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THEORY OF BULK AND INTERFACE CONSTANT PHASE ELEMENTS
IN ELECTRODE-ELECTROLYTE SYSTEMS

S. H. LIU
Solid State Division, Oak Ridge National Laboratory

Oak Ridge, Tennessee 37SS1-60S2, USA

ABSTRACT
This paper summarizes the progress gained in the last few years in our under-

standing of bulk and interface constant-phase-angle (CPA) behavior in electrode-
electrolyte systems. It is now fairly well established that the interface constant-
phase element originates from the fractal nature of the interface. The complex
geometry gives rise to a fractal distribution of parallel current paths, and the
competition between these paths results in the fractional power law behavior of
the impedance across the interface. On the other hand, the early hope of relating
the CPA exponent to the fractal dimension of the interface has been shown to
be unattainable. Our understanding of the bulk CPA behavior, which is most
prevalent in solid electrolytes, is only tentative. It is illustrated using a simple
model that, under nonlinear dynamical laws that govern the flow of ions in the
electrolyte, a current in the solid can generate a fractal distribution of vacancies
which tend to impede the flow. The current is forced to negotiate a complex path
through the solid, and the resulting fluctuation in path length and flow rate could
be a source of the CPA behavior.

1. Introduction

Impedance spectroscopy is a simple and powerful tool for probing the physical
and chemical properties of electrode-electrolyte systems. In a typical experiment
an ac current is sent through the system and the voltage drop across the system
is measured. From the frequency dependence of the impedance, one tries to infer
the combination of known circuit elements-resistance, inductance and capacitance-
which reproduces the measured behavior. The interpretation of these circuit ele-
ments gives insight into the various physical and chemical reactions taking place in
the system.

Simple as the program may sound, it is difficult to carry out because the be-
havior of real systems cannot be modelled by a finite number of circuit elements,
no matter how they are chosen. The difficulty lies in the constant-phase behavior,
which necessitates the inclusion of a mysterious circuit element whose impedance
has the power-law frequency dependence:

Z(^)-x Ij.-f". (1)

where j — \/—l. -• is the angular frequency, and the exponent ;/ satisfies 0 < ?/ < 1.
Fig. 1 ^hows a set of actual data taken at the Oak Ridge National Laboratory.1-2
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Fig. 1. The real and imaginary parts of the impedance of a 1 fan amor-
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In this figure the real and imaginary parts of Z(ui) of a 1/vm amorphous L
film with gold electrodes are plotted against the frequency (/ = u>/2i:) in log-log
scale. Straight lines on the graph with negative slope indicate power-law frequency
dependence. In particular, when real and imaginary parts form two parallel lines,
it is an unmistakable indication of CPA behavior. One finds two regions in Fig. 1
in which CPA behavior is apparent: at the low frequency end below 3 Hz and at
the high frequency end above 105 Hz. At the low frequency end where the CPA
component of the impedance is overwhelming, one can extract the exponent 77 from
the data in two ways: from the slope of the straightline portion of the data, or from
the constant ratio

-ImZ(u)/ReZ(u) = tan( 7777/2). (2)

The last property gives the name constant-phase-angle, i.e. the argument of tangent
function in the above equation, to the mysterious circuit element, which is also
called constant-phase element (CPE). At the high frequency end the CPA exponent
must be determined from curve fitting because of the large background. To fit the
data in Fig. 1 one needs two const ant-phase elements, one with ?/ ~ 0.92 at the
low frequency end and one with 77 ~ 0.77 at the high frequency end.2 Through
carefully controlled experiments, it has been determined that the low fre^v^ncy
CPE originates from physical processes taking place at the interface while the high
frequency one originates from interactions in the bulk of the electrolyte. In the
complex w1 plane the CPA impedance has a branch cut along the positive imaginary
axis. This analytic property cannot be reproduced by any finite combination of RLC
elements because the impedance of the combination can only have a finite number
of poles, never a branch cut. The only known examples of branch cuts are infinite
ladder networks and transmission lines, both having 77 = 1/2. Attempts have been
made to concoct infinite ladder networks with varying RC elements or transmissions
line with spatially varying RC distributions to simulate the interfacial CPE,1"3 but
one then faces the challenge of how to justify the concoction on physical grounds.
For the bulk CPE one must assume a continuous distribution of activation energies
for ion hopping.4 Again, no explanation of the origin of the distribution has been
offered.

In the last, few years we have witnessed significant progress toward a qualitative
to semi-quantitative understanding of the interfacial CPE. It is now fairly well
established that the behavior has its origin in the fractal geometry of the inherently
rough interface. The understanding of bulk CPE is comparatively rudimentary. It
seems that a theory based on self-organized fractal geometry holds promise as a
possible explanation. This paper contains a review of these recent developments,
with emphasis not on data fitting but on elucidating the processes which lead to
the CPA behavior.



