ,

V±_(p_/nioT,.) = O(e) , V± v_(p,,/c.,) : 0(_) ,

Oil/IV±I- o(_), %L'a/0e- o(¢.)

, the mathematical identities of Eqs. (A-l) and (A-2) may be further simplified. The perpen-

dicula.r component of Eq. (A-l) becomes

(0 ) , (0 ) )
up to 0(¢2). Here va = (b x Vp)/'_eB and the first term on the right-hand side ofEq. (A-t),

which becomes -(f) x Vp)(V. v)/coci ,,_ O(¢3) with the use of the continuity equation, is

dropped. From Eq. (A-2) we obtain

1 (_ x V'uc,) Oe,p + (Wr LR. W FLR) = -b. (V x V)Vzv; La (A.-5)2.¢Oci

up to O(¢2), where vFLR = p/2oo¢_. Combining Eels. (A-4) and (A-5), we obtain

(0 ) < ) (0 ),,,n N+v.V v_+ v.rI[ La =--bxV N+,,.V p-b.(Vxv)V_,[ La.L t.Oci

J-//FLR(_' , wFLR)j_ ht-(_(£3) : 1_xV(O )_c--7 57+ "' v p+ v_¢ + o(&_), (A-6)

where II_ bR = v,.FLaW v'hR,(f = -v/FLr_ b. (V x v) and

(v w_), = -v_ (_,.v ×v))+ o(__)

obtained from Eq. (19) have been used. Equation (A-6)is used to obtain Eq. (48).

The parallel ion momentum equation can also be simplified with the use of Eels. (la) and

(A-a). Under the e-ordering assumption made in Sec. I-B, it is easy to show thatII

(2) P wFba)ll--(b xV±p).VVll+ V 'W_ba+97(V' P011(b.V xv)+O(e a). (A-T)

Equation (A-7)is equivalent to Eq. (38).
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k

Figure Captions

Figure Ia A small positive perturbation of tlle electrostatic potential (I)causing a E x B flow.

Figure Ib The E × B flow viewed from the z-direction.
o

Figure Ic High and low pi spots created by the E x B flow. White arrows indicate plasma

' flows along the magnetic field lines.
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