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1. Introduction

Quantum mechanics is a theory which makes only conditional predictions about
the results of prospective measurements of (in general) incompatible observables. Any
attempt to apply quantum mechanics to the measurement process itself can only lead to
further conditional predictions about what will be found if ... and so on. Here the
problem of the quantum theory of measurement finds its origin.

There is now a widespread agreement about the fact that the standard solution to
this problem, i.e. the adoption of the postulate of wave packet reduction (WPR), is
inadequate. In particular WPR breaks the linear nature of the theory and it requires the
acceptance of a splitting between system and apparatus, (or micro and macro, quantum
and classical) which turns out to be basically shifty. Finally WPR gives rise to specific
difficulties when one considers changes of reference fiame.

An attempt to overcome the first two of the above mentioned difficulties has led to
the consideration of Dynamical Reduction Models (DRM). The underlying philosophy is
quite simple: one introduces a "small" stochastic modification of the standard dynamics
that has a negligible impact for microsystems but which nevertheless leads to a dynamical
suppression of macroscopic superpositions. That such a line can be consistently followed
(in the nonrelativistic case) has been proved in a series of recent papers!-2. An attempt at
a relativistic generalization of a particular DRM which is known2 as CSL (Continuous
Spontaneous Localizations) has also been presented3. Here we will be mainly concerned
with a critical discussion of the implications of such relativistic models for nonlocality
and with the possibility of a macro-objective interpretation of the formalism.

There are two physically equivalent versions of nonrelativistic CSL; only one of
them, however, can be taken as the starting point for the relativistic generalization. This is
due, as we will prove here by resorting to counterfactual arguments, to the fact that the
two considered versions of CSL exhibit stochastic features which are conceptually
different.
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2. Nonrelativistic DRM: Some Remarks

The development of the DRM program necessarily requires a dynamical evolution
which yields, under specific circumstances, a suppression of the off-diagonal elements of
the statistical operator in an appropriate "preferred basis". It is important to stress,
however, that this condition on the statistical operator is not sufficient to guarantee that
any individual system must be associated to a state vector belonging to only one of the
"preferred manifolds". Typically, there are stochastic dynamical evolution mechanisms
which leave individual systems in superpositions of preferred states but which induce a
randomization of the relative phases of such superpositions, thus leading to the above
mentioned suppression. Following Stapp 4 we say that such mechanisms induce von
Neumann reductions. We are not interested in such models since we want the reductions
to occur at the individual level, or, in Stapp's language, to have Heisenberg reductions.

CSL models actually give such kinds of reductions. It is useful to give a sketchy
description of the two distinct, physically equivalent, versions of CSL which have been
mentioned above. The first is based on the consideration of the linear evolution equation
with a skew hermitian stochastic term2,

~ = L-iH-XjdxN2(x) + JdxN(x)V(x)t)JlVv)t> (1)

where N(x) is a number density operator averaged on an appropriate volume around x,
and V(x,t) is a white noise in all variables with covariance

« V (x, t) V (x*, O » = X 8 (x - x1) 8 (t -11). (2)

The second term in the equation is a counterterm guaranteeing the conservation of the
stochastic average of the square norm. The physics is obtained by considering the
normalized states l\j/v(t)>/ III \yv(t)>ll and by assuming that the probability density of
occurrence of a specific potential V(x,t) is not the (Raw) one P [V] associated with the
white noise distribution, but the cooked one

PC\V] = p [V]lll\|/V,t>ll2 (3)

We will refer to this description as the Raw + Cooking scheme.
Alternatively one can consider the nonlinear, stochastic, norm conserving,

evolution equation2

dlyv,t> r f r n2
^ = | - iH-Xjdx[N(x)-<N(x)>] + (4)

> -< N(x) >2] + fdx [N(x) -< N(x) > ] V(x,t) } l\|/y,t>
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and assume that V(x,t) is distributed according to the raw distribution P [V] . We will
refer to this description as the Nonlinear-Equation scheme. For a detailed mathematical
study of the relations between the two schemes see ref.(5).

The two schemes are equivalent in the following precise sense: for any given initial
state h|/,0> and, e.g., for a given V~(x,t) to be used in the Raw + Cooking scheme, there
exists a V(x,t) to be used in the Nonlinear- Equation scheme such that the evolved states
at any time t coincide. Moreover V~(x,t) and V(x,t) occur with the same probability.

