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1. Introduction

The electron group functions (GF) method (see,for example,
/1-9/) is recognized as one of the most practically useful and
physically transparent methods for the calculation of electronic structure
of atoms, molecules, and condensed matter, taking into account the most
significant part of electronic correlation. In this approach the

many-electron system under consideraticn is conventionally partitioned

into m subsystems, the sc-called electren groups (EG), of N, A, L , /\.{”
' r
e
electrons ( Z NI =N ). Each of EG’'s is described by its GF <b;‘ (Xg)
I=q

Here J is the EG number, x; is the set of all electron coordinates

related tc this EG: x}= ('XM"H ,...,XM9+N; },where /\{} is the number of
J'f -
electrons in J-th EG; M3 :Z NI poA= 2. . 0. ) denotes spatial
3
I:1

and spin coordinates of i-th electron. GF is usualy supposed to be
antisymmetrical with respect tc transpositicns of its arguments. The
wave. function cof the whole N electron system is constructed as the

antisymmetrized product of all the GF’'s:

b (s, i) = AT P5(X;),

i'.
where A is an operator performing the antisymmetrization and

(1.1}

subsequent normalization of an operand. The GF method in its most
consequent form /%-10/ is based on the three tollowing statements.
I. Account for intragroup correlation and complete neglect of
intergroup one.
II, Spatial localization of GF's.

III. Variational freedom of the function given in the form (1.1}.

Usually all these aspects of the GF method are treated separately,
In the present work we should try to consider them jointly seeking to

answer the following question. If all these three requirements are



e

fulfilled simultaneously, is it the result of a physically adequate
choice of partition of N-electron system into Aﬁ . Aé ,...—electron
groups? Or, the partition being given, the mathematical techniques

of the theory can adapt to these requirements?

More specifically, we try to solve the following problem.
Provided that variational freedom is not restricted and intragroup
correlation is taken into account in a given approximation, is it
possible to develop for GF's any analogue of the well-known {in the
case of orbitals} Adams-Gilbert-Kunz method /14-17/ that could give
one a possibility to go from delocalized GF’s to localized ones

seeking for minimization of the intergroup correlation?

2. The physical problem statement

Let us discuss some substantial features of statements I-ITT
paying special attention to their compatibility. The method deals with
EG's as entities. The intragroup correlation {(between the electrons of
the same EG) is supposed to be taken into account by any known way.
According to the chosen approach the extent of its account can vary
from zerc (when Crais merely determinant offV} orbitals while Z? is
that of N ones} till, in principle, complete {when a?;is presented,
e.g., as infinite series of ﬂ{fth order determinants built on the full
basis cof orbitals).

On the other hand, if one presents the wave function of the whole
system as Eg.{l.l) one introduces immediately the approximation of the
complete neglect of intergroup correlation. This approach can be
treated as development of cne-determinantal Hartree-Fock method (where
GF’s are reduced to orbitals and electronic correlation is completely
omitted} for partial account of correlation.

The energy functicnal E[L{-'] = <LP'H'LP> i8 minimized over

variations of all GF's each being given the complete variational
W

freedom restricted only by the normalization constraint. This ceondition
L Y

is in fact necessary for the correct account of intragroup correlat’ n
e gl e

_2_

in ab-initie calculations. Impesing additional constraints on GF's
leads to the contraction of the class of trial functions and is eguivalent
to an indirect (and as a result more then likely indefinite) limitation
on the extent of account of correlation. Sometimes it can reduce the
considered part of intragroup correlation to zero. This statement is
corrcborated by the practice of the electronic correlation calculations for
many-electron systems. It has been observed /11/ that amore complete
account of correlation asks the correct choice of basis for the
construction of correlated wave functions, the conditien corresponding
to the requirement of sufficient variatiocnal freedom.

