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1. Curve shortening

Let tp : S} —• R 2 be a smooth embedded closed curve in the plane. For

x £ 5 1 let v(tp(z)) = inward unit normal vector. If tp is parametrized by arc length, then

its curvature at <p(x) is
= \<p"(x)\.

Consider a 1-parameter family (<pt)t>o of such embedded curves, such that

dt = k(<pt)v(<pt)

<pt\Q = tp •

Theorem There exists a unique solution of the evolution equation (1). As t —*

oo the curves become convex,, The limit is a round point. (We leave to the reader the
pleasant task of defining "round point", in this context.)

That theorem was proved by M. Grayson [I. Diff. Geo. 26 (1987)]. following
earlier contributions by M. Gage and R. Hamilton [J, Diff. Geo. 23 (1986)]. who estab-
lished a special case, assuming that the initial curve \p{ Sl) is itself convex.

Now let us replace the plane by a surface N with a Riemannian metric h. (We
can think of N as a surface in Euclidean space R 3 , with induced h - which permits us to
measure angles between vectors on N, as well as lengths of smooth curves.)

Say that N is convex at oo if the convex hull of even- compact subset is com-
pact.

Grayson [Ann. Math. 129 (1989), 71-111] has generalized the preceding result
as follows:

Theorem Let N be a surface which is convex at oo . For any smooth embed —
ded curve <p : S1 —> N equation (1) has a unique solution for 0 < t < tx .
If_ toe < oo then ipt(S

]) converges to a point. If t^ - co , then its curvature con -
verges to 0 in norm . [It could happen that <pt( S

]) converges to a closed geodesic as Ar.]

Remark If <p : Sl -^ N is immersed; i.e., self intersections are permitted:

POO

the singularities can develop, in the form of loops which probably pinch off to cusps.
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In that theorem we need to describe the curvature (= geodesic curvature) k of a
curve on N, We do so now:

2. Closed geodesies

Let W be a Euclidean space of some finite dimension; and ; : A'
submanifold. Consider a map

W a closed

A'' L e t <t> = j •

w

We let <p'{ x) = ^}^ denote the tangent vector of <p at the point x (if x is thought of as
time then <p'( x) is the velocity of ip).

Of course, we have the acceleration vector G>"(x) 6 W. Define the acceleration vector

—f\x • <p m. x as the orthogonal projection of O"(z) on the tangent plane of N
ax

at <p(x):

If tp : S: —> A: is parametrized by arc length, we say that <p is a (closed) geo
d e s i c ^ N iff <I> "_L Â  at every point, i.e., iff

dx2 = 0 on Sl .
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The vector —f\ is the geodesic curvature of <p at_ x; and in the notation of Section
ax

1 has the form k{ <p( x) )v{x), with respect to the orientation of <p( Sl).

Theorem If. AT is compact, then there is a unique solution to the evolution
equation

(2)

That solution subconverges uniformly to a closed geodesic (possibly a point) of N.
That theorem was proved by Eells-Sampson [Am. J. Math. 84 (1964)]; the curvature hy-
pothesis in their proof is unnecessary for one-dimensional domains. See also K. Ottarsson
[J. Geo. Phys. 2 (1985)].

Remark Without curvature restrictions on N I do not know whether the solution of

(2) actually converges to a closed geodesic. In the theorem "subconverges" signifies that
3(tj) such that t ; —> oo and <ptf converges uniformly.

3. Higher dimensional domains

Suppose we replace the domain S1 by a compact Riemannian manifold M. (You
can think of M ~ Sx x Sl with its product metric; or M = Sm, the Euclidean sphere in
R m+1.) Then associated with M is its Laplacian on functions

9 x (Ji Ox

We use that in place of the second derivative of Sections I and 2.

Proceeding as in Section 2, given a map <p:

^ -*

L e t <X> = j

we have AO : M —• W. Define the tension field r(<p)(x) of_ <p ai x as the orthogonal
projection of AO (x) onto the tangent space of <p at x:

AO = r(ip) + i/(O) .

-i=v-, ! J i . . • * , • . , ^ . - . u r f ' r i " ! * . »•• .



We say that a map ip : M —• N is harmonic iff AC>± N at every point. I.e., iff

T( ip) = 0 on M .

le of
gain,

initial conditions:

r( £>) plays the role of f in Section 2.
ox

Once again, we can form the evolution equation for maps tp : M —* N, as

(3)

This is a semi-linear parabolic system. (3) always has a unique smooth solution for a
positive time interval 0 < t < U.

Basic problem If dim M = 2 and both M and TV are compact, are the solutions of (3)

defined for all 0 < t < oo?

In case dim M > 3, there is a wide variety of situations in which that basic
problem has a negative answer (Y.M. Chen and W-Y. Ding [Inv. Math. 99 (1990)]).

By way of contrast, for all compact M, there are various geometric restrictions
on /V which insure that (3) does have full solutions, and which converge (or subconverge)
to a harmonic map M —• N. For that extensive story we refer to Eells-Lemaire [Bull.
London Math. Soc. 10 (1978) and 20 (1988), Sec.3].
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