3. Relativistic DRM

Within a stochastic framework one has to formulate in an appropriate way the
invariance requirement. Actually what is needed is only stochastic invariance, i.e., while
individual processes can look different to different observers, the ensemble of possible
individual processes must turn out to be the same. We remark that CSL, as presented in
Section 2, exhibits Galileian invariance.

Trying to get a relativistic theory yielding Heisenberg reductions we consider the
Tomonaga-Schwinger (T-S) picture in a quantum field theory framework. We assume that
the fields evolve according to Heisenberg equations deriving from a hermitian lagrangian
density LQ while the state vector obeys the T-S equation

6o(x)
= Uj(x) V (x) - U J (x)] I Vy(c) > (5)

where Lj(x) is a hermitian function only of the fields and V(x) is a c-number white noise
with covariance given by eq.(2).

We remark that we are working in the Raw+Cooking scheme, and that the
equation corresponding to eq.(3) is

J»c[V] = P[V]lllYvCo)>«2 (6)

The lagrangian density LQ can contain interaction terms. We point out that hermitian terms
in LQ which do not depend on the field derivatives can be shifted from the Heisenberg to
the T-S equation, while the reducing dynamics can only be described in terms of the T-S
equation, due to the skew hermitian coupling of the noise to Lj(x).

One would like the dynamics to induce localization of massive fermions . This
cannot be obtained directly by specifying the above formalism only to fermion fields3.
One can then try to get localization for fermions by coupling their field to a meson field
and then introducing a reducing dynamics for this auxiliary field. In refs.(3) the following
choice has been proposed

LQ = Free fermions + Free mesons + T| ¥(x) *F(x) O(x)

<D(x). (7)

As a quantum field theory the model presents additional divergences with respect
to the standard ones, arising from the white noise character of the stochastic potential
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V(x). However, one can study the nonrelativistic limit for fennions in a sector with a
fixed number of fennions and one gets, with some approximations, a theory which is very
similar to CSL. We refer the reader to refs.(3) for a detailed discussion of this model.

4. Objectivism and Nonlocality

Without going into specific details about the proposed model we want to
investigate here the consequences of the adoption of the previously outlined relativistic
framework for describing dynamical reductions. We will be particularly concerned to
discuss the nonlocal features of the scheme and to investigate whether it allows a
macro-objective description of natural phenomena. In this discussion we shall make use
of concepts like elements of physical reality, chance and determinism which we examine
now. It has to be stressed that this investigation requires, to be meaningful, the
consideration of the individual level of description of physical processes.

In standard quantum mechanics, when consideration is given to an observable A,
one states that a physical system posesses* an element of physical reality a associated to
the observable A iff the system is in an eigensrate of A corresponding to the eigenvalue a.
Calling Pa die projection operator on the eigenmanifold associated to a one has, in such a
case,

<V,ttP a l \ | / , t>=l . (8)

We remark that the condition that <\j/,t I Pa l\|/,t > be extremely close to one has to be
considered sufficient for the attribution of the element of physical reality. In fact since the
recording of the result of any measurement involves the reading of the position of some
pointer, and since the wave functions associated to different pointer positions unavoidably
overlap, the probability that a pointer be in a certain interval is never exactly equal to 1.

Again within die standard quantum formalism let us consider a system which is in
a linear superposition of two eigenvectors of the observable A. In such a case no element
of physical reality corresponding to A can be attributed to the system. Suppose that a
measurement of A is performed, and that we use the WPR postulate. One can then say that
the definite response of the macroscopic measuring apparatus is due to chance. On the
contrary, if the system is in an eigenstate of A, one can say that the definite response of
the macroscopic measuring apparatus is deterministically implied by die pre-existing
element of physical reality of the system.

