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1. Introduction

The electron group functions (GF) method (see,for example,

/1-9/) is recognized as one of the most practically useful and

physically transparent methods (or the calculation Of electronic structure

of atoms, molecules, and condensed matter, taking into account the most

significant part of electronic correlation. In this approach the

many-electron system under consideration is conventionally partitioned

into m subsystems, the so-called electron groups (EG), of /V; /V^ /V̂

electrons ( 2 ^ - N ) • Each of EG's is described by its GF <£>

Here J is the EG number, X, is the set of all electron coordinates

related to this EG: Y = (J< , . . . , 0< }, where AC is the number of

electrons in J-th EG; A1, :\

1 = 1

; JT= ( 1. , (T. ) denotes spatial

and spin coordinates of i-th electron. GF is usualy supposed to be

antisymmetrical with respect to transpositions of its arguments. The

wave, function of the whole N electron system is constructed as the

antisymmetrized product of all the GF's:

(1.1)

where A is an operator performing the antisymmetrization and

subsequent normalization of an operand. The GF method in its most

consequent form /9-10/ is based on the three following statements.

I. Account for intragroup correlation and complete neglect of
intergroup one.

II. Spatial localization of GF's.

III. Variational freedom of the function given in the form (1.1).

Usually all these aspects of the GF method are treated separately.

In the present work we should try to consider them jointly seeking to

answer the following question. If all these three requirements are

-1-



fulfilled simultaneously, is it the result of a physically adequate

choice of partition of N-electron system into /V. , A£ ,...-electron

groups? Or, the partition being givers, the mathematical techniques

of the theory can adapt to these requirements?

More specifically, we try to solve the following problem.

Provided that variational freedom is not restricted and intragroup

correlation is taken into account in a given approximation, is it

possible to develop for GF's any analogue of the well-known (in the

case of orbitals} Adams-Gilbert-Kunz method /14-17/ that could give

one a possibility to go from delocalized GF's to localized ones

seeking for minimization of the intergroup correlation?

2. The physical problem statement

Let us discuss some substantial features of statements I-III

paying special attention to their compatibility. The method deals with

EG's as entities. The intragroup correlation (between the electrons of

the same EG) is supposed to be taken into account by any known way.

According to the chosen approach the extent of its account can vary

from zero (when M 2 , is merely determinant of/Vi orbitals while 4* is

that of N ones) till, in principle, complete (when (t> is presented,

e.g., as infinite series of fV-th order determinants built on the full

basis of orbitals).

On the other hand, if one presents the wave function of the whole

system as Eq.(l.l) one introduces immediately the approximation of the

complete neglect of intergroup correlation. This approach can be

treated as development of one-determinantal Hartree-Fock method (where

GF's are reduced to orbitals and electronic correlation is completely

omittedl for partial account of correlation.

The energy functional E [̂ f»J - ̂ l4JjH|4'^ is minimized over

variations of all GF's each being given the complete variational

freedom restricted only by the normalization constraint. This condition

is in fact necessary for the correct account of intragroup correlat" i
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in ab-initio calculations. Imposing additional constraints on GF's

leads to the contraction Of the class of trial functions and is equivalent

to an indirect (and as a result more then likely indefinite) limitation

on the extent of account of correlation. Sometimes it can reduce the

considered part of intragroup correlation to zero. This statement is

corroborated by the practice of the electronic correlation calculations for

many-electron systems. It has been observed /ll/ that a more complete

account of correlation asks the correct choice of basis for the

construction of correlated wave functions, the condition corresponding

to the requirement of sufficient variational freedom.

Futhermore, GF's are considered to be localized in different

regions of space, so that their spatial overlap is small. This

condition, first, provides that intergroup correlation effects are

small. This may be immediately proved in terms of the density functional

method: by virtue of non-linearity of exchange-correlation energy

functional the intergroup correlation energy

is small only if the total electron density P (A is near to either O

or p in the corresponding regions of space. Second, the localization

gives one a basis for a chemical interpretation in terms of

transferability of localized GF's. Third, it provides some

convenience for numerical realization of the method for extended

systems as each GF needs only a basis of functions confined in the

corresponding region of space. A substantial simplification of

mathematical apparatus of GF method is achieved by imposing the strong

orthogonality constraint /5,8,12/ on GF's

(2.1)



X being all arguments of ̂ )but x. Unfortunately this condition

restricts the class of trial functions and worsen their localization.