2. Theory of Interfacial CPE

The ideal electrode-electrolyte interface as discussed in textbooks in electro-
chemistry consists of a planar metal electrode in contact with the electrolyte. Con-
sider a blocking electrode where no chemical reaction takes place, a bias poten-
tial across the interface causes a surface charge to accumulate on the metal and
a screening cloud of the opposite charge to form in the electrolyte. The combina-
tion of charge distributions creates an interfacial capacitance. A probing ac signal
encounters an impedance which consists of the ohmic resistance in the electrolyte
and the interfacial capacitance. The ohmic resistance in the metal electrode can be
ignored. Therefore, the real part of the total impedance should be frequency inde-
pendent and the imaginary part should be inversely proportional to the frequency.
The observation that this simple theory does not apply to real interfaces was first
made in 1926.5 In recent years it has become increasingly clear that the interface,
no matter how carefully it is prepared, is uneven on the submicron scale, and the
CPA behavior is intimately linked to the microscopic roughness.6"10 When the
interface is made increasingly smooth, the value of r\ approaches unity.

A logical connection between roughness and fractional power-law impedance was
first suggested by Le Mehaute who pointed out that rough surfaces are fractals, i.e.
the roughness looks the same under different degrees of magnification.11 Before we
present his argument and the subsequent development of this idea by other authors,
we make a brief digression to define what a fractal is in terms readily understandable
by physical scientists. A good example of a fractal object is the monster curve known
as the Koch island, which is constructed by the procedure illustrated in Fig. 2. One
begins with an equilateral triangle. Next, one divides each side into three parts
and erects an equilateral triangle using the middle part as the base. This results
in the six-fold symmetric star. In the third stage the twelve sides of the star are
trisected and smaller equilateral triangles are erected in the middle of each. The
Koch island is constructed by repeating this procedure ad infinitum. The boundary
of the island is obviously continuous, but is not differentiable because it makes an
infinite number of zigzags between every two points on the curve. The length of
the curve between any two points is infinity, but the area of the island is finite. A
small part of the curve is similar to a larger part when magnified by any integral
powers of 3. This property, called self-similarity under a scale transformation, is
common to all fractal objects. Other examples of fractals can be found in the two
books by Mandelbrot.12-13 Fractals in nature are not as regular as the Koch island.
They usually appear random, but are self-similar in a statistical sense, that is. given
a sufficiently large sample of similar objects, the magnification of a small part of
one object can be matched arbitrarily closely with some other object. The scale of
magnification can be arbitrary. The range of length in which self similarity holds
is bounded from above by the size of the object and from below by the size of the
smallest building block, an atom for example.

The term "fractal dimension" describes the self-similar property under scale
transformation in a quantitative manner. This concept, first proposed by Hausdorff
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in 1919, is a direction generalization of dimension in Euclidean geometry. When
the sides of a square are magnified by a factor of 2, the area is 4 times larger. If
we write 4 = 2d, we find that d = 2 is the dimension of the area. Similarly, the
volume of a cube is S times larger under a similar magnification of its sides. This
gives d — lnS/ln2 = 3 as the dimension of the volume. Going back to the Koch
island in Fig. 2. The process of constructing the fourth stage from the third may
be regarded in a slightly different way, that is, the two stages are images of the
same object viewed with different degrees of magnification. In the third stage the
resolution only allows us to see 4S straight segments forming the boundary but not
the smaller features within each segment. In the next stage all lengths are magnified
3 times so that the same resolution allows us to resolve each segment into 4 because
the middle third now appears to consist of two segments. Details beyond this level
cannot be resolved. A similar definition, 4 = 3d or d — In4/ln3 = 1.2619 is the
dimension of the Koch curve. We obtain the same result by holding the length
scale constant but improving the resolution. The total length of the curve appears
to be 4 times larger every time the resolution is improved threefold. In the limit
of infinite resolution the length diverges, as discussed previously. The area of the
Koch island remains two dimensional because ii has a finite limiting value.

Fractals need not be monster curves. An example, the Cantor bar, is shown
in Fig. 3. Under coarse resolution the object looks like a continuous bar. With
improved resolution one sees a gap in the middle which separates the bar into two,
each is I/a the length of the original bar. a > 2. With higher resolution each one of
the bars is seen to be subdivided in the same manner. The dimension of the object
is d = In2/lna < 1. Under infinite resolution the object seems to disappear because
it has a dimension less than the dimension of the Euclidean space it is imbedded.

In Fig. 4 we show the electron micrograph of a surface of the solid electrolyte Ag
^-alumina,10 w-hich is a good example of the electrode-electrolyte interface. There
are hills and valleys of various sizes, and each hill has smaller hills and valleys
of various sizes so that the picture looks the same under different magnifications.
The fractal dimension of such a surface is larger than 2, which means that the
observed area increases with increasing resolution. Many real surfaces have the
property that self similarity is achieved by scaling the height in a ratio different
from the lengths in the plane of the surface. This type of scale invariance is called
self affinity. The surface depicted in Fig. 4 is actually self-affine, but the electron
micrograph does not convey adequately the depth information of the surface fea-
tures. Notice that although every fractal object has a well-defined dimension in a
range of length scales, the fractal dimension does not contain sufficient information
about the fractal. Fractals with the same dimension may look distinctly different.

