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0. INTRODUCTION

Integrable lattice models have undergone a very fast and spectacular development over the

last few years. Previously known models have been generalized in several directions. In

particular, the celebrated six-vertex model and the related XXZ spin j quantum chain

have been recognized to be the first of several hierarchies, involving either higher spin

representations of SU(2) or higher rank algebras or both. This progress has been made

possible by the algebraic formulation of the Yang-Baxter integrability condition in a form

which involves a deformation of Lie groups. The concept of "quantum group" has thus

become a major theme of study.

In parallel, connections between integrable lattice models and other fields have been

discovered: conformai field theories, topological field theories and knot theory. Some of

these connections are only imperfectly understood as yet but are certainly a remarkable

contribution to the unification of concepts in two-dimensional physics.

The purpose of these lectures is to present some of these topics in a hopefully peda-

gogical way. We focus throughout on the algebraic aspects -though at an elementary level-

and do not discuss the relevance of these lattice models in statistical mechanics. Moreover

as we are interested in making contact with conformai theories, we concentrate on the

so-called trigonometric solutions of the Yang-Baxter (YB) equation. We first present the

various forms of this equation on the R and R matrices and illustrate them on the six-vertex

model (Lecture 1). The concept of quantum group, or more correctly, of quantum algebra

Uqsl("2), is then introduced in Lecture 2 following the method of Sklyanin, and shown to

lead to new solutions of the YB equation. In Lecture 3, we develop a different standpoint

in which the quantum algebra appears as a symmetry of the model; the properties of the

representations of Uq sl(2) are sketched. In Lecture 4, we show how vertex models may

be reinterpreted as face models. For q a root of unity, this allows a restriction of the face

model as discussed in Lecture 5. Contact with conformai field theory is shortly made at

this point. The last lecture is a brief introduction to yet another topic: knot theory. It is

shown how solutions to the Yang-Baxter equation of the type discussed previously enable

one to construct polynomials that yield a topologically invariant description of knots.

This is by no means an exhaustive overview of the subject. Topological field theory

and several aspects of the connections with conformai field theories are not touched upon.

Likewise the references we give have no pretense to completeness. Among the many ex-

cellent review articles on the subject, we have deliberately selected a few references [l]-[5]

that we found useful and to which we borrowed in the preparation of these notes.
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1. VERTEX MODELS.

1.1. The ft matrix.

The first class of integrable models that we are going to consider are "vertex models".

Degrees of freedom are attached to links of a square lattice, and interact at the vertices of

the lattice. Each configuration of four links incident on a vertex is assigned a Boltzmann
• I0"'weight w(a',a; a', a) = x — — « and the Boltzmann weight of the whole configuration on

I o.

the lattice is the product of these individual contributions.

The degrees of freedom denoted by a and a may be of a rather general nature and take

their values in a discrete set. As the notation a', a, a', a suggests, one may even suppose

that degrees of freedom on horizontal (a', a) and vertical (a', a) links are of a different

nature. For the time being, we do not specify what the horizontal variables are, and take

the generic case where the vertical ones may take N independent values.

It is convenient to use a Hamiltonian picture, in which "time" flows upward on the

lattice, and the various configurations of vertical links are considered as the independent

possible states of the system at a given time. For a lattice of horizontal width L (with, say,

periodic b.c.), the space spanned by these states is V®L, where V is the one-body vector

space: V — CN for the TV— state model just mentionned. Time evolution is carried out

by the row-to-row transfer matrix T^. The latter is the trace of the monodromy matrix

(1.1)

«3,-"CHI,

In a more compact notation:

>= 1
:, «,

--ai,

where we have defined the n2 n X n matrices ta>a by:

('a'a)a'o = t»(a'o;a'a) =

2

(1.2)

•(X (1.4)



sIn terms of T^L\ the partition function on a L x T doubly periodic lattice

(1.5)

To ensure the complete integrability of the model, we actually seek a one-parameter

family of Boltzmann weights w(a'a-a'a\u), hence of monodromy and transfer matrices

*c,'a("), r(u) and T^(u), such that

lT< L >(t t ) ,T^(") ]=0 (1-6)

The interpretation of the additional "spectral parameter" u is not quite evident at this

stage. In actual models, like the 6-vertex model (see below), it introduces an anisotropy

in the weights, but does not affect the critical universal properties (in a certain range). In

fact, its major role is to make T^(u) a generating function of conserved quantities (see

subsec 1.5).

