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ABSTRACT

We Investigate the general conditions for an all-orders finite theory by redefi

-ning the coupling constants such that both the gauge coupling (3 -function and

the anomalous dimensions of the gauge superfield and chiral superfields vanish.

These explicit expressions for the conditions of all-orders finiteness Involve

solutions of an Infinite number of equations. Both a solving process and a cri-

terion for existence of the solutions of the aquations are given.
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1. Introduction

Over the past feu years,the search for perturbatlvely finite quantum field

theories always retains a certain interest. A number of four-dimensional super

-symmetric Yang-Mills (SYM) theories have been shown to be free of ultraviolet

divergences. At first, a large class of N-4 (Sohnuis and West 1981.Mandelstam

1983, Brink et al 1983) and N-2 (Howe et al 1983) theories was found. Many

attempts were then made to find finite theories for N-l case. Through direct

calculating (Parkes and West 1984, West 1984) and considering involving the

chiral anomaly (Jones 1983.Jones and Mezincescu 1984,Breitenlohner et al 1984,

Jones et al 1985,Grisaru and West 1985) based upon the Adler-Bardeen theorem

(Adler and Bardeen 1969,Bardeen 1969, Zee 1972),the conditions which guarantee

one-loop finiteness ensure two-loop finiteness as well were proved. Then later

on all two-loop finite N-l SYM theories of simple groups were found (Hamidi et

al 1984,Jiang and Zhou 1986,Dong et al 1986). Naturally,people attempt to find

the finite N-l theories to all orders. Analyses of three-loop approximation

have shown that two-loop finiteness automatically keeps the gauge superfield

propagator finite at three-loop level,but the chiral superfield one Is in gene

-ral divergent (Parkes and West 1985,Parkes 1985,Jones and Parkes 1985, Lucha

and Neufeld 1986,Lucha 1987,Bohm and Denner 1987). Fortunately,a new algorithm,

redefining the Yukawa coupling constants in the theory as a Taylor series of

the gauge coupling constant g, is proposed by Jones and Ennushev et al (Jones

1986,Ermushev et al 19S7,Kazakov 1986),since then one can make the N-l theory

finite to all orders.

In this paper, using a method similar to above, we further investigate the

general conditions for an all-orders finite theory. Section 2 deals with the

analyses of the self-energy graphs of the chiral superfields and with a proof

of a theorem which is important for later solving the equations of the condi-

tions of the finiteness. The relationship between vanishing both the gauge

coupling (J-function and the anomalous dimensions of the gauge superfield and

chiral superfields is given in section 3. These explicit expressions for the



conditions of all-orders finiceness Involve solutions of an infinite number of

equations.Both a solving process and a criterion for existence of the solutions

of the equations are concluded in section A.

2. Analyses of the self-energy graphs

In a general N-l SYM theory, the fundmental superfields are the N-l vector
r

multiplet A (in a adjoint representation, r is the component-index), and a
r

set of N-l scalar multiplets A (in reducible representations R )• Matrices
r

R satisfy the following condition:

r s rst t
[R . R ] - i f R . (1)

r
In general, R can be reduced to the sum of irreducible representations and

also obey eq.(l). Ue denote these irreducible representations by i, j, k (l,j,

k-1,2, . . .n) .their components by a and b, i.e. «<-(i,a), JJ -(j ,b), and the classes

of inequivalent irreducible representations by x, y, z. The matrix elements of
s
R can be written as

s M s i a s a i s a i
(R )» - (R ) - (R (D) 5 - (R U)> 5 ifcx . (2)

P jb b J b j

The superpotential is defined as

1 ^- U.jb.kc

W 2- d </0 d> A A
3! AM.J.k.a.b.c ia Tjb T kc

- - X . < * " 4>« 4>P 4>, . (3)

where U is invariant under the gauge group G. d is a Yukawa coupling cons-

tant and totally symmetric In ci , (J and Y . Ue denote complex conjugation by

raising and lowering indices,thus d - d . I n some cases R ,R and R can

*"i 1 j k
be coupled into a singlet of G in several different ways which the index yu

refers to.