Futhermcre, GF's are considered to be localized in different
regions of space, so that their spatial overlap is small. This
condition, first, provides that intergroup correlation effects are
small. This may be immediately proved in terms of the densily functional
method: by virtue of non-linearity of exchange-correlation energy

functional the intergroup ¢orrelation energy

EI?— = Exc[?:;] - Exc[?r] - Exc[S)?}

is small only if the total electron density g}#x)is near te either ?I
or ? in the corresponding regicns of space. Second, the localization
gives one & basis for a chemical interpretation in terms of
transferability of localized GF's. Third, it provides some
convenience for numerical realization of the method for extended
systems as each GF needs only a basis of functions confined in the
corresponding region of space. A substantial simplification of
mathematical apparatus of GF methoed is achieved by imposing the strong

orthogeonality constraint /5,8,12/ on GF's

{ @ (4,X) & (xX)dx =0, o



X being all arguments of QDbut x. Unfortunately this conditicn
restricts the class of trial functions and worsen their localization.
For this reason the method of non-orthogonal GF’'s is also developed
/13, 14/,

At first glance the requirements of variational freedom and
localization are inconsistent with one another because the latter
restricts the former, But not always it is the case. Consider

sne-determinantal Hartree-Fock method, with

L

Here i?&(i) are one-electron wave functions (for convenience in this

~

A(“ﬁ‘fy) (2.2)

Il

work they will be referred to as orbitals) which may be found as

decisions of Hartree-Fock equations /12/
”~
Fy.(4) = & ¢ (0. (2.3)

The impertant fact is that the same ZP may be presented also
PR

/
through ancther set of orbitals, Vﬁ S, as
~

A%J - %\ ( 1q s Y2/)1
*&(j\ being the decisions of Adams - Gilbert - Kunz equations /15-18/
A A
(F "‘:?‘ B é) Y, (+) :a"‘f’c(”) (2.4)

A
where ? is the operator of one-electron reduced density matrix {RDM-1)
3
of the system, and B is an arbitrary hermitian operator. In different
: . ' : . ;
applications qt S may be considered as either localized or pseudo-

orbitals. Both systems of all { %L } and { *i_ } span the same

Hartree-Fock space of decisions of Eg, (2.3). The transition from
{ V% } to | Yk } may be performed by a linear transformaticn
-y~

ALY =Z€;Kl5?‘-(;“), (2.5)

qu being unchanged as it follows from the properties of determinants.
The transformaticn (2.5) may be used to go from delocalized ¢ 3{ } to
localized ( \?‘ } orbitals {in fact the degree of maximal pocssible
bhoth localization and delocalization of decisions is restricted by
properties of a specific system /1%/}. Eqgs. (2.4} and (2.5) form the
basis of a conseguent approach to the localized crbitals method /f1/.
The set | qi } as well as | ?L‘ } has the property of complets
variational freedem but may be localized. Hence, if correlation is
ignored the localisation condition does not restrict the variational
freedom. The problem is whether the same can be achileved taking the
intragroup correlation into account. In other words, we want to find
such a transformation of GF's with arbitrary numbers of electrons
which does not change the wave functicn {(1.1) of the whole system
with the assumed partition ¢f N electrons into EG's but makes the
logalization of the GF's possible’similarly to Egs. (2.5} for corbitals.
If this transformation exists the GF's localization would be
achievable without restricticn of variational freedom. The lccallized
GF's would satisfy certain "generalized Adams~Gilbert-Kunz" equations,
and the GF’s method could be considered as free of inherent
contradictions. Otherwise one would infer that thereisa unique set
of GF's which gives a decision of a particular variational problem,
the extent of those localization being fixed. As in the final analysis
the decision depends on the partition of N electrons inte groups and
oh the way of taking into account the intragroup correlation we may
briefly define this case by the formulation "“the correlation contrcls
localization". If in the case on hand the GF's turn to be localized it
must be considered as a physical effect not a result of choice of a

suitable mathematical {ool
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3. The antisymmetrical orthogonality of many-electron wave