Commutativity of the transfer matrices follows from the assumed existence of a non-

singular n2 X n2 matrix A(u,v) — (ffa/}t^s(u,v)) that satisfies

® ï (w)) - ( t ( v ) ® t (u ) )A(u ,u ) (1.7)

Here (in contrast with (1.3)), the tensor product of t(u) and t(v) refers to "horizontal

variables" a', a. Each ta>a(u) is still a matrix acting on the vertical variables a', a and

the notation t(u) ® t(v) implies a matrix multiplication w.r.t. these variables, whereas the

R ..... are c-nurnbers. In components this reads

(1.8)

Eq. (1.7) implies a similar relation for T^

v) (1.9)

hence

w) (1.10)

and upon taking the trace, eq. (1.6) follows.
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1.2. Yang-Baxter equation

We note that in eq. (1.7), the matrix È interchanges the two operators t(u) and t(v) and

their action on the two copies of the horizontal vector space. This suggests to introduce

the permutation operator P

and the braiding matrix

R = PR i.e. Ra'p',a0 = Rp'a',ap-

Eq. (1.7) is rephrased as

which allows a graphical representation

(1.12)

(1.13)

ft -^ s

See fig. 1. Notice that each thread (a'a or fi'/3) pertains to a definite copy of the horizontal

space and that it carries its own spectral parameter.

Fig. 1.
a

The matrix R satisfying (1.13) is subject to a consistency condition, which originates

in the two inequivalent ways to braid three threads 123 into 321. Take three copies of the

horizontal space H I , HI and #3, attach spectral parameters ui, u2 and u3 to them, and

append a pair of indices to R to indicate on which pair of these three spaces it acts non

trivially. Thus, one considers .Rij, ^23 an<i -^13» an<^ f°r example

(£23)0; ct^.

Finally, by abuse of notation, denote

(U2,

= t(tti)®l®l, etc...
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Then from (1.13) (see the graphical representation in fig. 2)

Fig. 2.

*i*2*3 = flfa'

~

= 72

but also

,2

* 1*3*2

(1.156)

Comparing (1.15a) and (1.156) one sees that R23R13R12R23 R13R^ commutes with

*3*2*1-

31

The simplest possibility is

(1-16)



which is the Yang-Baxter equation.

R23 R13 R12 R12 R13 R23

It may of course be made more explicit (and cumbersome) in terms of the components

of R:

(1.17)

These relations may also be rewritten in terms of R. Define RI(U,V) =

jft2(u,v) = 1®PR23(u,v) acting on Hi®H? ® H3. (More generally on //®T, _&,-(u,t;) =

l®---®PRa+i(u,v)® ...®1.) Then (1.17) reads

(see fig. 3). Of course this alternative expression carries the same nformation as (1.16),

it is, however, particularly suited for the connection with the braid group (see below).

a a

l.S. Remarks

i) Eq. (1.17) constitutes a vastly overdetermined system with n.6 equations for 3n4

unknowns. There are however several classes of solutions, in which symmetries reduce this

overdeterminacy.

ii) In most cases known until recently, the dependence on the spectral parameters

of R(u, v) was only through the difference u - v and was either rational, or trigonomet-

ric (or hyperbolic), or elliptic. Recently new classes of solutions involving higher genus



parametrizations have been discovered J6). In the following, we shall only consider solutions

for R that are trigonometric functions of u - v.

in) If we choose it = v in eq. (1-7), a simple solution is provided by

hence

fl(u.u) = R(0) = P

(1.19)

(1.20)

All the solutions of Y.B. that we are going to consider satisfy (1.19)-(1.20) ("regular"

solutions). Incidentally, we note that the permutation operator P satisfies both (1-16) and

