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ABSTRACT

The functional integral representation for the generating functional of t-J-V mode! is
obtained. In the case close to half filling this functional integral representation reduces the conven-
tional Hamiltonian of t-J-V model to the Hamiltonian of the system containing holes and spins 1/2
at each lattice size. This effective Hamiltonian coincides with that one obtained one of the authors
by different method. This Hamiltonian and its dynamical variables can be used for description of
different magnetic phases of t-J-V model.
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1. INTRODUCTION

The problem of a theoretical description of the high temperature superconductivity (HTSC)
that arose some years ago is still open [1],[2]. The t-J Hubbard model of strongly correlated elec-
trons [3],[4] is the one of the most popular for HTSC explanation. This model reflects correctly
some properties of HTSC compounds: the phase diagram, the close connection of the magnetic
and transport properties etc. The Hamiltonian of the t-J-V model can be expressed in terms of the
Hubbard operators that exclude double occupancy X%b - |an){n6| where nis the lattice site and
H = |0n), |Tn>, | in )

(1)

where Nn ~ xl^ + X^- is operator of the electron number; Sn is the spin operator Snz = ^
* i T ) /2 - S«v = (Xll ~ * i T >/2 ' . S« = (*IT - * i x ) / 2 ; ° = ±1/2 =T. I is spin projection;
tnrf = trfn is the electron hopping integral from lattice site n to the lattice site ri; J^ is the spin
exchange integral; Vmi describes Coulomb interaction of electrons on different lattice sites; fia is
the chemical potential depending on the spin projection a and wo is the precession frequency of
electron spin in external magnetic field; T is a temperature which is supposed to be much less than
usual chemical potential ft. That Hamiltonian follows [1],[2] from the usual Hubbard Hamiltonian
in the limit U » t (where U is the constant of Coulomb repulsion on a lattice site) at the filling n
close to one electron per lattice site 0 < 1 - n=p « 1 [4],[5]. In that case J^ = 8 ((„* |2 jU.

In the paper [6] one of the authors (VLB.) has obtained the following representation for
the Hubbard operators Xab in terms of Fermi operators V£, i><, and local spins 1/2 s:

~N, S =

(a (2)

That representation permits to reduce the Hamiltonian (1) Htjv to the Hamiltonian of
the Fermi hole operators

(1/2) VJ

(3)

The representation (2) and the effective Hamiltonian (3) were obtained in the framework of the
Wick's theorem for Hubbard operators. The representation (2) and the Hamiltonian (3) do not
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represent direct operator identities. Some isomorphism of the form A —* VAV~* must exist
which transforms the relation (2) and (3) in identities. In this point this representation differs from
known slave bosons representation [7]-[9j. In the present form the Hamiltonian (3) can be used for
the calculation of the Green function of the Hubbard operators in the framework of the temperature
diagram technique. Such calculation was produced for the simplest magnetic states: ferromagnetic,
paramagnetic and antiferromagnetic in [6] and the properties of the hole transport and the hole
interaction were determined on the basis of two small parameters: the hole number per lattice site
p « 1 and the inverse number of neighbours \jz « 1.

But it is well known that superconductivity arises in the nontrivial state of the paramag-
netic spin liquid and it is not obvious that Hamiltonian (3) obtained in framework of the perturbation
theory can be applied to the nontrivial magnetic state that must be investigated on the basis of some
variational approach [10].

The reason for doubts in the validity of the representation (2) is based on the example
of the Heisenberg model that was studied by the functional integral method of Kolokolov and
Podivilov [1!],[ 12]. They show that spin operator representation [13]

o, a* = -a (4)

where tj> is random field with given statistical properties similar to representation (2) by its sense is
not precise and contains some corrections.

In the present paper we shall construct the functional integral representation for the gener-
ating functional of the Hubbard operator temperlure Green functions for the Hamiltonian (1) t-J-V
model of the strongly correlated electron system. We shall show that the effective Hamiltonian
(3) is the correct Hamiltonian for the filling closed to one electron per lattice site that is actual for
HTSC compounds. We believe that Hamiltonian (3) has some advantage in comparison with the
usual t-J model [3],[4] because it does not contain any constraint on double occupancy and can be
used for variational calculation nontrivial magnetic states.