The first model for rough interface was the surface traced out by shifting the
Koch island in the direction perpendicular to the plane of the shape.11 An area
on the surface is bounded by Koch curves in one direction and straight lines in the
perpendicular direction. Since the area is measured by the product of the lengths of
the boundary curves in the two directions, the dimension of the surface is the sum
of the dimensions of the boundary curves. <! = 1 + Iii4/ln3 = 2.2C19. Le Mc'h;mt('-
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and Crepy,11 have used the scaling argument to find the following relation between
the CPA exponent 77 and the fractal dimension:

rj = l/(d-l). (3)

Since the scaling argument is not familiar to most investigators in electrochemistry,
we will develop the theory based on a different model proposed by the present
author.14 The model, shown in Fig. 5, is constructed by connecting together the
various stages of the Cantor bar in Fig. 3. Just like the Koch island model, the
surface is assumed to be smooth in the direction perpendicular to the page, so the
fractal dimension of this surface is d = 1 + In2/lna. The model interface is self-
affine, because self similarity is achieved when a part is magnified by an integral
factor of a in directions parallel to the plane but by a factor of unity perpendicular
to the plane.

The two sides of the interface can be assigned to metal and electrolyte in two
ways, yielding two distinct physical models. In the first situation we assign the
electrolyte to the black side to obtain a grooves within grooves model, which was
inspired by De Levie's observation that polished metal surfaces exhibit grooves
with jagged surfaces covered with smaller grooves.7 When an ac signal flows from
the electrolyte (black) into the electrode (white), it encounters ohmic resistance
in the electrolyte and interfacial capacitance at the faces of every segment. The
equivalent circuit of the interface is shown in Fig. 6. The circuit branches out at
every new stage of the Cantor bar. The resistance increases by a factor of a at every
branch because of the reduction in the width of the bar. The number of interfacial
capacitors increases in proportion with the number of branches, but the size of the
capacitors remains the same. This is an approximation which amounts to ignoring
the interfacial capacitance in the dips between branches. One can see in Fig. 5 that
at higher stages the areas in the dips become negligible compared with the areas of
the sides. We have verified numerically that the capacitance of the dips does not
affect the input impedance of the circuit at low frequencies. The common ground
represents the electrode.

The input impedance of the network in Fig. 6 has the form of an infinite con-
tinued fraction:

H
aR+ —

The function Z{u>) satisfies the frequency scaling relation:15

Z(-) = R + ——-—— . (0)
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Fig. 5. A model of rough electrode-electrolyte interface based on the Cantor
bar model.
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In the low frequency limit Eq. 5 reduces to

Z(£)~|Z(u;). (6)

The relation in Eq. 6 is satisfied by

Z(U) = A(ju,)-> , (7)

where A is a constant and

77 = l - l n2 / l na = 3-<f . (8)

A smooth surface has a < 1 so that -q —> 1 as observed.
The result in Eq. 8 is different from that in Eq. 3, and this generated some

heated debate as to which one is the correct answer, because it was hoped that 77
was a universal function of the fractal dimension. We will show later that this is
not the case because 77 depends on details of the surface geometry not measured by
d. The insight leading to this conclusion as well as a physical understanding of the
CPA behavior are gained from studying this primitive model.

As a start, we give a simple picture of the origin of the CPA behavior. We termi-
nate the network after a finite number of stages and calculate the input impedance
by using the recurrent relation method.14 The results for the real part of Z(u) are
plotted in Fig. 7. At low frequencies the real part of Z reaches a plateau whose
height increases by a factor of a/2 for every additional stage. At high frequencies
the impedance has the limiting value R. Between these two limits the real part of
the impedance exhibits the CPA behavior. The imaginary part of Z(u:) is inversely
proportional to the frequency in both high and low frequency lirnits and has the
power-law dependence in the middle range. These results show that the power-law
frequency dependence is the result of competition between resistive and capacitive
paths. We can look at Fig. 7 in a different way, namely that signals at lower fre-
quencies tend to penetrate more stages of the network. This happens because a
signal of lower frequency must propagate farther down the network before it finds
sufficient capacitive paths to cross the interface. In doing so it also encounters
higher resistance. In total it experiences a higher impedance than a signal of higher
frequency. The self-similar structure ensures that the frequency dependence of the
impedance follows the power-law. Real surfaces usually are self similar over a finite
range of length scales, and this determines the frequency range in which the CPA
behavior is evident.

The finite network calculation gives a concrete illustration of d}-n arnica 1 scaling.
In Ref. 14 we showed that the impedance of a network with n stages has the following
asymptotic expression at. low frequencies *jRC <C 1 and large »:
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This equation means that for a signal frequency which penetrates n stages of the
network, it experiences a resistance proportional to (a/2)n and a capacitance mea-
sured by 2". If we scale the frequency down by a factor of a, we deduce from Eq. 9
that, in the asymptotic regime,

Zn+r(~) = |ZB(w). (10)

In the limit of large n there is negligible difference between Zn+i and Zn and the
above equation reduces to the earlier result in Eq. 6. The relation in Eq. 10 can
be interpreted in a different way, i.e. the signal with scaled down frequency can
penetrate one more layer and thus experiences an impedance which is a/2 higher.
Thus, the impedance is self similar, and is scaled up by a factor of a/2 when the
frequency, which is used as the yardstick, is scaled down by a. The frequency-
exponent is the fractal dimension of the impedance.