(1.18).

p p D D D P f 1 *? 1 /? ̂r i o / i *» / o *i — / * ) *\ r \ *\ t \*) i j . A A i* i' I j t ' l o ' ^ O • f j t o / l o ' l j î \ /

P P P = P P P (l 216)

Moreover, multiplying (1.7) by .6(v — u), we find

E(v - u}E(u - v ) ( t ( u ) ® t ( v ) } = (t(u) ® t (w))A(w - u)£(u - w) (1.22)

and it is again natural to impose as a constraint that

R(v - u)£(u - v) = p(u - v) 1 (1.23)

iv) Any solution of the YB equation yields a solution of the Rtt = ttR equation in

which one chooses

a

Eq. (1.17) may indeed be rewritten as:

a (1.24)

Pi ,P* t A

equivalent to (1.7). In this solution, the vertical and horizontal spaces are identical. If R

is regular (1.19), then ta< a ( f y ) p ' p — $a'p6ap> which may be represented as a/ — Z\ - a-

IP



1-4- The six-vertex model

The six-vertex model of Lieb is a 2-state model in which the degrees of freedom are rep-

resented by arrows on the links of the lattice. The possible configurations are restricted

by demanding that at each vertex the number of incoming arrows equals the number of

outgoing ones:

The R-matrix is a 22 x 22 matrix and reads

R =

where <?', t = 1,2, 3 are the Pauli matrices, a° — 1 and W j = iy2. This matrix satisfies the

YB equation if it has the following dependence in the spectral parameter u.

a =

o =

+ uj

= p sin u (1.27)

c = — - psm-y.

There p is an overall irrelevant factor and -7 is a coupling constant. By letting f = IT — A,

one finds another common parametrization o = psin(A - u), 6 = psinu and c = psin A, on

which the interpretation of u as an anisotropy of the model (between weights a and 6) is

manifest. (The parameter 7 is also sometimes referred to as anisotropy because of such an

interpretation in the quantum spin chain, see below subsect. 1.5.) Both u and f may be

real or complex and it is suitable to discuss the phase structure of the model in terms of

62 - c2

= cos 7 (1.28)



Then one may show that for |A| < 1 the model is in a critical massless phase.

(
1 0 0 0\

= ps\n~iP and that for u and 7

0 0 0 I J
small, R « ul + -~\P.

For periodic boundary conditions in the horizontal direction, there must exist an equal

number of each type of c-vertex along each row. This suggests that one might modify the

-Ri22i and ^2112 entries of the matrix, keeping their product fixed while preserving the

YB equation. This is indeed the case, and
'a

ce
b cex<

b
(1.29)

^(-too) <?-' o
-<T2 c-1

also satisfies (1.16). The merit of this form is that it leads a non trivial limit as u —> ±100,

when x = —i:

I' 1 > Ï
; «(»•«>) ~ I n V I U-30)

1

where

ç = <:•••' (1-31)

There are other more general types of such "gauge transformations" of the jR-matrix.

In the latter form (1.29), the six-vertex model generalizes nicely to an TV—state model

[7]. With a, P being ZN variables, (a ^ /?), the Boltzmann weights read

a = sin(u + (l.32a)

a a — smu (1.326)

a

a

(l.32c)



1.5. Conserved quantities

The spectral parameter dependent transfer matrix T^'(u) may be regarded as the gener-

ating function of conserved quantities. The space V®L in which T ' L ^ ( U ) acts is viewed as

the Hilbert space of a quantum one-dimensional system. If one introduces the operators

lu=o (1.33)

the commutation of T^^(u) and T^'(w) implies the commutation of the infinite set of

)/„:

|Hn,*ml = 0. (1-34)

In particular, if MI is regarded as the Hamiltonian of the quantum system, there is an

infinite number of conserved quantities, commuting with MI .