2. FUNCTIONAL INTEGRAL REPRESENTATION

The generating functional fur the Hubbard temperture Green function may be represented
in the form

Z(h)=Tr[Tr(txp(-0Htjv+
Jo

(5)

where fi = 1 /T is the inverse temperature; 2V means ordering product over temperature time
r; h.ai(T) represent eight external fields conjugated to eight Hubbard operators X"6, excluding
X00 = 1 — N; the external fields conjugated to X0", Xa0 areGrassman variables; F is free energy
and Z(0) = 1. Using Hubbard-Stratanovich identity [I4],[ll] one can represent the generating

functional (5) in the form

Z(h) =

xTr[TTtxp / «
Jo

(6)

where JT" = (ir°T, TT̂ 0 , irjjl, jr*°) are the Grassmann fields conjugated to corresponding Hubbard
Fermi operators: w£ = (ir^,-nl[ ,irj) are the complex fields conjugated to spin Hubbard Bose
operators, ir% is conjugated to Nn; 5r° = irj + h^ for a = 0<T, erf), Tl, IT. 5r« = T* + Mi ~ ^o; frj' =
ir% + h% + p. The numerical matrices Aac/>Bpp as it follows from Hamiltonan (1) have form

* I ! ! -i j j ' " 2U o i
Let us notice that the integration over variables ir^, i\£, ff^, n* can be understood as the integration
over the surface in the complex space defined by the condition

HewJ(r) = Reir"(T) = 0, WJ^T) = — <7riT(r))* (8)

Correspondingly the integration over Grassmann variables TI0", TT"0 can be understood as the inte-
gration over the four-dimensional Grassmann manifold determined in the eight-dimensional com-
plex Grassmann manifold

The problem of the determination of the explicit form of the generating functional (6) is reduced
to the determination the T-ordered exponent

A(T) =7Y[exp( (10)

where c = Ocr, CTO , Ti.il,«, nand the quantity n°(T) is introduced for convenience. The operator
exponent A( r) satisfied the following obvious equation

i(T) = (7Tt:(r)Jtc + jr0(T))J4(r) (11)

with the initial condition A( 0) = 1. We are not able to solve the equation (11) when the conditions
(8), (9) for iriT(T), 7rTi(r), irOlT(T), 7r°°(r) are fulfilled. However, following the method of the
papers [11] we can deform the surface (8) and (9) in a special manner and find the operator A( r).
To this end we shall use the following Ansatz for

A(T) = B + ( T ) B ° ( T ) B - ( T ) ( B + ( 0 ) ) - 1

B°(T) =
(12)



In the formulae (10)-(12) and below the index of the lattice site nis omitted for the sake of simplicity
of the expression. The expression (12) for A{T) satisfies the initial condition J4(0) = 1. After
differentiation of A( r) with respect r and representation of the result in the form (11) one can get
the system of equations connecting ITC(T) and ific(r)

= (1 /2) (TT T

(13)

where the new field variables ^ are expressed in terms of the initial variables <p in the following
way

The dependence ir° on ^ represented separately in (13) can be considered as the defini-
tion. Producing die functional change of variables (13) one can calculate the T1-exponent explicitly
and obtained an explicit functional representation for the generating functional Z( k).

After the change of variables (13) it is natural to deform the initial surface of integration
(8), (9) into the surface

= 0, (15)

Notice that after such a deformation the conditions (8), (9) for wTi( T) , ̂ T ( r ) , irOtr( T) , -it00 (r) are
not valid. For the correctness of such deformation the density of the generation functional must be
regular with respect to the variables of the integration and the integral must exist for every surface
of the integration in die process of deformation. The last condition is essential for the numerical
variables v^{T),ir^{T) because as integral over the finite number of Grassmann variables al-
ways exist. The discussion of convergence of the integral over the variables TT^( T) , wiT) r) can be
performed in the manner similar to [11].

The substitution of variables (13) contains the time derivatives in the right side because
it is necessary to fix the initial or boundary conditions. For the complex field V>TX(r) the standard
boundary condition V'n(/3) = V"TX(0) makes the transformation nonrevertible. We shall ase the
initial condition for the ^^( T) [12]:

0Ti(O) = 0 . (16)

For the Grassmann variable iji*0 ( T) one can use the standard antiperiodic boundary condition

^(O) = —^(p) . (17)

When we produce the variables substitution in the generating functional (6) we must calculate the
Jacobian or more precisely Berzinian of the transformation

Z>7r'*0I?Tr^Z>wl-TDjr*I'irn = Ber[ J{ii)]'P\j>aa'Dij^^'D\j>^'Dp'D^'' (18)

where the matrix J( $) may be represented in the block form

here Jaa' is the Fermi part of / matrix; Jkv is the Bose part and /"*' J w are the mixed pans of
the / matrix. When the derivatives over Grassmann variables in (19) arc computed they are as the
right derivatives. Berezinian of the / matrix is calculated according to the following rule [15]

Ber[j] = det[ J**' - (20)

The explicit form of Berzinian (20) depends on the method of rcgularization of the time derivatives
in (13). Because the Bose part of J matrix Jkkf practically coincides with the corresponding spin
matrix of the paper [12] we shall use the same regularizafion

(21)

(22)

where the quantities V»|i "n\ defined by the relation

4>f = Pin), it$ = *a(Ti),n = ZP/L, A = 0/L, L -* oo ,

here 1 < I, < L and^, Lare integers. The det (Jte) can be easily calculated:

det( Jk*) = Urn *£, (J- - ji/,}) = const exp f-1J p{r) dr\ (23)

For the computation det( Jaa>) let us produce the regularization 7r°"(r) in the following way

f f f, - K-if>f) ,
(24)

T T



The crossing terms
Thus

and taking into accout (16), (17) we get

.-"0 gives small contribution at A -» 0 in det (Jaa') and can be omitted.

