

REFERE

WERNATIONAL CENTRE FOR THEORETICAL PHYSICS

GEOMETRIC APPLICATIONS OF EVOLUTION

James Eells

INTERNATIONAL ATOMIC ENERGY AGENCY

UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION

1990 MiRAMARE - TRIESTE

^T r

 \sim

 Λ .

International Atomic Energy Agency

and

United Nations Educational Scientific and Cultural Organization INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

GEOMETRIC APPLICATIONS OF EVOLUTION *

James Eells International Centre for Theoretical Physics, Trieste, Italy and University of Warwick, Coventry CV4 7AL, England.

MIRAMARE - TRIESTE

December 1990

* To appear in the Proceedings of the School on Qualitative Aspects and Applications of Nonlinear Evolution Equations, 10 September-5 October 1990, IOTP, Trieste.

T r

1. Curve shortening

•#•3:

Let $\varphi : S^1 \to \mathbb{R}^2$ be a smooth embedded closed curve in the plane. For $x \in S¹$ let $\nu(\varphi(x))$ = inward unit normal vector. If φ is parametrized by arc length, then its curvature at $\varphi(x)$ is

$$
k(\varphi(x)) = |\varphi''(x)|.
$$

Consider a 1-parameter family (φ_t)_{t>0} of such embedded curves, such that

$$
\begin{aligned}\n\frac{\partial \varphi_t}{\partial t} &= k(\varphi_t) \nu(\varphi_t) \\
\varphi_t \Big|_0 &= \varphi .\n\end{aligned}
$$
\n(1)

Theorem There exists a unique solution of the evolution equation (1). As $t \rightarrow$ ∞ the curves become convex. The limit is a round point. (We leave to the reader the pleasant task of defining "round point", in this context.)

That theorem was proved by M. Grayson [I. Diff. Geo. 26 (1987)]. following earlier contributions by M. Gage and R. Hamilton [J, Diff. Geo. 23 (1986)]. who established a special case, assuming that the initial curve $\varphi(S^1)$ is itself convex.

Now let us replace the plane by a surface *N* with a Riemannian metric *h.* (We can think of N as a surface in Euclidean space \mathbb{R}^3 , with induced h – which permits us to measure angles between vectors on *N,* as well as lengths of smooth curves.)

Say that N is convex at ∞ if the convex hull of every compact subset is compact.

Grayson [Ann. Math. 129 (1989), 71-111] has generalized the preceding result as follows:

Theorem Let N be a surface which is convex at ∞ . For any smooth embed – ded curve $\varphi : S^1 \to N$ equation (1) has a unique solution for $0 \le t < t_{\infty}$. If $t_{\infty} < \infty$ then $\varphi_t(S^1)$ converges to a point. If $t_{\infty} = \infty$, then its curvature con -

verges to 0 in norm. [It could happen that $\varphi_t(S^1)$ converges to a closed geodesic as N.]

Remark If $\varphi : S^1 \to N$ is immersed; i.e., self intersections are permitted:

the singularities can develop, in the form of loops which *probably* pinch off to cusps.

In that theorem we need to describe the curvature $(=$ geodesic curvature) k of a curve on *N,* We do so now:

2. Closed geodesies

Let *W* be a Euclidean space of some finite dimension; and $j: N \hookrightarrow W$ a closed submanifold. Consider a map

> N Let $\Phi = j \cdot \varphi$ *w*

We let $\varphi'(x) = \frac{d\varphi(x)}{dx}$ denote the tangent vector of φ at the point x (if x is thought of as time then $\varphi'(x)$ is the velocity of φ).

Of course, we have the acceleration vector $\Phi''(x) \in W$. Define the acceleration vector $\frac{D}{\sqrt{2}}\frac{\phi(x)}{\phi}$ at x as the orthogonal projection of $\Phi''(x)$ on the tangent plane of N at $\frac{dx^2}{\varphi(x)}$:

$$
\Phi'' = \frac{D^2 \varphi}{dx^2} + \nu(\Phi) \ .
$$

If $\varphi : S^1 \to N$ is parametrized by arc length, we say that φ is a (closed) geo-<u>desic of</u> N iff $\Phi'' \perp N$ at every point, i.e., iff

$$
\frac{D^2 \varphi}{dx^2} \equiv 0 \quad \text{on} \quad S^1.
$$

r r

The vector $\frac{D^2 \varphi(x)}{dx^2}$ is the geodesic curvature of φ at *x*; and in the notation of Section *ax* 1 has the form $k(\varphi(x)/\nu(x))$, with respect to the orientation of $\varphi(s)$.