4.1 WPR, Nonlocality and Changes of Reference Frame.

Consider an EPR-Bohm like set up for the singlet state involving a measurement
of a spin component of particle 1 by a measuring apparatus M1 (see Fig.l). In the figure
1 and 2 represent the "world lines" of the two particles. C is the space-time point (region)
in which the measurement occurs. Note that if one assumes that WPR takes places
instantaneously in the reference frame in which M t is at rest, according to the previous
definition, the event in C implies the instantaneous emergence of an element of physical
reality associated to the same spin component for particle 2 and, in particular, that this

•For belter appreciating what follows it might be useful to recall the obvious fact that in the standard quantum
framework the entanglement of wave functions for composite systems forbids the attribution of elements of
physical reality to the constituents and that the persistence of linear superpositions of far away states forbids
the attribution of objective local properties even to a single particle.
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element of physical reality can be attributed to the particle at the space-time point B which
is space-like separated firom C.

FIG. 1

We must consider the possibility of changes of reference frame. Since the
separation (B-C)2 can be arbitrarly large and negative, even changes to an extremely
slowly moving frame can reverse the time order of B and C. Let us call O' such a
reference frame. If one assumes that WPR takes place instantaneously also for O', the
fact that for him B occurs earlier than C implies that (for him) the mean value of the
relevant projection operator for the spin component of the panicle at B is 1/2. This
ambiguity about the mean values of the considered projection operator reflects an
ambiguity in the possibility of attributing to particle 2 the corresponding element of
physical reality at the given (objective) space-time point B. Note that if consideration is
given to a space-time point in the future of C, such an ambiguity does not occur*.

Let us consider the analogous situation in the case in which, beside the apparatus
at C, there is an apparatus M2 at B devised to measure the same spin component. The
ambiguity in the attribution of the element of physical reality to the particle at B, in
accordance with the considerations of the previous subsection, has as a consequence that
while according to O the result of the measurement at B is deterministic, according to O' it
is due to chance.

Non relativistic DRM models exhibit analogous ambiguites. It has however to be
remarked that the fact that the statement "the outcome at B is due to chance" is not
covariant does not constitute a dead end for the theory and, in particular, it does not forbid
its relativistic generalization. In fact the ambiguity does not involve the response of the
macroscopic apparatus but only the nontestable (for space-like separation B-C) modalities
yielding this unambiguous response.

4.2 Macro-Objectivism and Nonlocality in Relativistic Reduction Models

We will perform now a critical investigation of relativistic CSL, which parallels the
one of the previous Subsection. Such a theory has precise implications, differing from
those of standard quantum mechanics, about the behaviour of macroobjects. It is then
important to analyze whether these implications are compatible with the adoption of a
macroobjective position.

*A detailed discussion of the difficulties met by WPR in connection with changes of reference frame has been
presented in refs.(6). B. d'Espagnat? has stressed that in trying to generalize DRM one should face analogous
difficulties.
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To this purpose we start by considering local observables

Aj (a) = J dx fa (x) F [Oj (x), d <DX (x)] (9)

where fa(x) is a function having as its support a a compact subset of the space-like

surface a and is of class C" on a. In eq.(9) the index I is added to recall that we are
working in the (T-S) Interaction Picture.

Let us consider now two arbitrary space-like surfaces al and o2 containing a
(see Fig.2). In standard quantum field theory the mean value of Aj does not depend on

<x

FIG.2

which one of the two states l\j/( c{)>, i = 1,2, associated to the considered surfaces, is
chosen for its evaluation. In relativistic CSL this is no more true. In fact, in such a case,
the state vector describing an individual physical process for a specific realization of the

stochastic potential V(x) is lyv( o)>/ II l\j/v( o)> II. If we denote by Sv( a2, ax) the

evolution operator from al to o2, we have

S+V(a, Sy (o2,

I IS v (a 2 ,a i ) |V (a i )> | | 2

even though

[AltSv(

(10)

(11)

since S+
v( G2, Oj) Sv( o2>

 CTi^ *^- ^ f ° ^ o w s fr°m ^ s t n a t if one relates, as before, the
attribution of objective local properties to individuals to the mean value of a projection
operator referring to a local observable, one meets difficulties.

We stress, however3, that no such surface dependence exists for the ensemble
average of the mean value of local observables. This lack of ambiguity at the ensemble
level is necessary for the consistency of the theoretical scheme.