It is instructive to compute MI for the 6-vertex model

d L

_T^>(u = 0) = £ taia,W ® • • • ® t«fc« t + , (0) ® ' ' ' ® «a ta, - (1-35)

Jt=l
Thus

L

® - - . ® f c f c f c + , ® - - - l (I-36)

where / i fcJ t+i acts on the k and k + 1-th vertical variables, i.e. in V^

' cos 7

(1.37)

Thus, up to an irrelevant constant:

This is the Hamiltonian of a (periodic) chain of |-spins: S^ = \o^ interacting with an

anisotropic aXXZ"-interaction.

Thus one sees that T^(u), the transfer matrix of the 6-vertex model, commutes

with the XXZ spin | hamiltonian. Alternatively, one may say that the latter is generated

from the former in a "very anisotropic (continuum) limit" where the lattice spacing in the

vertical direction is let to zero as well as the spectral parameter:

V ( t )(u)«l+tt) / i . (1.39)

One may study in a similar way the other conserved quantities and prove a locality prop-

erty: #n couples at most n + l spins in the chain.
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2. QUANTUM s/(2) AND THE YANG-BAXTER EQUATION.

The relations between the Yang-Baxter (YB) equation and "quantum groups" appear in

several related forms in the literature [8]-[lO]. We present here some of the simplest features

and refer to the references for a more thorough mathematical discussion.

2.1. Classical limit of YB.

We have seen before that the R matrix of the 6-vertex model satisfies R(u.,l = 0) = 1 (for

psinu = 1). Whenever we have an #(u,-y) matrix depending on a parameter -7 with this

property, we may expand

fl(u, 7) = 1 + 7r(u) + Otf) (2.1)

The matrix r(u) is called the classical limit of R(u,^} (7 is regarded as the h parameter

of quantum mechanics). In the 6-vertex model, (see (1-27) for p = 1/sinu), this is simply:

(2.2)
smu i j. u I

\ cos u /

which for u small, reduces to

I } ~ — f il 4- 9 *\ (23^

where a = |CT is the spin | operator. In general, this matrix r(u) satisfies a limiting form

of the YB equation called the classical Yang-Baxter equation:

[r1 2(u),ri3(u + v)} + [ri2(u),r23(t/)] + [ri3(u + v) , r 2 3( t>)) — 0 (2.4)

which has its own significance in the context of classical integrable models. The remarkable

property of (2.4) is that it only involves commutation relations. If g denotes a Lie algebra

and Xp a basis of generators, and if we have found a solution of (2.4) in g ® g,

then any representation of the X^ in a space H gives a solution of (2.5) in H ® H. For

example, any spin representation 8 in (2.3) gives a solution. In that sense the forms

(2.3),(2.5) are universal solutions of the classical Yang-Baxter equation.

It seems legitimate to ask if something similar can be done with the R(u, 7) matrix.
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2.2. Looking for other solutions of YB.

Writing R(u) — $3t-_0 w;(u)3l®.s' we can wonder to which extent the YB equation satisfied
by R and the s/(2) algebra

(.+ «-] - 2s*[3 ,3 ] — ZS

[aI,3±] = ±s± (2.6)

satisfied by a = |er are related. For instance a (too) naïve question is what happens if

instead of sl(2) generators acting on V = H = C2 = PL, we take V = py, H = py where

Pj is a sl(2) spin j representation? The answer is that YB is no longer satisfied in general.

To proceed we consider the case where the horizontal degrees of freedom are still in the

pi representation with the operator 8 = ^CT and s° = ^1 but vertical degrees of freedom

may take values in some other space p onto which some operators S* act. Under which

conditions on these 5 is the relation (1-13) satisfied

R(u - u')(i(u)®l)(l®i(u')) = (l®i(u'))(t(u)®l)rt(u - u') (2.7)

where

3

t(u) = £ «;V ® 5*
{=0

3

f(u') = J^ty'-s'® 5' (2.8)
i=0

3

i=0

For the sake of brievity, we denote w — «/(u), w' = «'(w') an^ w" — w(u ~ u')- Both

sides of (2.7) are products of 4 X 4 matrices acting in H®* = p®2. The matrix elements of