For this reason the method of non-orthogonal GF's is also developed

/13,14/,

At first glance the requirements of variational freedom and

localization are inconsistent with one another because the latter

restricts the former. But not always it is the case. Consider

one-determinantal Hartree-Fock method, with

(2.2)

Here tp^(j() are one-electron wave functions (for convenience in this

work they will be referred to as orbitals) which may be found as

decisions of Hartree-Fock equations /12/

(2.3}

through another set of orbitals,

may be presented also

<M (j.\ being the decisions of Adams - Gilbert - Kunz equations /15-18/

A
where p is the operator of one-electron reduced density matrix (RDM-1)

J »

of the system, and B is an arbitrary hermitian operator. In different

applications (V S may be considered as either localized or pseudo-

orbitals. Both systems of all { (0 \ and ( ^ } span the same

Hartree-Fock space of decisions of Eq. (2.3). The transition from

{ ^ ( to ( ^ } may be performed by a linear transformation

(2.5)

being unchanged as it follows from the properties of determinants.

The transformation (2.5) may be used to go from delocalized ( ) to

localized ( ) orbitals (in fact the degree of maximal possible

both localization and delocalization of decisions is restricted by

properties of a specific system /19/). Eqs. (2.4) and (2.5) form the

basis of a consequent approach to the localized orbitals method /!/.

The set ( ti' } as well as ( 10 ) has the property of complete

variational freedom but may be localized. Hence, if correlation is

ignored the localisation condition does not restrict the variational

freedom. The problem is whether the same can be achieved taking the

intragroup correlation into account. In other words, we want to find

such a transformation of GF's with arbitrary numbers of electrons

which does not change the wave function (1.1) of the whole system

with the assumed partition of N electrons into EG's but makes the

localization of the GF's possible similarly to Eqs.(2.5) for orbitals.

If this transformation exists the GF's localization would be

achievable without restriction of variational freedom. The localized

GF's would satisfy certain "generalized Adams-Gilbert-Kunz" equations,

and the GF's method could be considered as free of inherent

contradictions. Otherwise one would infer that there is a unique set

of GF's which gives a decision of a particular variational problem,

the extent of those localization being fixed. As in the final analysis

the decision depends on the partition of N electrons into groups and

on the way of taking into account the intragroup correlation we may

briefly define this case by the formulation "the correlation controls

localization". If in the case on hand the GF's turn to be localized it

must be considered as a physical effect not a result of choice of a

suitable mathematical tool.
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3. The antisymmetrical orthogonality of many-electron wave

functions

Let us now give the mathematical formulation of the problem. While

performing the transformation (2.5) over orbitals one actually adds a

zero expression of the form

A

(3.1)A [ftK)^-) £<*•)••• I*0

to the N-electron determinantal wave function. As for odd M the equality

[ % fo ) ̂  ( % & ] - 0 (3.2)A [ % fo • •
is valid we conclude that for GF's with the same odd number of

electrons, M, the linear transformation

(3.3)

in the similar manner modifies GF's (and can localize them) but leaves

the wave function (1.1) of the system unchanged. One can also easily

see that in the general case at even H the equation (3.2) is violated.

Hence, Eq. (3.3) gives no decision of the problem at even M. But we

can try to obtain the decision in another form.

Let us define the notion of antisymmetrical orthogonality. If two

many-electron functions satisfy the equation

o
let us call them mutually antisymmetrically orthogonal (ASO). Here the

operator performs the complete antisyrranetrization of an operand with

respect to all L+M variables, and the numbers of electrons in the two

functions, L and M, may differ from one another.

-6-

The function (1.1) obviously will not change if we modify any

adding the expression

(3.5)

where is a GF ASO to another GF, . Here , and

(*f 1 is an arbitrary coefficient depending on variables

c£) "lacks".

It is interesting to find that two functions cannot be strong

orthogonal if they are ASO. To show this one has merely to multiply Eq.