Theorem If N is compact, then there is a unique solution to the evolution equation

$$
\left.\frac{\partial \varphi_t}{\partial t} = \frac{D^2 \varphi_t}{dx^2}\right\}
$$
\n
$$
\left.\rho_t\right|_{t=0} = \varphi.
$$
\n(2)

That solution subconverges uniformly to a closed geodesic (possibly a point) of *N.* That theorem was proved by Eells-Sampson [Am. J. Math. 84 (1964)]; the curvature hypothesis in their proof is unnecessary for one-dimensional domains. See also K. Ottarsson [J. Geo. Phys. 2 (1985)].

Remark Without curvature restrictions on *N* I do not know whether the solution of (2) actually converges to a closed geodesic. In the theorem "subconverges" signifies that $\exists (t_j)$ such that $t_j \rightarrow \infty$ and φ_{t_j} converges uniformly.

3. Higher dimensional domains

Suppose we replace the domain S^1 by a compact Riemannian manifold M. (You can think of $M = S^1 \times S^1$ with its product metric; or $M = S^m$, the Euclidean sphere in \mathbb{R}^{m+1} .) Then associated with M is its Laplacian on functions

$$
\Delta = g^{ij} \left(\frac{\partial^2}{\partial_x^i \partial_x^j} - \Gamma_{ij}^h \frac{\partial}{\partial_x^k} \right) .
$$

We use that in place of the second derivative of Sections I and 2.

Proceeding as in Section 2, given a map φ :

-i=v-, ! Ji. . •*, • .,^.-.urf ' ri"!* . »•• .

we have $\Delta \Phi : M \to W$. Define the <u>tension field</u> $\tau(\varphi)(x)$ of φ at x as the orthogonal projection of $\Delta\Phi(x)$ onto the tangent space of φ at x:

$$
\Delta\Phi = \tau(\varphi) + \nu(\Phi).
$$

We say that a map $\varphi : M \to N$ is harmonic iff $\Delta \Phi \perp N$ at every point. I.e., iff

$$
\tau(\varphi) \equiv 0 \quad \text{on} \quad M \; .
$$

le of $\tau(\varphi)$ plays the role of $\frac{D}{\varphi}$ in Section 2.

Once again, we can form the evolution equation for maps $\varphi : M \to N$, as gain, initial conditions: $\partial \varphi_t$

$$
\begin{cases}\n\frac{\partial \varphi_t}{\partial t} = \tau(\varphi_t) \\
\varphi_t|_0 = \varphi\n\end{cases}
$$
\n(3)

This is a semi-linear parabolic system. (3) always has a unique smooth solution for a positive time interval $0 \le t \le t_1$.

Basic problem If dim $M = 2$ and both M and N are compact, are the solutions of (3) defined for all $0 < t < \infty$?

In case dim $M \geq 3$, there is a wide variety of situations in which that basic problem has a negative answer (Y.M. Chen and W-Y. Ding [Inv. Math. 99 (1990)]).

By way of contrast, for all compact *M,* there are various geometric restrictions on N which insure that (3) does have full solutions, and which converge (or subconverge) to a harmonic map $M \to N$. For that extensive story we refer to Eells-Lemaire [Bull. London Math. Soc. 10 (1978) and 20 (1988), Sec.3].

T T

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 \sim 4 $^{\circ}$

 $\label{eq:2.1} \frac{1}{2} \sum_{i=1}^n \frac{1}{2} \sum_{j=1}^n \frac{$

 $\frac{1}{4}$

 $\hat{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

 $\mathcal{A}^{\mathcal{A}}$

a sa bandar da banda
A san da bandar da b