We can now use the scaling argument to deduce the CPA exponent of the
cylindrical surface generated by shifting the Koch island, assuming that the volume
inside the cylinder is filled with electrolyte. For clarity we present the derivation
put forward by Nyikos and Pajkossy.16 We write, in analogy with Eq. 9 that for a
surface with large but finite stages n

Zn(u})^Rn + l/juCn, (11)

for sufficiently small u>. The quantities Rn and Cn are difficult to calculate, but
their scaling behavior can be found by simple arguments. If we increase the stage
to n + 1, the capacitance will scale according to the surface area, i.e. Cn+i = §Cn.
The resistance is dominated by a newly added groove in the middle of each side.
Since the' width of the new groove is 1/3 of the larger groove, the resistance is scaled
up by Rjt+i = 3Rn. This allows us to obtain

Zn+,(*>) = ZRn + 3/4/u,'Cn = 3Z

Or for n-»oo
Z(w/4) = 3Z(w) . (12)

This gives the relation between 77 and the fractal dimension d in Eq. 3.
The scaling argument points to the source of difference between the formulas

in Eqs. 3 and 8. both of which link 77 to d. The frequency exponent depends on
the scaling properties of two quantities, effective R and C. Both scale according
to details in the geometric properties of the fractal and indepedently of each other.
The fractal dimension is but one measure of the surface geometry. It is. therefore,
not surprising that a unique relation between r\ and d is not possible. Keddam and
Takenouti reached the same conclusion by studying an interface whose cross section
is a Koch curve with generalized scaling ratios.1'

We now discuss another exactly soluble model which demonstrates that ?; is
not a universal function of d. The model is inspired by the electron micrograph



in Fig. 4 in which the irregularities are better described as bumps upon bumps.
Shown in Fig. S, the model is the product of two Cantor dusts, one associated
with the x direction and one with the y direction.18 We, therefore, named it the
Cantor block model. As in the Cantor bar mode], the figure shows the electrolyte
protruding into the electrode. Every stage is a rectangular block, and in the most
general case each block branches into Nx Ny smaller blocks whose sides are scaled by
l/az and l/ay in the plane of the interface and I/a. in the perpendicular direction,
a* > Xx and ay > Ny. In the figure both Nx and A:

y are equal to 2. The equivalent
circuit of this model has the same structure as that in Fig. 2. The number of new
branches at every stage is NxNy, and each branch consists of a series resistor and a
capacitor connected to ground. The resistors scale up by axay/az in each successive
stage due to the reduction in cross-sectional area of the branch by l/axay and the
decrease in length by I/a-. The capacitance is dominated by the contributions of the
lateral surfaces, whose areas are reduced by factors \jaxaz and \/ayaz respectively
in successive stag-s. Again, the input impedance can be expressed as an infinite
continued fraction

= R+
- i - ' y

a- • , (

f+
az ' . 0 x 1 1 .

jw—(— + —)
"X

(13)
The impedance has the constant-phase behavior under a set of conditions, i.e. ax >
ay, ax > a :, ax > a2

z, ayaz < NxNy, and NxNyaz < axay. When all these conditions
are fulfilled the frequency exponent is found to be

r; = 1 - \n(NxNy/ayaz)/ln(ax/a
2
:) . (14)

The detail of this calculation is given in Ref. 18. The determination of the fractal
dimension is subtle because the surface is self-affine and contains three scaling ratios
az.ay and a.. According to Mandelbrot, the dominant scaling ratio is the one that
gives the most rapid length reduction in the limit of large number of stages.19 In
the Cantor block model the dominant scale is ax, so we measure the area using
Vctrd sticks of lengths 1. a~]. a~2 a j " + 1 , etc. At even1 stage we ignore features
smaller than the yardstick. In this way the area at the ??th stage is found to have
the asymptotic value

An x(XIXya
2

r/a9a.)"-'1 . ( 15 )

T h e f rac ta l d i m e n s i o n is d e n n e d by .4,, x (aI^
n~^)d. w h i c h y i e l d s

d = 2 -r ln( XrXy/aya:)/ In ax . (1C)
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Fig. 8. The Cantor block model for rougli electrode-electrolyte interface.



It is now quite apparent from Eqs. 14 and 16 that there is no univeral relation
between 77 and d except the following inequality

r)<3-d. (17)

The Cantor dust models can be randomized, namely that the branching numbers
and scaling ratios can be treated as random numbers with well-defined averages.15

It has been found that randomization does not change the conclusions deduced for
regular fractals, so it seems that the regular fractal models are more realistic than
they may appear.