In analyzing the dependence, at the individual level, of the mean value of a local
observable Aj upon the space-like surface over which it is evaluated (among those
coinciding on its support), it is useful to discuss separately the ambiguities for
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microscopic and macroscopic systems.
We start by considering a microscopic system S and two local observables Aj and

A2 of S having space-like separated supports al and a 2 . Suppose that there is a
macroscopic measuring apparatus M; devised to measure Aj. The T-S equation describing
the unfolding of the physical process is then

oa(x)

where L j . s is the local hermitian system-apparatus interaction which describes the
triggering of the apparatus by the microsystem and Lj is the skew hermitian term inducing
reductions. Both Lx_s and Lj are assumed to be different from zero only in the region C
indicated in Fig.3.

FIG.3

The initial state ly(ao)> is supposed to be

with

A i l V j > = 8 i j | V j > ; i,j = l ,2 (14)

and \Xy> describing the untriggered apparatus state. Suppose that for the individual case
under consideration the specific realization of V(x) is one of those "yielding the result 1"
for the measurement of Aj. Let us consider the two space-like surfaces Oj and o~j

which contain the support a^ °f ^2 ^u t s u c n ^a t» i" 6o mg fr°m ° i t o °~i>o n e crosses
the space-time region C (see Fig. 3). According to eqs.(12) and (13) one has

^i A2I yv(a1)> = 1/2
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while

(a~!)> = 0.

Eqs.(15.a) and (15.b) show that there is an ambiguity in the mean value of the local
observable A2 associated to the microsystem S. This is not surprising, it constitutes
simply the analogy within relativistic DRM of the situation discussed in Subsection 4.1 for

standard quantum mechanics with the WPR postulate. In fact the surface G~i can be
approximately identified with a t ' = const hyperplane for a boosted observer O' which
moves with a very slow velocity with respect to O but for whom, however, the interaction
(and the consequent reduction) at C has taken place at a time earlier than t1.

We pass now to discuss the analogous problem, i.e. the possible occurrence of
ambiguities in the mean values of local observables, in the case of a macroobject. To this
purpose, we consider a situation strictly analogous to the previous one, in which however
a further macroscopic measuring apparatus M2 devised to measure A2 is supposed to be
present. With obvious meaning of the symbols we have as the analogy of eq.(12) the
following T-S evolution equation

= [iL1 . s(x) + i L 2 . s ( x ) + L I 1 ( x ) V ( x ) + Z l 2 ( x ) V ( x ) -

(16)

With reference to Fig.4 we specify that the system-apparatus interactions Lj. s an
are supposed to be different from 0 in Q and B1, respectively , and the reducing terms
Z-u and L]2 in C2 and B 2 , respectively. The initial state is now

|\|/(aQ)> = "7f ['v1> + iv2> (17)

where \%j> is the untriggered state of the apparatus M2. As in the previous case we
assume that V(x) is such as to lead to the result Aj=l.

FIG.4
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We remark that according to eq-(16), for the considered initial state, we have the
following situation.

i) For t<to, the states associated to a(t) and (J~(t) are factorized, one of the factors

being Ix2>.

ii) For t=tx

while

! • 08-b)

At the r.h.s. of eqs.(18a-b) the superscripts in the apparatuses states refer to the
eigenvalues of the observables Aj and A 2 .

iii) For t > t2 the states associated to a(t) and cT(t) are factorized, one of the
factors referring to the apparatus M2 and corresponding to having registered the definite
outcome 0 in the measurement of A 2 .

The results (18.a) and (18.b) show that, at tj, an ambiguity is present even in the
mean value of the local observable corresponding to a definite macroscopic outcome of
M2. It has to be stressed, however, that according to iii), this ambiguity lasts only for the
typical reduction time of the macroscopic measuring device M 2 .

Let us summarize the situation. The consideration of the individual level of
description of physical processes within standard quantum mechanics with the WPR
postulate gives rise to difficulties when one takes into account changes of reference frame,
in particular for what concerns the possibility of attributing to physical systems elements
of physical reality corresponding to local observables. Such difficulties find their formal
counterpart within relativistic DRM in the fact that, for a given realization of the
stochastic potential, the mean values of local observables are ambiguous in the above
specified sense. As we have shown, there is however a fundamental difference in the
microscopic and the macroscopic cases. For microsystems such ambiguities may last,
under appropriate circumstances, for arbitrarly large time intervals, while in the
macroscopic case they last only for extremely short intervals. We can then take advantage
of this nice feature to overcome the puzzling situation we have discussed in this section.