A-1 + [ }«K,
- A - 1 - t ]?(1 +

0 0
0

(26)

where [ ]f is denned in (24) and det (dirf / d^f) is equal

lim
4-*,!-™,

const(exp(Ji: / [ ]?
Jo

exp((l / [ tf
Jo

(27)

The det (/""')" ' is not equal to zero on the surface of integration and one can conclude that the
initial and boundary conditions (16), (17) are correct. The regularization constant K can be deter-
mined if we compare our result with the case of small filling (sec below) where all results can be
obtained in the gas approximation: K = 0.

The computation of the trace A{ T) can be easily performed. The general trace can be split
into the product of the single-sites traces and taking into account initial and boundary conditions
(16), (17) we get

r0
r0

Jo

= 1 + exp( f (fr(
Jo

exp( f {
Jo

exp( f ( # " ( T ) - ^V(r
Jo 2

f i/>Ti(r)(exp( f '#•JQ Jo

},'(T) + w0.

In conclusion of this part of paper we shall get an explicit form of the generating func-
tional in the case of small filling when J and V contributions are absent and the Hubbard-Stratatnovich
transformation is produced for t-member only. In that case we have the expression for the gener-
ating fucniional

J ? 5 X>!!

xTY[rexp< (29)

Let us set TTU, ir"^, w*, TT" equal to zero in (13), (14) and perform the corresponding functional
change of variables. The equation (13) can be considered in that case as the definition of ij>^, ^>l\
iti',il>n. Supposing |/i| >> T, wo and /j < 0 we get (23), (27) it is followed that for K = 0 and
0fi —> — oo Berezinian equal det (Z0 0)"1 turns to constant. Substituting in (29) the expression for
ir (13) and making the linear change of the integration variables

. gO • gO

we get the following representation for the generating functional

Z(h) = jl Y[V^°"V^ exp(-S) ,

(30)

= f [
Jo

(3D

This generating functional leads to the effective Hamiltonian that coincides with the Hamiltonian
obtained [6] by the operator method. The mass renormalization, damping and electron scattering
amplitudes that follow from the generating functional (31) coincide with results of the gas approx-
imation obtained from initial Hubbard Hamiltonian [16]. Such coincidence of the results may be
obtained only for the regularization we have used and this in fact fixes it.

3. THE FILLING CLOSED TO UNIT AND REDUCTION TO THE SPIN PARTI-
TION FUNCTION

In the case considering in that part of paper fx > 0, /i >> T, wo and fift —• oo. One can
verify that det (Jaa') ~x ~ e~" and

r0 i

Ber(J) = dtt(J^)fdet(Jaa') = const exp(- / (2^° + -V -
Jo 2

(32)

Substituting (32) into (20) and (20), (28) into (6) at /3ti —» co one can verify that the integral over
V>"( T) is Gaussian and thus it can be easily performed. As a result we get the following functional
integral over the seven field on the lattice

-J:
f (ViT(T)exp( f\l>'n

Jo Jo
(33)



where d = (Off, CTO, U , IT, *) and

j t j

J < *

where a* = (/i , , / i J ( /i, + u»o), Vo = and vector TJB has following form:

For simiplicity we omit fermion external fields ft"0, hOa. In the next step we shall distinguish the
integral over the spin variables

Z(h) =

(34)
It follows from the formula (34) that the expression in curly brackets coincides explicitly with the
generating functional of the Heisenberg model [12]. The external field with respect to the spin
operators is

(35)

and the generating functional can be rewritten in the following form

Z(h) =

: j a „ T SK T T . , (36)

where trace is taken over spin variables and

U - -
"~ 2

(37)

is the usual antifeiromagnet Heisenberg Hamiltonian for spin 1/2. The substitution (30) for the
Grassmann fields i ^ , 0° " reduces the generating functional (36) to the standard functional integral
[15] with Hamiltonian explicitly coinciding with the Hamiltonian (3),

In conclusion let us remark that in general case of an arbitrary chemical potential the
separation of ihc spin subsystem is nol possible. Beside that the universal polynomial substitution
of the spin operators in term s of Bose and Fermi operators docs not follow from the method of this
paper. We think that further investigation of the Hamiltonian (3) must be based on the variational
method [10] for the spin subsystem.
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