

THEORETICAL PHYSICS

GEOMETRIC APPLICATIONS OF EVOLUTION

James Eells

INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

1990 MIRAMARE - TRIESTE

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

GEOMETRIC APPLICATIONS OF EVOLUTION *

James Eells International Centre for Theoretical Physics, Trieste, Italy and University of Warwick, Coventry CV4 7AL, England.

MIRAMARE - TRIESTE

December 1990

* To appear in the Proceedings of the School on Qualitative Aspects and Applications of Nonlinear Evolution Equations, 10 September-5 October 1990, ICTP, Trieste.

1. Curve shortening

Let $\varphi : S^1 \to \mathbb{R}^2$ be a smooth embedded closed curve in the plane. For $x \in S^1$ let $\nu(\varphi(x)) =$ inward unit normal vector. If φ is parametrized by arc length, then its <u>curvature at</u> $\varphi(x)$ is

$$k(\varphi(x)) = |\varphi''(x)|.$$

Consider a 1-parameter family $(\varphi_t)_{t>0}$ of such embedded curves, such that

$$\frac{\partial \varphi_t}{\partial t} = k(\varphi_t) \nu(\varphi_t) \\
\varphi_t|_0 = \varphi.$$
(1)

Theorem There exists a unique solution of the evolution equation (1). As $t \rightarrow \infty$ the curves become convex, The limit is a round point. (We leave to the reader the pleasant task of defining "round point", in this context.)

That theorem was proved by M. Grayson [J. Diff. Geo. 26 (1987)], following earlier contributions by M. Gage and R. Hamilton [J. Diff. Geo. 23 (1986)], who established a special case, assuming that the initial curve $\varphi(S^1)$ is itself convex.

Now let us replace the plane by a surface N with a Riemannian metric h. (We can think of N as a surface in Euclidean space \mathbb{R}^3 , with induced h – which permits us to measure angles between vectors on N, as well as lengths of smooth curves.)

Say that $N \text{ is convex at } \infty$ if the convex hull of every compact subset is compact.

Grayson [Ann. Math. 129 (1989), 71-111] has generalized the preceding result as follows:

Theorem Let N be a surface which is convex at ∞ . For any smooth embed – ded curve $\varphi: S^1 \to N$ equation (1) has a unique solution for $0 \le t < t_{\infty}$. If $t_{\infty} < \infty$ then $\varphi_t(S^1)$ converges to a point. If $t_{\infty} = \infty$, then its curvature con –

verges to 0 in norm. [It could happen that $\varphi_t(S^1)$ converges to a closed geodesic as N.]

Remark If $\varphi : S^1 \to N$ is immersed; i.e., self intersections are permitted:

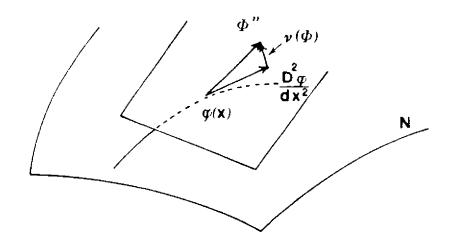
the singularities can develop, in the form of loops which *probably* pinch off to cusps.

In that theorem we need to describe the curvature (= geodesic curvature) k of a curve on N. We do so now:

2. Closed geodesics

Let W be a Euclidean space of some finite dimension; and $j : N \hookrightarrow W$ a closed submanifold. Consider a map

We let $\varphi'(x) = \frac{d\varphi(x)}{dx}$ denote the tangent vector of φ at the point x (if x is thought of as time then $\varphi'(x)$ is the velocity of φ).



Of course, we have the acceleration vector $\Phi''(x) \in W$. Define the <u>acceleration vector</u> $\frac{D^2 \varphi(x)}{dx^2} \varphi$ at x as the orthogonal projection of $\Phi''(x)$ on the tangent plane of N at $\varphi(x)$:

$$\Phi''=\frac{D^2\varphi}{dx^2}+\nu(\Phi)\;.$$

If $\varphi : S^1 \to N$ is parametrized by arc length, we say that φ is a (closed) geodesic of N iff $\Phi'' \perp N$ at every point, i.e., iff

$$rac{D^2 arphi}{dx^2} \equiv 0 \quad ext{on} \quad S^1 \; .$$

The vector $\frac{D^2 \varphi(x)}{dx^2}$ is the geodesic curvature of φ at x; and in the notation of Section 1 has the form $k(\varphi(x))\nu(x)$, with respect to the orientation of $\varphi(S^1)$.

Theorem If N is compact, then there is a unique solution to the evolution equation

$$\frac{\partial \varphi_t}{\partial t} = \frac{D^2 \varphi_t}{dx^2} \\ \varphi_t \Big|_{t=0} = \varphi .$$
(2)

That solution subconverges uniformly to a closed geodesic (possibly a point) of N. That theorem was proved by Eells–Sampson [Am. J. Math. 84 (1964)]; the curvature hypothesis in their proof is unnecessary for one-dimensional domains. See also K. Ottarsson [J. Geo. Phys. 2 (1985)].

Remark Without curvature restrictions on N I do not know whether the solution of (2) actually converges to a closed geodesic. In the theorem "subconverges" signifies that $\exists(t_j)$ such that $t_j \to \infty$ and φ_{t_j} converges uniformly.

3. Higher dimensional domains

Suppose we replace the domain S^1 by a compact Riemannian manifold M. (You can think of $M = S^1 \times S^1$ with its product metric; or $M = S^m$, the Euclidean sphere in \mathbb{R}^{m+1} .) Then associated with M is its Laplacian on functions

$$\Delta = g^{ij} \left(\frac{\partial^2}{\partial_x i \partial_z j} - \Gamma^{h}_{ij} \frac{\partial}{\partial_x k} \right) \; .$$

We use that in place of the second derivative of Sections 1 and 2.

Proceeding as in Section 2, given a map φ :



we have $\Delta \Phi : M \to W$. Define the <u>tension field</u> $\tau(\varphi)(x)$ of φ at x as the orthogonal projection of $\Delta \Phi(x)$ onto the tangent space of φ at x:

$$\Delta \Phi = \tau(\varphi) + \nu(\Phi)$$

We say that a map $\varphi: M \to N$ is harmonic iff $\Delta \Phi \perp N$ at every point. I.e., iff

$$\tau(\varphi)\equiv 0$$
 on M .

 $\tau(\varphi)$ plays the role of $\frac{D^2 \varphi}{dx^2}$ in Section 2. Once again, we can form the evolution equation for maps $\varphi: M \to N$, as initial conditions: $\partial \varphi_t$

$$\begin{cases} \frac{\partial \varphi_{t}}{\partial t} &= \tau(\varphi_{t}) \\ \varphi_{t} \Big|_{0} &= \varphi \end{cases}$$

$$(3)$$

This is a semi-linear parabolic system. (3) always has a unique smooth solution for a positive time interval $0 \le t < t_1$.

If dim M = 2 and both M and N are compact, are the solutions of (3) Basic problem defined for all $0 < t < \infty$?

In case dim $M \ge 3$, there is a wide variety of situations in which that basic problem has a negative answer (Y.M. Chen and W-Y. Ding [Inv. Math. 99 (1990)]).

By way of contrast, for all compact M, there are various geometric restrictions on N which insure that (3) does have full solutions, and which converge (or subconverge) to a harmonic map $M \to N$. For that extensive story we refer to Eells-Lemaire [Bull. London Math. Soc. 10 (1978) and 20 (1988), Sec.3].

ı ı

I

,

and the second second

٠