The analysis of the formal aspects of relativistic CSL leads naturally to the
introduction of a more appropriate criterion for the attribution to physical systems of
elements of physical reality corresponding to local observables: we say that an individual
system has an element of physical reality associated to the local observable A1 with

support a iff the mean value of the projection operator on one of the eigenmanifolds of

Aj is extremely close to one for all space-like surfaces containing a.
With reference to the previous discussion we stress that, according to this

criterion:
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i) Macroscopic objects have " almost always" definite local macroproperties. This
means that relativisric CSL is compatible with macroobjectivism.

ii) For what concerns micro-objects, contrary to what happens when the standard
attitude is taken, no objective local property can emerge as a consequence of a
"measurement process" occurring in a space-like separated region. Such property
emerges only in the future light cone of the region in which the measurement is
performed, This has to be so since the observer performing the measurement could send
a message by a light signal, containing the information about the definite outcome of the
appropriate prospective measurement.

From the above discussion it also turns out that in a situation like the one sketched
in Fig.4, it is impossible to establish objectively whether the outcome of the measurement
of A2 is due to chance or is deterministic.

5. Counterfactual Arguments and the Stochastic Features of the Two
Versions of Nonrelativistic CSL.

As discussed in Section 2 there are two distinct, physically equivalent versions of
nonrelativistic CSL which are based on the use of the linear equation (1) plus the cooking
prescription (3) for the distribution of the stochastic potential and on the use of the
nonlinear eq.(4), respectively. The two schemes are physically equivalent in the precise
sense specified in the last sentence of Section 2. However, in the remainder of this paper
we will show that, by resorting to counterfactual arguments, one can prove that the two
schemes exhibit conceptually different stochastic natures, so that the first scheme is
suitable for relativistic generalization, while the second scheme is not.

The use of counterfactual arguments requires the consideration of possible worlds.
One then makes this notion more precise by imposing appropriate restrictions on these
worlds. We do not aim for great generality and thus we feel free to make the following
precise assumptions:

a) The "laws of nature" embodied in the specific CSL scheme under consideration
(Raw + Cooking or Nonlinear Equation) are assumed to hold for all possible worlds.

b) With reference to the actual and the alternative worlds (among the possible
ones) we will consider, we remark that we will always deal with situations involving
physical processes in which there are microsystems interacting with macroscopic
measuring devices. We assume that the switching on and off of the interactions between
the microsystems and the macro apparatuses are free variables whose different choices
characterize the actual and the alternative worlds.

5.1 Nonrelativistic Context

Within such a context let us consider the following process taking place within the
time interval (tj,tf): we have a system S consisting of one free spin 1/2 particle which at

time tj is in the eigenstate of ox belonging to the eigenvalue +1, and two macroscopic

measuring apparatuses Mj and M2 devised to measure the observable oz. As usual, in a
certain time interval around tj (tj< tj < tf), an appropriate interaction between S and Mj
governed by a coupling constant gi yields the triggering of M j , and, subsequently, the

CSL dynamics leads very quickly to a definite outcome, e.g. o2 = +1. Analogously
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around t2 (t\< t2 < tf), due to an S- M2 coupling governed by g2 the measurement of

<5Z is repeated . The specific individual process we have described constitutes the actual
world.

We raise now the following counterfactual question: In the considered individual
case, if we would have not performed the measurement at tj, would the result of the
measurement at t2 have still been +1? The question requires the consideration, besides
the actual world, of an alternative world characterized by the choice gj = 0.

5.1.1 Nonlinear Equation Scheme

Let us take the position that the "laws of nature" are given by the Nonlinear
Equation version of CSL. The considered individual physical process which has taken
place in the actual world is governed by the evolution equation

(19)
d ' V v t > r f

It— = I- ' i giHs-Mr ^ " S - M , - ^ J dx [N (x) - < N (x) >]