(t(u)®l) and (l®£(u')) are operators in V which are linear combinations of S's. Explicitly

fw0S°+w3S
3 0 w^S' 0

0 w0S° + w3S
3 0 tuiS~

*(«)®1 = è .... c+ o

0

w(S~ 0 0
„./ CO „.! cZ n (\
WQIJ — W^O U U

0 w'0S° + w'3S
3 w\S~

0 w(S- w'0S° - w'3S
3.
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In the products, Sl must be treated as operators which do not a priori commute. A

straightforward calculation gives then the set of relations that the S* must satisfy for (2.7)

to hold. Let us look more closely at say the first line of the matrices obtained on the two
sides of (2.7). Equality implies then

and

a"(w0S° + wsS^vuS- =b"w\S- (w0S° + w3S
3) + c"(w'QS° + w'3S

3)wiS~

a"tu,S-KS° + «4S3) --=c'XS-(u»oS° + w3S
3) + b"(w'0S° + v,'3S

3)wiS- (2.10)

.e.

( / / / It t \ r»0 r» — L" /a tyjWo — c WQ-WIJO o — v tUj

— r»3 i / " ' I t tS + (c w^3 -a w3

(2.116)

Using eq. (1.26), (2.lia) gives, for u ^ u' and 7 ^ 0

cos — / sin(u + 7) cos —[5°, S~] + cos(ti + 7) sin —[5 , 5" J+ )
2 \ 2 2 /

= sin-( cos(u + 7)cos-[53,5~] - sin(u + 7) sin ̂ [53,5"j+) (2.12)
2 \ 2 2 /

while (2.116) gives just the same with u replaced by u'. For (2.7) to hold for all u, we thus

need

2
f C"3 0 — 1 I oO c« —1 To 17M(o , o I = —[o , D ].f (&.LAO)

A similar calculation of other matrix elements provides the additional relations

(2.13c)

(2.13d)

-,£"-] =2[S°,S3J+ (2.13e)

[S°,S3]=0 (
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and (2.7) holds if and only if (2.13a — /) are satisfied. The algebra generated by the S'

contains two central elements

= (S0)2 + (S1)2 + (S2)2 + (S3)2 - —L-=- (2.14a)z

(2.146)

The subtractive contribution to G is introduced for later convenience. Since D is central

and [5°,53] = 0, we introduce S1 such that

s* • a-s
m

S° = q. . q ..

where

q = e'\ (2-16)

There is no loss of generality in (2.15) since by an appropriate rescaling S —* S/vZ> which

preserves (2.13), we can always set D — i-1.

2.3. The. Uq sl(2) algebra

With the parametrization (2.15), relations (2.13) are equivalent to

^,25* _ — 2S

q-q~l

(2.17)

Notice that (2.17) is satisfied by spin j generators, which is expected since the particular

choice 5* = \a* in (2.8) satisfies YB. Also (2.17) reproduces the sl(2) relations (2.6) in

the limit q — » 1 i.e. -y — » 0. Hence in this limit (2.7) holds for 5' a sl(2) generator in an

arbitrary spin representation. The most convenient framework to deal with (2.17) is to

consider the associative algebra (with unit) generated by S^,S* satisfying (2.17): this is

a deformation of the universal enveloping algebra of sl(2) denoted Uqsl(2).

For q not a root of unity (hence in particular in the non critical case |A| > 1), finite

dimensional irreducible representations of Uq sl(2) are in one-to-one correspondence with

14



those of s/(2). They are labelled by an integer or half-integer j and denoted pj in what

follows. The representation pj has a basis jjm > that satisfies

S±\jm > =

S*\jm > = m\jm > (2.18)

In (2.18) we have introduced the ç-analogue symbol

such that (z), -> x as q -> 1. Matrix elements of S* in (2.18) look like those in s/(2)

with numbers replaced by their c-analogues. In particular S+\jj >= S~\j — j >= 0. The

spectrum of Sz is — j, —j + 1, • • • ,j — 1, j. The representation pj has dimension 2j + 1. It

is useful to also introduce the "g-dimension" defined by

dy = tr,,g2S' = (2y+l) , (2.20)

In p j t the Casimir operator (2.14a)

C=S-5+ + (5-+^-(^ (2-21)

is scalar and takes the value

c/ = (y +!);-(#• (2-22>
The norm of the states \jm > is defined by < yyjj'y >= 1 and by (5'±)' = 5T.