Bates and coworkers have put the various theoretical predictions to test by
creating a set of rough electrodes and measuring their fractal dimensions and CPA
exponents.20'21 The electrodes were prepared from platinum and low resistance
(0.007 fi-cm) silicon with and without a thin gold coating. Pieces of platinum
and silicon of ~ 1 cm2 were polished using various grades of emery paper and
alumina powder. When viewed at low magnification, the resulting surface finish
had a definite lay, indicating that the roughness consisted of parallel grooves. The
height profiles of the plates were measured using a profilometer equipped with an
0.5 yum diamond stylus. This instrument has a height resolution of 0.005 /im and a
minimum horizontal step size of 0.04 /urn. Several profiles were measured for each
plate perpendicular to the lay at different positions near the center section, which
was used in the electrical measurements. A typical profile is shown in Fig. 9. The
profiles were analysed by assuming that they are fractional Brownian curves, i.e.
self-affine fractals whose scales in horizontal and vertical directions are related by
a, = a^, where H < 1. To test of this hypothesis one calculates the structure
function defined by

S(6) = (Az2(S)> , (IS)

where Az(6) = z(x+6) — z(x) and ( ) denotes an average in the horizontal direction.
If the profile is fractional Brownian, the structure function should be related to 6
by19

S{6)x62H . (19)

The data for two such profiles are shown in Fig. 10. It can be seen that the power-
law relation in Eq. 19 is well satisfied for over one decade of 6 in the submicron
region, giving H ~ 0.9 for both profiles. The range of length scale is limited by the
resolution of the profilometer. The fractal dimension of the surface is related to H
by d = 3 —i/.19 and this gives d ~ 2.1. For reasons not yet fully understood, natural
rough surfaces of all kinds, including the surfaces of the continents on Earth, have
fractal dimensions around d = 2.1-2.2. After the profile measurements the plates
were fixed onto glass substrates and wires were attached for impedance measure-
ments.

The CPA exponents were determined by measuring the impedances with these
electrodes immersed in 0.1 M H2SO4 solution. There is no theory for 7; for fractional
Brownian surfaces, so we can only make qualitative comparison between experiment
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Fig. 9. Typical profile of a rough electrode created by polishing a solid
surface with emery paper or alumina powder.
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Fig. 10. The height-to-height correlation function of rough electrode pro-

files showing that they are well represented by fractional Brownian
curves.



and theories. Since d is very close to 2, we can write d = 2+e, where e = 1 — H <C 1,
both Eq. 3 and Eq. 8 give

T/ =s 1 - e = H . (20)

We present the results of this study in an 77 versus H plot in Fig. 11. Each dot
on the graph represents the result for one electrode, and the dashed line across the
graph represents Eq. 20. The labels beside the points indicate how the electrode was
prepared. For instance, Au/Si/600 was a gold-plated Si surface ground with 600
grit paper, and Pt/0.05 was a Pt surface polished with 0.05 fim alumina powder,
etc. One can see clearly that there are points with almost equal H but very different
77, and those with nearly equal r? but very different H. Further examination reveals
that Si and Pt surfaces form two distinct groups, i.e. the Si electrodes, whether
coated with Au or not, have higher r\ than Pt electrodes. There is also a distinction
in the shape of the protrusions in the surface, that hard Si surfaces tend to have more
rounded protrusions than soft Pt surfaces. Therefore, the shape of the protrusion
seems to play a strong role in determining the CPA exponent. Notice that the
data are not inconsistent with Eq. 17, which can be written as r\ < H. On the
other hand, Cantor dust type models are incapable of shedding light on the role of
surface shape, because there is no clear way to relate the sharpness of the surface
protrusions to any of the scaling parameters in the models. Further progress toward
an analytical solution of the problem seems to be extremely difficult.

Bates and Chu reasoned that, under weak electric fields, the diffusion of ions in
the electrolyte toward the electrode surface can be mapped onto the random walk
problem, and the latter can be simulated by the Monte Carlo method. Assuming
that a constant voltage is turned on across a CPE at t = 0, it follows that the
current will have a time dependence given by t~v and the total charge given by

Ql^)** 1 "" - (21)

The principle of the simulation is as follows. Random walkers are released from
the counter electrode far away, and are allowed to migrate in the space between
the electrodes. If a walker reaches the electrode, the migration time is recorded
and another walker is released. A walker is discarded whenever it moves out of
the space between the electrodes. By repeating this process a sufficient number of
times, a set of data for Q(t) is accumulated and the value of 77 can be extracted.
The authors used the measured profiles for the electrode, but to save computer
time, they argued that a line joining a few of the highest points of the jsrofile,
the dotted line in Fig. 9, is a good approximation for an equipotential surface
so that random walkers can be released at random points on this line. While
this approximation requires justification, the authors obtained values of }] very
close to the experimental values. The distinction between Si and Pt surfaces is
clearly reflected in the results. There is one difficulty with the simulation procedure,
however. As reported by the authors, they obtained if ~ 0.9 for the cosine profile
and 0.S for the sawtooth profile. The sawtooth profile has been studied by Springer
and Raistrick by numerically solving the Laplace equation for the potential and
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current distributions.22 The calculation gives r\ = 1/2 at low frequencies, indicating
classical diffusion, and at high frequencies the real part of the impedance is constant
and the imaginary part is inversely proportional to frequency. There is no nontrivial
CPA behavior anywhere. It seems that the Monte Carlo simulation method should
be used with caution, and more work is needed to verify the findings reported in
Ref. 21.