According to the Feynman rule in an N-l SYM theory,the shrinkage of two vector
r s

multiplets A and A gives a factor of the propagator as



The shrinkage of scalar multiplets $* and fy gives

J b

(4a)

(4b)

but no shrinkage exists between ^ and )̂ or d> and A_

Some vert ices are as follows:

( a ) - g[R 1 t x (5a)

(b)

( c )

(d)

r
2 r s a

- g (R R ),

(5b)

(5c)

(5d)

( e )
T S t

(5e)

For exploring a finite N-l SYM theory,we are interested In calculating the

Faynraan diagram as J -t—I (—(J . This self-energy diagram of chiral superfields

concerns with j ,the anomalous dimensions of the chiral superfields. The calcu

-lated result of each self-energy diagram always can be disassembled to two

factors. One factor involves the group quantities which including the coupling

constant. Another one Involves the momentum integral which is in general diver-

gent. Using the calculated results of these diagrams we can get the expression

of "0 .In general, there are more than one diagrams which contribute to ~\ at

same order. If we want to vanish^, at any orders we try to make the contribu-



tlons of these diagrams can be canceled. For example,one -loop anomalous dimen-

sion of chiral superfields is given by (Jones and Mezincescu 1984, Parkes and

West 1985. Jones 1986, Capper and Jones 1985, Lucchesi et al 1988):

( U 1 «St 2 s s ̂
" [d d j - 4g (R R ),] . (6)

*(i 32TL

where two terms in the bracket are from follow two diagrams

Now let us give a analysis for the properties of group factors of a arbitrary

diagram. It is easy to see that the group factors in general consist of the pro

-M s* rst

•ducts of group quantities such as d (or d ), (R ). and f . The indices

of group quantities are shrinked in pair. At last only up-index o{ and down-index

(1 do not shrink. For the indices of adjoint representation,the r,s,t,two arbi-

trary indices can be shrinked. But for the indices of chiral fields,the Q< , ft,^ ,

only a up-index and a cown-index can be shrinked.

For later using.we give a few definitions:

s s a a x

£. [R (x)R (y)] - c (x) 5 S . U)
s b 2 b y

s t st st

Tr[R (x)R (x)] - ft T[R(x)] - 6 T(x) , (not sum for x) (8)

where C,(x) and T(x) are the value of the quadratic Casimir operator and the

Dykin index for the irreducible representation x,respectively.

Writting the group factor of one self-energy diagram of chiral superfields

as P ,we find a group factor theorem as follows:
1 a x

P ! - <J 5 I . °< - d . a ) . p - ( J . b ) , i £ x , j f c y , (9)

V j b y

where the quantity q* only depends on the indices of the irreducible represen

-tations. We give a brief proof of this theorem as following.

In general,the interaction vertex of N superfields can be denoted as



where Rj,^..^ could be Yukawa coupling coefficient of chiral superf ields, also

could be the C-G coefficient of chiral superfields and vector superfields.

Because of the theory is invariant under the transformation (local,global)

of gauge group G, so that the interaction vertex is a siglet of the group.

We assume that each field above belongs to a irreducible representation of G

and its corresponding generator matrices are:

s
(T ) u , i-1,2, •• N ,

s
where i denotes irreducible representation. T can be selected as Hermitian

i
matrix:

s * s
(T ) ,- (T ) u > ̂

A self-energy diagram consists of several interaction vertices, like (10),

contracting all pairs of superfields with the exception of one pair.correspond

-ing to the external lines. Its group factor P^^is a product of several R coe-

fficients in (10), contracting all pairs with the exception of one pair n, ,/J,.

ia
For a chiral superfield self-energy diagram, P^u - P. - P . It is not diffi-

Jb
cult to see P is a C-G coefficient, which couples <p and <p to a singlet:

" ia

ia jb
Z - P <b A
a,b jb ia

ia 4 ia
where <p = 1 9 ) , belonging to the contragredient representation of <p

la
~ s s t s t

The generator matrices T of this representation i s equal to -(T ) .where (T )
i i i

s
i s the transposition of matrix T . According to the property of C-G coeff i-

i
cienCs.ue have:

ia' ^.s a , ^. ia s b'
2 _ P ( T ) + 2 - P ( T ) - 0 . (ID
a' jb i a' b' j b' j b

or in matrix form:



s 1 a 1 s a
(T •P ) - (P T ) - 0 (no sumation over 1 or j) . (12)

1 j b j j b

s s
Now using Schur Lemma,If T and T belong to two inequivalent Irreducible rep-

i J
la s s

resentatlons x and y, P - 0 ; If T and T belong to the same Irreducible
jb 1 j

la i a 1
representation x, P - q £ , where q are Independent of a. So we have:

jb j b j

ia l a x
P - q X J , U x , jfcy • (13)

jb j b y

The group factor theorem shows:Two extenal lines belong to either inequivalent

irreducible representations or to same class of Irreducible representations but

to different components of the representations, while the group factor P. is

equal to zero. If two extenal lines belong to same class of irreducible represen

-tations and sane components but to different equivalent irreducible represents

-tions.i.e.i H j.while P. is not equal to zero in general. Thus P - q depends

" j
on the indices i and j, but does not depend on the indices a and b.

3. The conditions for all-orders flniteness

The conditions for one-loop finiteness are (West 1984,Parkes and West 1984,

Jiang and Zhou 1986):

N

T(R) - X- T(R ) - 3C (G) . (14)
1-1 1 2

abc *a'bc 2

d 00 d (/)-2g J J C (R ) (for all 1,1') , (15)
b.c.j.k.H.M1 ijk i'jk aa' ii' 2 1

where T(R.) and Ĉ R.̂ ) are the Dykln Index and the value of the quadratic Casimir

oprator for the Irreducible representation R^, respectively. C2(G) - C (R^),

where R a Is the adjoint representation of G.

The ultraviolet divergences of a general renormalizable N-l supersymmetric

gauge theory are controlled by two functions: the gauge (J-function (4. and the

anomalous dimension matrix of the chiral superflelds, ̂ " . A theory is finite

if (ij and ̂ |p vanish. Using a consequence of a general theorem: (if an N-l super



•symmetric gauge theory is finite up to n-loop,then the gauge propagator is

finite in (n+1)-loop) (Grisaru et al 1985), the condition for one-loop (i-func-

tion |J- 0 is known,and If >£ - 0 (1-1,2, -,n) are satisfied, then (1'**°- 0.

Therefore,in this way |J. - 0 and \. - 0 to all orders guarantee a theory finite

to all orders. If one wants to construct a finite theory based on the one-loop

finite theory,one only demands:

Writing the Yukawa coupling d Into two factors:

a n ia.jb.kc abc ijk
d - d (/0 ~ h (x.y.z.^g (^), (17)

abc
where the first factor h depends on the class indices x,y,z of irreducible

representations,the component indices a,b,c and the coupling ways /* . In fact,
abc Ijk

h is the C-G coefficient of gauge group. The second factors g are indepen

-dent of the property of the group, which are just the usual Yukawa coupling

constants.

Using a method similar to that used by Jones et.al.,we expand the Yukawa coup

ijk
-lings g as a laylor series of the gauge coupling constant g:

ijk ijk 3 ijk 5 ijk

g - g A + g A + g A + • - • • < 1 8)
1 2 3

ijk
Because \ is a function of g and g (g),so it can be written as follows:

* 2 . U u 6 *

Then,the conditions tor a finite to all-orders N-l SYM theory are:

r* - 0 (n - 1.2.3,--- ) . (2°)

Substituting eqs.(17) and (18) into (6),and according to the property of the
abc 4<.l>

coe f f i c i en t h ,the anomalous diraentlons of one-loop, V .can be written as
T



• A, Aij/0 (21)

• A5f*AWfc)+.••]«;***

ijk
where g may have a constant factor different from that in eq.(17). For the

... •»1*'1

at IU ,l»» vo*
expressions'^ ,V , •••.all can be inferred by analogy. In general, 4. contains

•P 'P • ijk
such terms: a product of 2n Yukawa coupling coefficient factors (i.e. g ),

2
a product of (2n-l) Yukawa coupling coefficient factors and g ; the rest of the

2
products,in turn decrease two Yukawa coupling coefficients but increase g .until

2n
the last term only has g but without the Yukawa coupling coefficient factor.