If we substitute in (2.8) the operators 5' of (2.18) acting in p}- we obtain an integrable

vertex model with horizontal degrees of freedom in pi and vertical ones in pj. Rather than

considering this very anisotropic situation, we shall pursue the study of Uq sl(2) which leads

to more interesting results.

An important property of Uqsl(2) is that a tensor product can be defined. This is

not obvious since the commutation relations are non linear in the generators. One checks

that A : Uq -* Uq ® Uq

s' (2.23)

15



is an algebra homomorphism. Uqsl(2) equipped with the "coproduct" A and some other

operations is a Hopf algebra J10]. It is of course not commutative but also non cocommu-

tative, i.e. the two components of liq ® Uq are treated in an asymmetric way by A. Only

in the q — * 1 limit does Uq become cocommutative.

Using A the composition of representations can be denned. One has

Pjl®Pn = ®jpj (2-24)

with the usual rule that J runs from |j'i — jî| to j\ + 72 and that 2J — 2j\ + 2jj mod 2.

The c-dimensions being characters factorize accordingly

Clebsch-Gordan coefficients can also be denned as in the sl(2) case

>= (2.26)

For J = | the generators of i/,3/(2) coincide with their q = 1 limit, i.e. the s = ^

matrices. Hence, in pf we have
i

(2.27)

and a straightforward calculation gives

po : |00 >=

In computing the norm of |jm >, q is treated as a fixed variable and is not conjugated.

Projections on PQ and p\ are

(2-29«)

Pi=l-P 0 =
(2)

(2.296)
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2. 4- The universal K. matrix

Since the commutation relations (2.17) are left invariant in q -» q~l , another coproduct is

A

9-s '®5± + S±®g s". (2.30)

Remarkably there is an operator acting in (M?sf(2))®2 that intertwines A and A

£A = A£. (2.31)

It reads explicitly,

£ = ,2(S-«5-> £ (1 - r2)n
g^=ilq-n(5-«l-l»5-)(s-)n 3 (5 + )- (2.32)

n>0 W»!

where («),! = (l)<j(2), • • - (n)q. The existence and form of K. are most easily understood in

the framework of Hopf algebras, which is beyond the scope of these lectures. It is, however,

a rather easy exercise to check (2.31) "by hand". A useful formula for this purpose is

(2-33)

Besides (2.32) one can choose as well

® (S~)n (2.34)

Notice that (K.(q)) = K.(q~1). K. satisfies many nice properties among which we quote

(2.35a)

(1® A)je = Jei3^12 (2.356)

(2.35c)

In (2.35a), for instance, (A ® l)£ denotes the operator in Uq 5/(2)®3 obtained from (2.32)

by replacing each generator that acts on the left part of Uq s/(2)®2 by its coproduct. Eq.
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(2.35c) is the Yang-Baxter equation but without spectral parameter. If we specialize R to

act in p®2 we get

(
1 0 0 0\

o ,!",'-. ,-• S <"6>
0 0 0 iJ

On the other hand we have seen that the &-vertex R matrix (1-29), for x = -»' and

p = 2i<7~*e~ tu, has a limit as u —» —too

lim .R(u) = R^. (2.37)
u—» — too

Hence the universal R. matrix in p f 2 is the u —* -ioo limit of the 6-vertex R matrix

introduced in lecture 1.

Also in p i ® pj

or

° ® 5° + 2(q - l)a3 ® 53 + (q - q'1)*' ® S+ (2.39)

Hence JZ ?J is the u — > —too limit of

R = 2(a + 6)s°®5° + 2(a - 6)s3®53 + cel'u5-®5+ + cc~ius+®S- (2.40)

for /? = 2iq~*e~lu. Eq. (2.40) is just the operator ( introduced in (2.8) after the gauge

transformation.