3. Porous Electrodes

Porous electrodes are characterized by having open channels of all sizes extend-
ing into the bulk of the electrodes. One of the first models for such systems was
constructed by reversing the sides of the electrode and electrolyte in the Cantor
bar model in Fig. 5.23 The black side is now the electrode, and the white side is
a collection of channels which are filled with electrolyte. The electrical properties
of each channel can be calculated by modeling it as a finite RC transmission line
with a capacitance load at the end. The impedance of the entire system is found
by combining the channels in parallel. Let the width of the widest channel be W,
then in the next stage there are 2 channels of width W/a. In the third stage there
are 22 channels of widths W/a2, etc. It is convenient to consider a structure with
(M + 1) stages and subsequently take the limit of infinite M. The length of the
widest channel is Mh, where h is the height of each stage of the Cantor bar. Then
the lengths of the next two stages are (M — l)h and (M — 2)h respectively. Consider
a channel of length Lm = mh. The input admittance of the channel is24

) ij.nh(amLm)
Y
Ym ~ rm rm tanh(amlm) + amZL(m) ' l ~ j

where am = (juirmCm)1/2, rm and cm are the resistance and capacitance per unit
length respectively, Zi(m) is the impedance of the end capacitance. For the widest
channel, m = M, we set TM — r and CM = c. Then the scaling relation between the
channels gives rm = aM-mr, cm = c, am = aa ( M~m ) / 2 , a = (jwrc)1/2, ZL(m) =
aM~mZi, and Zi = 1/jvC, with C being the interfacial capacitance of the flat
end of the widest channel. The input admittance of the entire structure is

2 y M ~ m ) / " ( M ~ m ) / 2

(23)
The quantity of interest is the low-frequency behavior of the total admittance in
the limit of .1/ —> oc. A few simplifying approximations are now apparent. In the
limit of large M and m the load impedance is unimportant because the line is much
longer than the wavelength. Furthermore, the lengths of the ?nth stage and the
(m + ljth stage are approximately equal. This allows us to deduce the following
frequency scaling relation

y-(-) = -r(w), (24)



where Y(u) is the limit of Eq. 23 when M —» oo. The above equation is satisfied
by Y{UJ) oc (ju)v, where

ij = l + ln2/lna = 3 - d , (25)

and d is the fractal dimension of the interface. The series in Eq. 23 converges in
the limit of infinite M provided that 2 < a}I2. Recall that V(u') is the inverse of
the impedance Z(u>), we have shown that the inverse Cantor bar is a CPE.

The inverse Cantor bar suggests another model, which consists of long channels
bounded by simple curves such that there are 1,N,N2,.... channels with cross sec-
tions scaled by 1, a~2,a~4, One can show that as long as a < N < a3/2 , the
set of transmission lines is a CPE with 77 = 2 — In N/ In a.23 The area of the pores is
a fractal with dimension d = 1 + In N/ In a. Thus the relation 77 = 3 — d is obeyed.
Randomizing the pore numbers and pore sizes does not affect the relation between
77 and d.

The physical origin of the CPE in the multi-channel models is substantially the
same as in the branching models. High frequency signals tend to follow the wide,
low impedance channels while low frequency signals are forced to seek out the more
numerous, narrow, and high impedance channels. The shift of the effective current
paths with frequency plus the geometric scaling of the paths lead to the power-law
frequency dependence of the total impedance.

The geometry of porous solids is not limited to long and non-crossing chan-
nels. Sapoval and his coworkers have made an exhaustive study of many soluble
geometries.25 They obtained the same result for the multi-channel models as dis-
cusssed above. Their results for several sphere upon sphere models are particularly
interesting. Just like the Cantor dust models, these can also be mapped onto series-
parallel branching networks, and analyses of their input impedance again demon-
strate that 77 is not simply related to d. There are fractal surfaces with no CPA
behavior and CPE surfaces which are not fractal. Geometrical details are impor-
tant, but it is not yet clear to what extent one can apply these understandings to
naturally occuring porous materials.