.,1.0 2n
Therefore,in ^ ;the term of lowest degree of g is the g term in which only

appear the expanding coefficient A, ,but no A ; . A j a n d s o on; in the g

ijk ijk ijk ijk 2(n+2)

term, there are A and A j •')ut n o Ai • Ad > "' > t n e S term just con-

ijk ijk ijk
tains A , A v and A j ;the rest can be inferred by analogy.

Now,the conditions for finiteness, eq.(20),can be written as follows (Jiang

and Zhou 1988):

1-loop: * 10 - V"i -»"•"» gff1 >)• • (22)

LAJ, ...,An-.,) = 0 , (23)

(n-2,3,4,...),

where \A. denotes the remaining terms of \^. that do not contain ^.'s; their

.<*
particular expressions depend on the values of the ̂  to n orders.

According the group factor theorem expressed by eq.(9),the second term in eq.

(23) can be written as:

fWA,, A,, ..., A..,)-fii(A1, A, A , . , ) ^ . (2ft)

Thus,eqs.(22) and (23) become:

(25)
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^ A2 *„_,) = 0

(i,j belong to tune irreducible representation, n = 2,3,...) . (26)

It is easy to see that the number of eqs.(25) and (26) Is less than the one of

eqs.(22) and (23).because of the equations in (22) and (23) with indices x * y,

a ^ b now automatically satisfied.
ijk ijk _ .

We disassemble ^ ( , ̂ f l and P . to real and imaginary parts,respectively:

A f = a''* + I bi>k , (27)

-*?*

fvJ-4i+<-»*s
+i"«- <29)

Now eq.(26) becomes:

«•'**;« + a" 4^ + i ' V + *"*£'* - fj? = 0

(n-2,3,... ; i.i € *) . (30)

In eqs.(30), if i *i J , it does not give any new equations once i and j are
ljk ijk ijk

exchanged. If eq.(25) gives a solution of &. , a and b also become known
ijk ijk

quantities,then eqs.(30) just are linear equations with unknowns x and y
n n

ijk ijk
The coefficient matrix of the equations depends on a and b . Furthermore,

there are 2M independent unknowns in eqs.(30).where M denotes the number of the
ijk

independent possible non-zero Yukawa coupling coefficient factors d . The

number of the independent equations is:

where n, ,nt, -•-, n^denote the number of the chiral superfields which belong to

irreducible representations x, y, - • •,z,respectively. Anyway,the coefficient

matrix A is a LK2M matrix; L is the number of the rows and 2M is the number
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of the columns.

The de ta i l s of a explanation of the general solut ions of eqs . (30) was given

elsewhere (Jiang and Zhou 1988). Here, we jus t summarize the conditions for

existence of the solutions as follows:

(a) L£2M ;

(b) There exist solutions of eq.(25) which make the rank of the coefficient

matrix A in eqs.(30) is squal to the number of the equations, i .e. r(A) - L .

4. A criterion for existence of finite N-l SYM theory

As above section shown,the group factor theorem reduces the eqs.(22) and (23)

to more simple eqs.(25) and (26) or (30). In principle,we can solve these equa

-tions order by order once the anomalous dimensions ^^ are calculated. The
( ijk

interesting question is whether there is a set of values of the unknown ^
n

which satisfy these equations of finiteness. From now on,we will show both of

a solving process and a criterion for existence of the solutions for these equa

-tions in particular.