functions

Let us now give the mathematical formulation of the prcoblem. While
performing the transformation (2.5) over orbitals one actually adds a

zero expression of the form
A .
A["ffui)‘fi("“) lfj(x3)“']_o (3.1)
to the N-electron determinantal wave function. As for odd M the equality
A
A [ ¢'1 (‘xl-"-!,v\‘ ¢I(‘KM+4 L. 'XZM) CD}(XZH_“ e X}H)]= O (3.2)

is valid we conclude that for GFfs with the same odd number of

electrons, M, the linear transformation

L"‘E(J"_“lxm) = Z}\' CI} CD} (JQ,...,JM) (3.3)

in the similar manner modifies GF’'s {and can lccalize them} but leaves
the wave function {1.1) cf the system unchanged. One can also easily
see that in the general case at even M the equation (3.2) is violated.
Hence, Eg.(3.3) gives no decision of the problem at even M. But we
can try to obtain the decision in another form.

Let us define the notion of antisymmetrical orthogonality. If two
many-electron functions satisfy the eguation

N

o [ 81 B ]

let us call them mutuwally antisymmetrically orthogonal (ASQ). Here the

(3.4}

operator performs the complete antisymmetrization of an coperand with
regpect to all L+M variables, and the numbers of electrons in the two

functiens, L and M, may differ from one another.

The function (1.1} obviously will not change if we modify any
(D} (Xh“_, ‘XN}) adding the expression
& ( C
X x~) C (x X
fy .oy AN -~ yred VN (3.5
I 1 Nrff 7
—~ ~
&
where (bI is a GF AS0 to another GF, (PI . Here /lé N N} , and
C(“.) is an arbitrary coefficient depending on wvariables
e
"lacks".
P,

It is interesting to find that twe functions cannot be strong
orthegonal if¥they are ASC. To show this one has merely to multiply Eg.
(3.4) by ¢> ("‘1,-"1 .X,_)and then to integrate over X,,_.. )JL .

Some examples of ASO functions are given by Egq. (3.2). Let us now
present some more examples (see Table 1} to visvalize the notion of
antisymmetrical orthogonality. We dencte 1,2, and 3-particle GF's
{orbitals,geminals and trials) by symbols lf . j , and ’-—, and their
arguments X‘- by LI . If arguments are omitted their order 1is assumed tc be
natural. a,b,c,... symboiize orthonormal orbitals, « , A% ,J\ P
are given constants, and CJ are arbitrary constants or functions of
necessary arguments. r is the rank of the corresponding RDM-1.

~—
Each of @ in the Table 1 is ASC to the correspeonding Q‘> as may be

immediately checked by substituting them into Eq. (3.4). Moreover, if
Hr

cne has
Do
construct d)ﬂl’

f
of C‘L $ by arbitrary functions of "lacked" arguments built on

AS0 to a given Q"L then it is always possible to

with M'>M, also AS0 to qDL , making mere replacement

non-occupied natural orbitals.
The following part of the paper deals with the investigaticn of
necessary and sufficient conditions of the existence of functions ASC

to a given one.



Table 1

#(1,...,L) M $(1,.... M)
(1) 1 @) = (1)
2 g(1,2) = ACI(Dp(2)
g(1,2) = Aa(1)B(2) 1 B(1) =0
2 3(1,2) = Gy g(1,2)+
+A[C2(1)a(2) + C3(1)b2(D)]
g(1,2) = Alaa( 1)b(2)+ 1 e(ly=0
+Be( 1)d{2)] 2 §=AlCiac+ Crad+ Cabe +
+Cybd + Cs(Bab — acd)]
g(1,2) = Alaab+ 1 =0
+Bcd + yefl 2 =0
3 f= AlCrace + Cancf+
+Chbce + Cabef + Csade +
+Csadf + Crbde + Cgbdf+
+HGCoa+ Crob)(yed — Bef)+
+{(Cnic+ Crad)(qab — aef)+
HCae+ Cra f)( Bab — acd)]
t = A(aabc + Bade + 1 =0
+ybdf + Bcef) 2 §=AlCiaf + Cabe + Cyed +
+Ca(aef — bab) + Cs(rae—
—Bbf) + Cs( Bbec — aede)+
+Cr(vyac — adf) + Cs{ Bcf—
—bad) + Co{bcd — fbd)]
_8_