In principle, there is another frequency regime of interest, at sufficiently low
frequencies where the diffusion length in the electrolyte is comparable to the size of
the electrode. The electric response is controled by the diffusion process, and even
ideal flat electrodes have the CPA exponent 77 = 1/2. It was shown by Pajkossy
and Nyikos26 and by Sapoval tt al.25 that for a fractal electrode of dimension d the
following simple relation exists:

r, = (d-l)J2. (26)

In the Faradaic regime where electrochemical reaction takes place, one expects
different values of 77 for the same fractal interface. This problem has been discussed
by Le Mehaute2' and by Sapoval tt al.25



4. Theory of Bulk CPE

To appreciate the mystery of the bulk CPA behavior in ionic conductors, we first
discuss the classical theory of the ac response of such a material. Ionic conductors
are a special kind of ionic solids in which one species of ions, usually the cation, can
migrate within the lattice. At sufficiently high temperatures vacancies are created
by thermal activation. Electrical conduction becomes possible when an electric
field drives mobile ions into vacancies nearby. In doing so they leave new vacancies
behind and other ions can move into them. One can equally well describe the
conduction process as vacancy diffusion. Because the paths of vacancy migration
tend to zigzag through the crystal, there is an ohmic resistance associated with
this process. Also, the collection of ions of opposite charges can be polarized by an
electric field, creating a capacitive element. The resistive and capacitive elements,
R and C, are in parallel, so that the input impedance has the expression

*<•">-TT&SS- (27)

By separating the real and imaginary parts, one finds that the real part is frequency
independent for u < (RC)'1 and falls off like w~2 for w » (-RC)"1, while the
imaginary part behaves like u> and w"1 respectively in these two limits. Therefore,
the CPA behavior as observed experimentally is outside the scope of the classical
theory. Attempts have been made to model the CPA behavior by invoking a con-
tinuous distribution of activation energies,1'4 but this type of effort does nothing to
advance our understanding of the origin of the CPE.

The bulk CPA behavior is but one manifestation of the universal 1 / / fluctuation
seen in many systems, such as sun spot activities, traffic flow, the flow of sand
in an hour glass, and the flow of electric current through a resistor.28 In recent
years we have seen accelerated progress toward better understanding of the 1 / /
fluctuation, and there is widely held believe that the phenomenon is akin to what
is taking place at the critical temperature of second order phase transition, i.e.
that systems that undergo 1 / / fluctuations have no natural length scale, and thus
are self-similar under scale transformations. We will show that this so-called 'self-
organized criticality' concept may also be a good starting point for elucidating the
bulk CPA problem.29"31

Let us consider a simple, one-dimension model for ionic conductor, shown in Fig.
12. The larger ions define the lattice while the smaller ions are mobile. The classical
picture for ionic conduction through vacancy migration is depicted in Fig. 12(a). In
Fig. 12(b) we consider a new mode of conduction, that when driven by an electric
field, it is possible to find two ions in the same interstitial space temporarily. These
two repel each other so strongly that they both move out of that interstitial position
and cause two nearby interstitials to be doubly occupied, as shown in Fig. 12(c).
Thus, the relaxation of one doubly occupied site creates two doubly occupied sites.
In the next step, the relaxation of the two doubly occupied sites results in three
doubly occupied sites, etc. As the process continues more doubly occupied sites are
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(a)

(b)

(c)

Fig. 12. Simple model for ionic conduction in fast ion conductors, (a) A
schematic representation of vacancy diffusion, (b) A doubly occu-
pied lattice position in which the two ions experience strong mu-
tual repulsion, (c) Both ions move out of the initial position into
neighboring positions on opposite sides, causing two positions tc be
doubly occupied.



created at every new step until a boundary site is reached, at which point one ion
is ejected out of the solid. Afterwards, the system heals itself by slowly returning
to singly occupied sites. This mode of conduction is governed by a set of dynamical
rules. Let qi be the charge at the mobile ion site labelled by i, then the site is stable
if qi < 1 and unstable otherwise. For an unstable site the charge redistributes
according to

qi -> qt - 2,

q,±i -» qi±i + 1 • (28)

If there are more than one unstable site at any moment, they are relaxed simultane-
ously. The charge is allowed to flow out at the boundary so that the entire system
will eventually return to a stable state. In this way the new conduction mechanism
maps exactly onto the sand pile problem first studied by Bak et a/.29"31

In higher dimensions there are more than two nearest neighbors in any lattice
of interstitial positions. Two ions in the same interstitial site can move in many
possible ways into two neighboring positions. This problem has not yet been studied.
Our present knowledge of higher dimensional systems comes from a slight variation
of the model as follows. Consider a regular lattice in a D-dimensional space whose
lattice points are R;. The lattice points represent the sublattice of the mobile ions,
and <7(R/) is the charge at the site R/, which has m nearest neighbors. The site
is stable if g(Rj) < m and unstable otherwise. For an unstable site the dynamical
rules of charge redistribution are

+ ^ + l - (29)
In the above equation 8{ for i = 1,2,...., m denote the set of vectors linking a lattice
point to its nearest neighbors. In the event that many sites are unstable, they all
relax simultaneously. The charge is allowed to flow out of the boundary.