+ X J dx [< N2 (x) > - < N (x) >2] + J dx [N (X) - < N(x)>] V(x,t)} I yv,t >

in which a specific V(x,t) occurs among those yielding the result +1 for both

measurements of o z . Obviously we do not know which V(x,t) has actually occured, but
this does not forbid the analysis which follows. Since, in this scheme, the distribution of
V(x,t) is independent of the physical situation under consideration and, in particular, is
independent of whether g^ is zero or not, in the alternative world the same realization of
the potential occurs. This being the situation one can think of solving eq.(19) explicitly
with the given V(x,t) and with gj =0 (alternative world) and consequently, from the
conceptual point of view, one can give a precise answer to the counterfactual question.
Let us examine what the answer can be. One can easily convince oneself (see Appendix A)
that there are specific realizations of the stochastic potential which, when substituted in
eq.(19) with gj and g2 different from zero, lead to the results +1 in both measurements,

while, when substituted in the same equation with gj= 0, g2 * 0, lead to the result -1 for
the measurement by M2. Moreover such potentials have an appreciable probability of
occurrence. If in the considered individual case a potential of this type has occurred the
answer to the counterfactual question raised above is : no I

Let us confine our attention to the set of all those individual cases, among all the
possible ones, for which the above situation occurs. Obviously the identification of such a
set is only conceptually and not practically feasible. For all these individual cases one
would be allowed to state that there is a cause-effect relation between the switching on of
the apparatus Mj and the result of the apparatus M2. In fact, if we denote by a and b the
two following events

a = switching on of gj
b = registering the result +1 by M2

-12-



we have, within the above set

i) a can be made to happen at will

ii)Ifa is made to happen then b happens

iii) If a is not made to happen b does not happen either.

The above analysis can be repeated with reference to an EPR-Bohm like set -up,
leading to the conclusion that, for an appropriate subset of all possible realizations of the
stochastic potentials, one is allowed to assert that a measurement at a space time point
"causes" the particular result obtained in another measurement taking place in a space-like
separated region.

5.1.2 Raw + Cooking Scheme

We take now the position that the "laws of nature" are embodied in the
Raw+Cooking version of CSL. It is important to remark that, since in this scheme the
probability of occurrence of the stochastic potential depends on the specific physical
situation under consideration and in particular, for the considered case, on whether gj is
zero or not, there is no way of relating the realization of the potential in the alternative
world to the one occuring in the actual world. As a consequence there is no possibility of
identifying, even conceptually, occurrences for which the considered counterfactual
question admits an answer, and specifically a negative answer.

5.2 Relativistic Context

Let us consider an EPR-Bohm like set-up involving, with reference to Fig.l, the
measurement by two macro-apparatuses Mj and M2 of the same spin component at the
space time points C and B, respectively. We consider now the problem in the context of
the Nonlinear Equation scheme. Suppose that the actual world is characterized by a
realization of the stochastic potential which would lead to the result +1 for the
measurement at C and which would also lead to the result +1 for the measurement at B
when (alternative worlds) only the measurement at C or only the one at B is performed,
respectively. As in the case discussed in Subsection 5.1.1 such potentials have a finite
probability (1/4) of occurring. In the case in which both measurements are performed
(actual world) in the reference frame O of Fig. 1 , the final result would be +1 at C and -1
at B. Let us analyze now the situation from a very slowly moving reference frame O1 for
which, however, B occurs earlier than C. We can then argue as follows

i) Consistency requirements about the definite outcomes of the macroscopic
measuring apparatuses for the considered individual case imply that, when only one
measurement (at C or at B respectively) is performed, the result +1 for the measurement at
C and for the one at B should occur for O', just as it occurs for O. Analogously one must
require that when both measurements are performed the results +1 at C and -1 at B,
respectively, are found by O'. Then, since also for O' it is the result at B which changes
when one chooses to perform both measurements, for him an event occurring later can be
considered "to cause" an earlier event

ii) If the theory is stochastically Lorentz invariant the recognition of the above fact
implies that also for O such a situation should occur in some specific cases . However,
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according to the Nonlinear Equation, in no situation can O assert that an event occurring
later could be considered "cause" of an event occurring earlier.

Concluding, requirements i) and ii) are incompatible. This shows that one could
not take as a starting point for a relativistic generalization the non relastivistic CSL in the
Nonlinear Equation version.

No similar argument can be developed, as discussed in Subsection 5.1.2, for the
Raw + Cooking scheme. Actually the relativistic DRM presented in Section 3 has been
based on such a scheme. In the next Subsection we discuss die specific formal
difficulties that one meets in trying to get a relativistic generalization of the Nonlinear
Equation CSL scheme. They represent the mathematical counterpart of the conceptual
difficulties we have just discussed.