Thus (2.32) provides the limit of the various sl(2) solutions of YB we already met. It

contains of course much more since R. in p/,®p/a gives a matrix solution ftjl3* to (2.35) for

any ji, j2- The inverse problem — sometimes called baxterization — of finding a spectral

parameter dependent family of R matrices of which K.}1}3 is the limit is difficult. We shall

discuss it only for j\ = 32 = j.
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2.5. Heckc and Tcmperley-Licb algebras.

One has

A = PÙ.P (2.41)

and thus, by (2.31), the operator

£ = PR (2.42)

commutes with the generators of the quantum group

(£,U,sl(2)]=0. (2-43)

In p®2, %.?? decomposes onto P0 and Pt

tf^q-^qPi-q-tPo). (2-44)

In the following, we use the notation

S = 9W* (2-45)

It satisfies

( < 7 - < 7 K < 7 + < r l ) = 0 (2-46)

due to (2.44). When working in pf L we denote gt = 1® • • • «giff® • • • ®1 where g acts in the

t'-th and the (i + l)-th components of the tensor product, and we find the set of relations

g* = l+(q-q-l)g (2.47a)

9i9i±\9i = 9i±\9i9i±i (2.476)

[ff.-,ffyl = 0 for | i - y | > 2 (2.47c)

which define the Hecke algebra. Eq. (2.47a) holds because g expands on two projectors.

A similar relation would be encountered in Uqsl(N) as well. Here since we deal with s/(2)

it can be shown that the additional relation

1 - q~l(ffi + ffidbi) + q~2(9i9i±i + 9i±i9i) - q~39i3i±i3i - O (2.48)

also holds. This relation which is stronger than (2.476) expresses the vanishing of the

(c-analogue of the) Young antisymmetrizer of order 3 acting on Uq sl(2) representations

[11]. Sometimes it is more convenient to deal with the algebra of P0 projectors, or

e = (q + q-l)P0 (2.49)
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for which one finds

e2 = (q + q ~ l ) e (2.50a)

c,-c.-±ic, = e, (2.506)

[e,-,ey] = 0 for |i - j| > 2 (2.50c)

Equations (2.50) define the Temperley-Lieb algebra. From (2.50) it is easy to check that

X(n) — sin^ + u)l — sinu e. (2-51)

satisfies the spectral parameter dependent YB equation

Explicitly X reads

^sin(if + u) 0
.iu „:„ .. r\ I

(2.53)

0 0
0 sir»7e'u sinu 0
0 sinu sin^e""'" 0

V 0 0 0 sin(-y + u)

in agreement with (1-29) for x = — t .

3. Uqsl(2) AS A SYMMETRY OF LATTICE MODELS.

We have so far considered Uq sl(2) in connection with the YB equation, which is the

"historical" point of view. It is also interesting to think of Uq sl(2] as a symmetry of

lattice models.

S.I. Diagonal geometry. Commutation with Uq s l ( 2 ) .

We consider again the 6-vertex model but with a transfer matrix propagating in the diag-

onal direction. We restrict ourselves to free boundary conditions

time

or

(depending on the parity of L). The diagonal-to-diagonal transfer matrix T acts on
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M = p*f . With the gauge transformed weights

a = sin(-y + u) 6 — s i n u ci = sin'ye'" c2 = sin")fe~ i u (3.1)

it reads

B(L/2)
T ( t )(u) = JJ ( s in (n r+u) l - a inue 2 . -_ i ) fl (s inf-y + u)l - sinuea ,-) (3-2)

1=1 1=1

The T^L'(u) do not form a family of commuting transfer matrices. On the other hand,

since the Temperley-Lieb algebra generates the commutant of Uq sl(2) acting in )/ = p, ,

one has

[T^)(u),l/,S/(2)] = 0 (3.3)

The action of ltqsl(2) is obtained by iterated applications of the coproduct formula

i=O

* , Sf = q'i®--.®q'i-i®3?®q— '*•»<& •••®q~''L (3.4)
t'=i

and (3.3) follows simply from the fact that e = (2)gPo is a projector.