4. Conditions of existence of ASO geminals

We begin with the simple case L=M=2., Let geminal g(1,2) be given,

We have to solve the eguation
A (134) 9(42)3 9(34)=0, .

P

e
where 3 is the unknown function. Both j and 3‘ are supposed to be

antisymmetrical:

A) g642) = 9042),
A(’ll {17- 3”2 (4.2)

Let us denote natural orbitals of 3 as ‘f"’ . Then we can write /12/
=3 . NERR y
3(111) = Cox kj'}([)‘fl-’. (l) . (4.3)
¢

It follows from (4.2) that

C, ‘-“.—CI LI (_' :(:),
ke Ly TRk (4.4)

Let us substitute (4.3} and (4.5) into {4.1). Making use of the right
coset decomposition of symmetrical group S;,' with respect to its
subgroup 92_ @\ SZ which generates the corresponding

decomposition of the antisymmetrizer /1"5, 1'4,/

(f?-""i) = ARA (42)/:\(54) (4.6)
with
AR 4 A ” A " ” ~
A = E{E 13 P111 23 PZ"-I t+F, P}q} (4.7

>

~
where pL is the permutation of arguments i and j and E is identity



-

permutation, and taking into account Eq. (4.2) we obtain
L‘ZLQMCCK aem {‘)0‘ lfk lfe Ym - Lfﬂ ‘fm ‘f;' Bim._ ‘)at"_]a-ef‘Cjﬁm‘
= P o fe e = Yo e ot feufe fif =0

where the first function in each term has the argument Xy v the second

(4.8)

X and so on. As a summation with respect to each of the indices i, k,

2
1, and m extends over all set we may re-label them to obtain

% ‘f“(*)f‘((z)%(”(ﬂ“(ﬂzf Cui af’m - wa_dc'm - Ct'( qu b an qel'(; o
= Com aek * Cen Q. P =0. -

The mutual linear indsependence of the functions Eﬁ. yields then the

following system of eguations for unknown ccefficients C3€ :
n
Cor @y = C - -
v T € qu CL'C qzm CFHM qeL-' Cﬁmqeg*

+ Con, Apy =0,

(4.10}

which may be presented in a more compact form as
AR
: . = 0.
A (“‘e“") Cok Ao (4.11)

The operator A here is assumed Lo antisymmetrize its operand with
respect to permutations of 4 indices taking into account the
properties (4.3) and (4.5} in the way similar to that used in Egq.{4.6).
EgQs.(4.10} present the basic eguations to define ASO geminals. The
system is linear and homogenecous, and the known values [C[K } are its
coefficients.

Now let us distinguish occupied and unocccupied natural orbitals. If
P 4.1
Cen -0 (4.13)
for all ianda given n then the n-th natural corbital is called
et T

unoccupied. The occupation number }L (i.e. the k-th eigenvalue of

RDM-1) satisfies the formula /20/

-10-

T

e D T - .

c - (4.14)
Ze_' K€ Chﬂ€ vk g.(m-
For unoccupied natural orbitals

n {4,135}

Let us denote r the number of cccupied states (it is the rank of
RDM-1). Sums in Egs.{4.3) and (4.14) actually are taken over the
cccupied states only ("Fermi sea").