5.3 Difficulties of a Nonlinear Equation Scheme

We remark that there is a standard way, at the non relativistic level, to go from the
Raw+Cooking scheme to the Nonlinear Equation scheme. If one follows this line,
starting from the model presented in Section 3, within the relativistic T-S context, one is
led to consider the following nonlinear equation

51 y v (O) > . 2

I = {[<D (x) - < <D (x) >] V (x) - X [O (x) - < <D (x) >] +
Sa<x)

(20)

where

. (21)

It turns out that this equation is non integrable. This corresponds to the fact that, since the
theory is built in such a way as to be stochastically relativistically invariant, it must
necessarily violate requirement i) of Subsection 5.2.

Let us sketch here the proof that eq.(20) is non integrable. Let us consider a one
parameter family of space-like surfaces cxCn), labelled by a real continuous parameter TJ,
0<TJ<1 such that o(0) = o0 and c( l) = a. We choose an initial state l\|/( cQ )> and we
associate through eq.(20) with a given realization V(x) of the stochastic potential a state
vector h|/v(ri)> to any surface of the family. Following the lines of ref.(2) it is easy to
prove that, for this V(x), there exists a corresponding V~(x) to be put in the raw equation,
given by

V~(x) = V(x) + 2X < VV(T1)I <j>(x) I yv0l)> (22)

(T} being die value of the parameter characterizing the surface passing through x) , such

that the states associated to the surface O(TJ), for any rj, in the two schemes coincide. If
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we now consider another one parameter family of space-like surfaces o'(t) we can play
the same trick. However, since eq.(22) shows that the V~(x) to be put in the raw equation
depends, besides x, on the particular family of surfaces which is considered, the
potential V~(x) associated to the same space time point when the family a'(x) is

considered, turns out to be different from the one associated to the family G(T\) . Since,
however, raw equations with different V~(x) lead to different final states from the same
initial state, this shows that the non linear equation is not integrable or equivalently that

the final state depends on the specific way which one follows to go from <J0 to a.

6. Conclusions

We have presented a relativistic CSL formalism which describes a stochastically
Lorentz invariant reducing dynamics. We have discussed specific problems like
nonlocality and macro-objectivism within such a relativistic scheme and we have pointed
out the necessity of introducing an appropriate criterion for the attribution of elements of
physical reality to physical systems. The considered theoretical scheme makes use of a
T-S linear equation with a skew-hermitian coupling to a stochastic potential and of an
appropriate rule to evaluate the probability of occurrence of the potential. By making use
of counterfactual arguments we have shown that, contrary to the nonrelativistic case in
which one has two equivalent versions of CSL, the relativistic generalization must be
based on one of them. If one tries to get it from the alternative scheme one meets
insurmountable difficulties.

Appendix A

With reference to the situation considered in Subsection 5.1.1 we remark that the
values of the potential which are relevant for the reductions are those in very narrow
neighbourhoods of tj and t2. Let us consider the probability of occurence of a potential

Vi(x,t) for t = tj and of a potential V2(x,t) for t ~ t2. Due to the white noise character of
the distribution of V, the joint probability of occurrence of the two considered potentials
is the product of their probabilities

It has to be stressed that, for a given potential in the time interval in which the reduction
of the macro-apparatus takes place, the outcome of the measurement depends in a crucial
way on the state of the system which triggers it. According to CSL, the probability of
occurrence of a Vj(x,t) leading, when Mj is triggered by the eigenstate of a x

corresponding to the value +1, to the outcome " M2 registers that o z =+l" , is 1/2.
Similarly, the probability of occurrence of a V2(x,t) leading, when M2 too is triggered by

the eigenstate of ax corresponding to the value+1, to the outcome "M 2 registers that

oz= - 1 " , is 1/2. [Note that the same V2(x,t), when M2 is triggered by the eigenstate of az

corresponding to the value +] leads to the outcome " M2 registers that a z =+1"]. It
follows then from eq.(A.l) that the probability of occurrence of a potential leading when
g!*0 and g2*0 to the result +1 and when gj=O and g2*0 to the result -1 for M2 is 1/4.
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