(3.4) by <P (J.y).,n JfL)and then to integrate over SL^,..}JL. .

Some examples of ASO functions are given by Eq. (3.2). Let us now

present some more examples (see Table 1) to visualize the notion of

antisymmetrical orthogonality. We denote 1,2, and 3-particle GF's

(orbitals,geminals and trials) by symbols V , 9 • an^ ^~r and their

arguments J^-by L . If arguments are omitted their order is assumed to be

natural. a,b,c,... symbolize orthonormal orbitals, *̂  , ^ , Jh ,...

c J

are given constants, and L . are arbitrary constants or functions of

necessary arguments, r is the rank of the corresponding RDM-1.

Each of <t> in the Table 1 is ASO to the corresponding Q* as may be

immediately checked by substituting them into Eq. (3.4). Moreover, if

1^ then it is always possible to

construct 0 , with M'>M, also ASO to ^ ^ , making mere replacement

of (_ . S by arbitrary functions of "lacked" arguments built on

non-occupied natural orbitals.

The following part of the paper deals with the investigation of

necessary and sufficient conditions of the existence of functions ASO

to a given one.

one has <J3 ASO to a given
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Table 1

L

!

2

2

2

3

r

1

2

4

6

6

* ( 1 , • • - , «

S ( l ,2 ) = A a( 1)6(2)

9(1,2) = A[aa( 1)6(2) +
+/3c(l)d(2)]

9(1,2) = ,4[aa&+
+/3cd + ̂ e/J

t = A(,aabc + 0ade +
+ "jbdf 4-Scef)

M

1
2

1
2

1
2

1
2
3

1
2

^(1,...,M)

£(1) =¥>(!)
j(l,2) = iC,(l)K2)

p(l) = 0
3(1,2) = 0 , ?(1,2) +

+A[C2(l)a(2) + Ci(\)b2(2)]

£(l) = 0
? = yl[Ciac + Ciad+ Cibc +

+C4 6d+C5(/3o6-ac£i)]

& = 0
< = j4[Cioce + O2Oc/+

+C3fcce + fttc/ + C$ade +
+C6adf + Cnbde + Ctbdf+
+(O,a + Cio6)(7cd- /3e/) +
+(dic+ Ci2fi)(7a6- ae/) +
+(Ci3e + Ci4/)(^a6-Q!cd)]

p = 0
g = A[Ciaf + C2be+ C3cd +

+CA(aef - Sab) + C^ae-
-pbf) + C6(.Pbc-ade) +
+C7(iac - adf) + Ci(0cf-
-Bad) +C9(,6cd~-0bd)]
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4. Conditions of existence of ASO geminals

we begin with the simple case L=M=2. Let geminal g(l,2> be given.

We have to solve the equation

A

where ^ is the unknown function. Both a and <T are supposed to be

antisymmetrical:

a and <T

Let us denote natural orbitals of Q as Then we can write /12/

(4.3)

It follows from (4.2) that

(4.4)

Let us substitute (4.31 and (4.5) into (4.1). Making use of the right

coset decomposition of symmetrical group ~>^ with respect to its

subgroup T (g) S ; which generates the corresponding

decomposition of the antisymmetrizer /''3|

-A' (4.6)

with

H A
^ 6 1 ̂

A A

(4.7)

where P.. is the permutation of arguments i and j arid E is identity
J

-9-
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permutation, and taking into account Eq.(4.2) we obtain

z
(4.8)

where the first function in each term has the argument x^ , the second

x, and so on. As a summation with respect to each of the indices i, k,

1, and m extends over all set we may re-label them to obtain

'(4.9)

The mutual linear independence of the functions tf, yields then the

following system of equations for unknown coefficients O. » :

(4.10)

•+

which may be presented in a more compact form as

A Q

(4.11)

The operator A here is assumed to antisymmetrize its operand with

respect to permutations of 4 indices taking into account the

properties (4.3) and (4.5) in the way similar to that used in Eq.(4.6).

Eqs.(4.10) present the basic equations to define ASO geminals. The

system is linear and homogeneous, and the known values (c. } are its

coefficients.