Now,we introduce two diagonal conditions which make the non-diagonal equations

(i.e.i «r j) of eqs.(25) and (26) are automatically valid. The diagonal condition

ijk
means choosing some Yukawa coupling coefficients g in the theory are equal to

zero. By this way, it is easier than before to solve the equations,but in gene-

ral will lose some of the solutions.

At first,imposing a one-loop diagonal condition (Jiang and Zhou 1986,Dong et

al 1986),i.e. choosing a specific set of nonvanishing Yukawa coupling coeffi-

ijk ijk

cients g such that there are no two g in the set which have two equal

indices,then eqs.(25) with 1 * j are automatically valid.

We introduce the all-orders diagonal condition as follows.which guarantees

the nondiagonal equations (i *t j) of eqs.(26) automatically to be valid.

ijk
Suppose we choose P nonvanishing Yukawa coupling coefficients d .denoted as

d (ft -1,2,---,P) .and m" is the number of the irreducible matter superfield <j>

(i-l,2,---,N) appearing in d . Obviously, ̂ .m* - 3 for any p. Suppose in a matter

superfields self-energy diagram i -i—f | j .b** is the number of d* appea-
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ring in the diagram, while b^ is the number of d - (d*1) appearing in the

diagram,and a = b - b . Let i *i J , but i,J belong to the same irreducible

representation. If this diagram exists, the following equations must have a

solution:

P P P

£aMmj; = 0 (k^i.j), Y.a»m>=l< H«i. "»? = -! («#J), (32)
»»Bl |>«1 11*1

where m are known. Now let a^' s be unknowns; if eqs.(32) have no integer solu

-tion of a^, we call this condition an all-orders diagonal condition. If this

condition is satisfied,the nondiagonal eqs.(i ^ j) in (25) and (26) automati-

cally hold. An all-orders diagonal condition must be a one-loop diagonal one,

but the inverse is in general invalid. Whether an all-orders diagonal condition

holds,it depends on which set of nonvanishing d 's we choose. Now suppose an

all-orders diagonal condition holds for a particular choice of nonvanishing dM's

we only need to solve the diagonal equations of (25) and (26) which are as

follows :

ijk
2- H - T(x) (it x) , (33)

_ 1JK ^ 1
Z_H - p (A .A A >> (t-1,2. ••• ,N; n-2,3, -- • ) . (34)
jk n n 1 2 n-1

where
ijk ijk x dimx

H - a A A , a - fill — — , (no sum over i,j and k), (35)
1 lijk dimG

ijk ijk ijk
H - A A + A A i (no sunl over i,j and k). (36)
n 1 nijk n lijk

It is interesting to see that eqs.(33) and (34) have the same coefficient

matrix A'(N*P-matrix).only have a difference from thire augmented matrices. The

sufficient (and almost necessary) condition for these linear equations having

a/

a solution is: rank(A') - N £ P , which means \. - 0 to all orders.

Based on our previous work of two-loop finite SYM theories and according to

the above criterion,the procedure for finding the finite in all orders N - 1
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SYM theory is as follows:

1. Using eqs.(33) check the solutions of two-loop finite theories. For a set of

representations in two-loop finite theory,if the Yukawa coupling coefficients
ijk

d were selected to be making eqs.(33) have a non-negative solution and in the
ijk

solution without H - 0, then go to next step. In general there may be some
ijk

H - 0 for this solution. In such case we will delete the corresponding vanish

-ing d from the set of nonvanishing d 's.

2. Using all-orders diagonal condition examine the set of d*'s. If this set of

d^'s make eqs.(32) having a integer solution of â ,, we have to renew a new set

and to check it again from first step,until the all-orders diagonal condition

holds for the new set.

3. If N>P, this means the solution although Is two-loop finite but in general

can not continue be finite to all orders.

4. If N*P, then using above criterion check the rank of the coefficient matrix

A'. Those solutions of two-loop finite theories with rank(A')-N, just are candi

-dates of finite to all orders theory.

According to above procedure,we obtain a large class finite in all orders N-l

SYM theories of representations of all classical groups (Jiang and Zhou 1987,

1988).
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