To simulate a conduction process one should inject extra charges at one end
of the system and collect charges flowing out of the other end. The time sequence
of charge flow, when properly Fourier analyzed, would give information on the
frequency response of the system. This has not yet been done. What has been
done is a simulation of the diffusion problem in which every lattice point has a
higher than stable amount of charge.32 The square lattice (m = 4) enclosed in a
square boundary has been studied in detail. In Fig. 13 we show the final charge
distribution starting from the unstable situation where q — 5 at every site. Only
one quadrant of the square is shown, where the center of the square is at the lower
left corner. The values of q at various points are coded as follows: 1 by squares, 2
by diamonds, 3 by open circles, and 4 by open space. There is a complex pattern of
nonuniform charge distribution which consists of a set of nesting heart shapes along
the diagonal. This pattern is created during the process when excess charges flow
out of the boundary. The ratios of the linear measures of the nearest pair of heart
shapes are rational approximations of the irrational quantity (3 -\/b)/'2, which is



Fig. 13. Final charge distribution of a square lattice with initial charge q =
5 at every point. Only one quadrant is shown, with the renter of
the square at the lower left corner. The values of q are coded as
follows: 1 by squares. 2 by diamonds, 3 by open circles, and 4 open
space.



the classic Golden Section ratio. What is relevant to the conduction problem is the
time sequence of the total outward flow, which is plotted in Fig. 14 for a 801x801
square system. The time is measured by the number of iteration steps. At the
beginning the total flow follows the tll2 law, indicating that the flow obeys the law
of classical diffusion. Later in the process the flow slows down and the total charge
takes on a different power-law time dependence with the exponent 0.40, as shown
in the insert of Fig. 14. This behavior is known as anomalous diffusion, and we will
show that this behavior is linked to CPA behavior in the conduction process.

In classical diffusion the total charge Q(t) is proportional to i1/2. When such
a system is driven by a constant external voltage, the current follows the Ohm's
law and the total charge Q(t) oc c. In the anomalous situation the diffusive process
obeys the law Q(t) oc f. By using the scaling argument, we infer that when driven
by a constant voltage the charge will be gi%ren by Q(t) oc t2v. It follows from Eq. 21
that the CPA exponent is given by

T) = 1 - 2v . (30)

For the square system under discussion, we find v = 0.4 so that r\ = 0.2. We have
also carried out the simulation for the cubic lattice bounded by cubic boundaries
and obtained v — 0.25 ±0.01 and r\ — 0.50 ±0.02. It is not clear at present whether
this number depends on the lattice structure. Perhaps all one can conclude from
this study is that the new conduction mechanism may lead to a CPE with r\ ~ 0.5.
This number is small compared with 77 = 0.77 for amorphous LiaPCV Crystalline
conductors tends to give smaller values of 77, typically around O.6.1

Examination of the intermediate patterns during the charge relaxation process
reveals an intimate connection between anomalous diffusion and the growth of the
complex pattern in the final state. In Figs. 15-18 we show four intermediate patterns
for the square system with starting charge q = 5 at every site. Very early in the
relaxation process the uniform distribution quickly breaks down into plane waves
with crests of q = 6 and troughs of q = 4 as shown i:i Fig. 15. A rudimentary
heart shape develops at the corner, and it interacts with the waves and changes
the crest and trough values to 5 and 3. A thin strip of q = 4 separates the front
of the waves from the boundary. As time progresses the wave front moves toward
the boundary, and upon reaching it ejects a pulse of charge. Afterwards the wave
front retreats toward the center until it reaches the tip of the heart shape. At this
point the motion reverses itself and the shape grows by one grid point. At a later
time, shown in Fig. 16. the shape has grown in size, and smaller shapes have formed
following the wake of the leading one. The growth of the nonuniform region causes
the width of the wave front to shrink and the distance traversed by the wave front
to lengthen. Consequently, every time the wave front returns to the boundary, it
ejects a pulse that is two units less than the previous one, and the interval between
successive pulses increases by two units. The total flow after t iterations is given by

Q(t) = £[JV - 2(n - 1 )]««,„».„+, * Nt1'2 (31)
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Fig. 17. Same as Fig. 14 but after 9690 itoration steps. Anomalous compo-
nent of charge diffusion now dominates the flow.
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for 1 C t < .V. In the above equation N is the size of the boundary, n sums over
the sequence of pulses, and the Kronecker 8 indicates that the nth pulse emerges
at t = n2 — n + 1. This contribution can be identified as the classical component of
the diffusion process.

As the nonuniform region grows to about one-half of its final size, shown in
Fig. 17, we can clearly see waves flowing toward the boundary in the region be-
tween some of the shapes. The wave fronts make 45° angles with the boundary.
The excess charge in these waves must first flow through the leading shape, and are
ejected at the boundary sporadically. We identify this as the emerging anomalous
diffusion component. Near the end, shown in Fig. 18, the classical diffusion com-
ponent becomes insignificant and the anomalous component dominates the total
flow. This sequence of events demonstrates that the anomalous behavior is due to
charge flow through the nonuniform part of the intermediate distribution. The flow
is self-similar in time because the nonuniform region is self-similar in space. We
conclude that the anomalous diffusion behavior comes from charge flow through a
seif-generated self-similar distribution of vacancies.

Much more work needs to be done to clarify many important issues, chief among
which is a direct simulation of conduction process based on a more realistic model
whose margin of stability is q = 2. We believe that this line of inquiry will yield a
deeper understanding of the origin of bulk CPE.
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