Consider Egs.(4.10) for the case when states i,k are occupied, but
1,m are not. Accounting for (4.13) one obtains

C? = " ied . '
€ i O , {’) ki unoccupied (4.16)
If i,k,1 are occupied states, but m is not, Egs.(4.10} take the

form

C"‘K qem -+ Cke,a‘;m + Cec al{m =0. (4.17)

The system (4,10) cbvicusly breaks up to subsystems each corresponding
to its own unoccupied m., For a given m, all i,k,1 values differ from

one another by virtue of (4.4}. For each m the system (4.17) contains
r unknowns and (g) equaticns. Hence, for r<4 we have less eguations

than unknowns, and there is infinite number of'; ‘s built on occupied
and/or unoccupied natural erbitals in compliance with Egs. (4.17).
If r = 4 we have r both unknowns and egquations. The eguations would
have nontrivial decision at zero system determinant.But for r=4
this determinant is nonzero due to the positive definiteness of RDM-1,
Hence, the system (4.17) has no decision for r } 4,

Now let all indices i,k,l,m correspond to occupied states.

r s
Then there is (2) unkneown values QCK andg (q) egquations (4.17) for

them. While r < 6 the number of equations exceeds the number of

-11-



unknowns, and the decision may occur, For r Z 6 there is no decisien.
So if the rank of a given geminal is less than 6 it has

non-trivial ASC geminals (cf. Table 1)

5. Conditions of antisymmetrical orthogonality in the common case

The generalization of the consideration given in the previous
section to the common case of antisymmetrical ornthogonality between a
given L-electron function @(L)and unknows M-electron function égﬁW)
is straightforward . Expanding both fumctions in terms of natural

orbitals of ®(L),

=2 Cp o ) (L, 5.3)
Lty 1 1 be

[
- (5.2)
43“"“*”‘)12( Cotyo i P ) G (M),
4 XA
then substituting both expansisns in the eguaticn (3.4), and then

making use of linear independence ¢of natural orbitals { 3{- b, we

obtain the system of equations

AR

A Cﬁ Q. ‘ = (0, . (5.3
L‘I’N\ 4 "L LL_-P\“’LL-'-,"V\

Let ¥ again be the rank of RDM-1. Consider the system for the case when

3 of all L+M indices ik‘ correspond to occupied states while remaining

L+M-s to unoccupied ones., s 1is restricted by the condition

L ¢ s < menlr, LtM), (5.4

The system (5.3) again splits to unconnected subsystems each for its own
complect of unocccupied indices. Let these indices be fixed while other
s run over all occupied states remaining mutually

different. Then £. has M-{L+M-s}) = s-L indirces labelling

Lo Lﬁﬂ

-12-

r
occupied states. Tt gives (;—L.) unknowns. The number of eguations is
r‘ : X i . . .
( 5) , and the condition of existence of nontrivial solution for the

chesen part of system (5.3) reads as

(5) <« (=)

It is equivalent to

(%‘SJ<’2‘5+L" (5.6)

If both inequalities (5.4} and {(5.6) are satisfied at least at
~
one s value,one may conclude that M) 250 to a given @ (L) of rank =

exists. The simultaneous investigation of unequalities (5.4) and (5.6)

shows that it takes place if

M 2 T4 - L. . (5.8)

6. Discussion and summary

as it follows from Egq. (5.8}, the improvement of guality of account
of correlation in the functiecn q3(L}that 15 raising of a difference r-L
causes the increase of the minimal M value necessary for existance of a
EEWW)ASO tocbﬂj, This fact restricts the possibilities of simultaneous
localization of GF's and account for their intragroup correlation,
especialy for small L values. But the restriction becomes less severe
when L rises. Let us consider valence shells of anicens in aicali
halide crystal as an example of GF’s. Then L=M=8, so that GF rank
is constraint by inequality r<24. It means, that up to 15 excited
natural orbitals may be used, which gives 490314 determinants

in a CI expansion of GF.
So we see that in some cases a COMPrOMISe may be achieved between

the assumptions I, II, and IITI of the GF theory. We can conclude that

-13-
T | ’ T - N
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