Now let us distinguish occupied and unoccupied natural orbitals. If

C ' - O (4.13J

for all iand a given n then the n-th natural orbital is called

unoccupied. The occupation number

RDM-1) satisfies the formula /20/

(i.e. the k-th eigenvalue of

-10-

(4.14)

For unoccupied natural orbitals

(4 .15)

Let us denote r the number of occupied states (it is the rank of

RDM-1). Sums in Eqs.f4.3) and (4.14) actually are taken over the

occupied states only ("Fermi sea").

Consider Eqs,(4.10) for the case when states i,k are occupied, but

l,m are not. Accounting for (4.13) one Obtains

unoccupied . (4.16)

If i,k,l are occupied states, but m is not, Eqs.(4.10( take the

form

-t = O. (4.17)

The system (4,10) obviously breaks up to subsystems each corresponding

to its own unoccupied m. For a given m, all i,k,l values differ from

one another by virtue of (4.4). For each m the system (4.17) contains

r unknowns and f [ equations. Hence, for r<4 we have less equations

than unknowns, and there is infinite number of g 's built on occupied

and/or unoccupied natural orbitals in compliance with Eqs.(4.17).

If r = 4 we have r both unknowns and equations. The equations would

have nontrivial decision at zero system determinant.But for r=4

this determinant is nonzero due to the positive definiteness of RDM-1 ,

Hence, the system (4.17) has no decision for r ^ 4.

Now let all indices i,k,l,m correspond to occupied states.

Then there is (2) urlknown values Q. , and I ^ \ equations (4.17) for

them, while r < 6 the number of equations exceeds the number of
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unknowns, and the decision may occur. For r Jf 6 there is no decision.

So if the rank of a given geminal is less than 6 it has

non-trivial AEO geminals (cf. Table 1).

5. Conditions of antisymmetrical orthogonality in the common case

The generalization of the consideration given in the previous

section to the common case of antisymmetrical orthogonality between a

given L-electron function <£(i_)and unknown M-electron function <t>(fv\)

is straightforward. Expanding both functions in terms of natural

orbitals of <£>(LJ,

(5.1)

(5.2)

chen substituting both expansions in the equation (3.4), and then

making use of linear independence of natural orbitals { US 1, we

obtain the system of equations

(5.3)

Let. r again be the rank of RDM-1 . Consider the system for the case when

a of all L+M indices i correspond to occupied states while remaining

L+M-s to unoccupied ones, s is restricted by the condition

L S < ( 5 - 4 )

The system (5.3) again splits to unconnected subsystems each for its own

complect of unoccupied indices. Let these indices be fixed while other

s run over all occupied states remaining mutually

different. Then C\. .• has M-{L+M-s) = s-L indices labelling

-12-

ives l i l unknowns.occupied states. It gives |, j J unknowns. The number of equations is

( , ] , and the condition of existence of nontrivial solution for the

chosen part of system (5.3) reads as

(;)<(.'-)
(5.5)

It is equivalent to

(5.6)

If both inequalities (5.4) and (5.6) are satisfied at least at

one s value,one may conclude that lr('v\) ASO to a given Q*(,i-) of rank r

exists. The simultaneous investigation of unequalities (5.4) and (5.6)

shows that it takes place if

(5.8)

6. Discussion and summary

As it follows from Eq.(5.8), the improvement of quality of account

of correlation in the function 'P(L}that is raising of a difference r-L

causes the increase of the minimal M value necessary for existence of a

C$>(M}ASO toCt>(L). This fact restricts the possibilities of simultaneous

localization of GF'S and account for their intragroup correlation,

especialy for small L values. But the restriction becomes less severe

when L rises. Let us consider valence shells of anions in aicali

halide crystal as an example of GF's. Then L=M=8, so that GF rank

is constraint by inequality r<24. It means, that up to 15 excited

natural orbitals may be used, which gives A^O^f-i determinants

in a CI expansion of GF.

So we see that in some cases a compromise may be achieved between

the assumptions I, II, and III of the GF theory. We can conclude that

-13-
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the notion of antisymmetrical orthogonality of many-electron functions

introduced in the present paper presents an additional theoretical

foundation of the GF method and gives one a possibi l i ty of a more In-depth

study of the substantial assumptions of this approach and, in some

cases, also improvement of i t s power.
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