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1. Curve shortening

Let p : S' — R? be a smooth embedded closed curve in the plane. For
z € 8 let v(p(x)) = inward unit normal vector. If p is parametrized by arc length, then
its curvature at o(x) is '

k(p(z)) = |o"(2)].

Consider a 1-parameter family (;),>0 of such embedded curves, such that

%%‘ = k() vier)

oily = ¢

(h

Theorem There exists a unique solution of the evolution equation (1). As ¢t —

oc the curves become convex, The Iimit is a round point. (We leave to the reader the

pleasant task of defining “round point”, in this context.)

That theorem was proved by M. Grayson [J. Diff. Geo. 26 (1987)]. following
earlier contributions by M. Gage and R. Hamilion [J. Diff. Geo. 23 (19&6)]. who estab-
lished a special case, assuming that the initial curve p(S') is itself convex.

Now let us replace the plane by a surface N with a Riemannian metric A. (We
can think of N as a surface in Euclidean space R *, with induced » — which permits us to
measure angles between vectors on N, as well as lengths of smooth curves.)

Say that NV is convex at oo if the convex hull of every compact subset is com-
pact.

Grayson [Ann. Math. 129 (1989), 71-111} has generalized the preceding resuit
as follows:

Theorem Let N be a surface which is convex at oo. For anv smooth embed —
ded curve ¢ : §' — N equation (1) has a unique solution for 0 <t < t.. .

If t. < oo then ,(S') converges to a point. If t. = oo, then its curvature con—
verges to 0 in norm . [It could happen that ,( S') converges to a closed geodesic as N.]

Remark Ifp: S' — N isimmersed; i.e., self intersections are permitted:

Fix)

the singularities can develop, in the form of loops which probably pinch off to cusps,
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In that theorem we need to describe the curvature (= geodesic curvature) & of a
curve on N. We do so now:

2. Closed geodesics

Let W be a Euclidean space of some finite dimension; and j : N « W a closed
submanifold. Consider a map

st 2 | Let ®=;.¢p
L
Ny

7%

We let o' (x) = i%(;_) denote the tangent vector of ¢ at the point z (if z is thought of as
time then '( 1) is the velocity of ).

Of course, we have the acceleration vector @ (x) € W. Define the acceleration vector

2
D—ng—) ¢ at 1z as the orthogonal projection of ®”(z) on the tangent plane of N
T
at (z):
D?p

d)f.' =
dz?

+p(P) .

If o : §' — N is parametrized by arc length, we say that o is a (closed) geo -

desic of N iff "1 N atevery point, ie., iff

DQ#’J — 1
dIZ = 0 on S :
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The vector D—dﬁgﬂ is the geodesic curvature of ¢ at z; and in the notation of Section
X

1 has the form k(p(x))v(x), with respect to the orientation of (S!).

Theorem If N is compact, then there is a unique solution to the evolution
equation )
a t _ D gt
'pflt=0 =P

That solution subconverges uniformly to a closed geodesic (possibly a point) of N.
That theorem was proved by Eells-Sampson [Am. J. Math. 84 (1964)]; the curvature hy-
pothesis in their proof is unnecessary for one—dimensional domains. See also K. Ottarsson
[J. Geo. Phys. 2 (1985)].

Remark Without curvature restrictions on N I do not know whether the solution of
(2) actually converges to a closed geodesic. In the theorem “subconverges” signifies that
3(t;) such that t; — oo and @, converges uniformly.

3. Higher dimensional domains

Suppose we replace the domain S! by a compact Riemannian manifold Af. (You
can think of M = ST x §! with its product metric; or M = S™, the Euclidean sphere in
R ™ 1,) Then associated with Af is its Laplacian on functions

g (8 9
A=9’<<'ax"cw‘_r"; BF) |

We use that in place of the second derivative of Sections I and 2.

Proceeding as in Section 2, given a map ¢:

s B N
\l}' Let ©=7.p
w

we have A® : M — W. Define the tension field 7(p)(z) of ¢ at r as the orthogonal
projection of A (z) onto the tangent space of ¢ at x:

AD = 7(p) + (D) |
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We say that amap p : M — N is harmonic iff Ad L N atevery point. Le., iff

) =0 on M.

2
() plays the role of 2 in Section 2.
T . .
Once again, we can form the evolution equation for maps ¢ : M — N, as
initial conditions: 3

Sotlo =@
This is a semi-linear parabolic system. (3) always has a unique smooth solution for a
positive ime interval 0 < t < t;.

T(t)
(3)

Basic probiem If dim M = 2 and both M and NV are compact, are the solutions of (3
defined forall 0 <t < o0?

In case dim M > 3, there is a wide variety of situations in which that basic
problem has a negative answer (Y.M. Chen and W=-Y. Ding [Inv. Math. 99 (1990)]).

By way of contrast, for all compact M, there are various geometric restrictions
on N which insure that (3) does have full solutions, and which converge (or subconverge)
to a harmonic map M — N. For that extensive story we refer 1o Eells-Lemaire [Bull.
London Math. Soc. 10 (1978) and 20 (1988), Sec.3].
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