Hence the vertex model has a (rather hidden) Uqsi(2) symmetry besides the obvious

C/(l) symmetry due to spin conservation. It is important to notice that (3.3) would not

hold for the standard weights (1.27). The effect of the gauge transformation can be put in

boundary terms only, but these are crucial as far as symmetries and critical properties are

concerned. The gauge transformation plays here the role of a charge at infinity in CFT.

This is most clearly seen in the very anisotropic limit where

ei. (3.5)
sin 7

One has

H« - î"1)^' - sUi)} (3-6)
hence

-
'

(3.7)
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which differs from the standard XXZ hamiltonian (1.38) by the imaginary (for |Aj < l)

boundary term.

Operators Sf in (3.4) differ from sf by strings on the left and right which make them

non local in )/. Hence for instance,

.+ S/ = g±2S/S,+ for t" > (resp. <) j. (3.8)

This may remind the reader of the Jordan-Wigner transformation used to solve the Ising

model. The latter is related to Uqal(2) for q = :, (which turns (3.8) into an anticommuta-

tion rule).

S.2. The generic case.

For q not a root of unity (12], the space )/ decomposes as

X = ® i WJ®PJ (3.9)

where wy is a multiplicity space of dimension

L (3.10)

Let us consider the spectrum of T^: eigenvectors of T^ fall in representations PJ of

Uq sl(2), and we denote their eigenvalues by AJa), a = 1, • • • , T(-L}. The Uq sl(2] symmetry

manifest itself through the appearance of degeneracies of these eigenvalues of order 2j + 1.

Since T^' is equivalent to T^ after spin relabelling, eigenvalues are real or complex

conjugate by pairs. It is appropriate to introduce at this stage the "Bratteli diagram" of

fig. 4. At level I the diagram displays the representations pj that appear in the decom-

position of p® and the embedding of level / into level / + 1 under the tensor product by

The diagram is usually drawn in a descending way, which unfortunately does not agree

with the conventions adopted in these lectures. We note that Fy can be interpreted as
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the number of (descending) paths of L steps going from 0 to j on the Bratteli diagram.

Fig. 4.

3.3. The case of q a root of unity.

The case where g is a root of unity is more involved [13]-[15]. We introduce in the following

the (smallest) integer n such that

qn=±l. (3.11)

A first specific property is that (S^) is nilpotent

" = 0. (3.12)

It is easy to check using (2.17) that (S*)" commutes with (S*) and qs'. To check that

it actually vanishes is slightly more difficult. We note that since (s ) = 0, (S ) , for

instance, is a sum of monomials

7e « f c - (3.13)

The set t 't,- • • , tfc appears in fc! different ways in the expansion. The different monomials

must then be reordered, giving through (3.8) a phase factor l.(l + <?2)(l + <?2 + 94) • - • ( ! +

+ g2(fc-1)). Hence for » i < i'2 < . . . < ffcq1 -\

E ^ Dt.' \^ D / ' \ " ' " ̂  I> f ' \ Q \ "^ I Q
* ^ M j * \ * 3 j * I'fc /

permutations P

Eq. (3.12) is thus a consequence of (n), = 0 when (3.11) holds. On (3.14), we also see that

the ratio (S±)n/(n)q\ could be defined by analytic continuation in q. From (3.12) there is

no higher weight representation of spin larger than (n — l)/2 [14].

Another consequence of (3.11) is that Casimir values enjoy periodicity under an "affine

Weyl group" due to their trigonometric dependence on j

. -c /for J' = Jy — O,-« S -, .,; ; lo r j ' = -j-l

mod n
mod n

(3.15)

23



For later use let us note the transformation rules of <j-dimensions

(3.16)v '—à j for j' = —j - 1 mod n

From (3.15), representations py, py. with different Casimir values for generic q may get

"mixed" for q satisfying (3.11) since the Casimir values become identical.

We thus expect the representation theory for q a root of unity (^ ±1) to be different

from the generic or q = ±1 cases. To illustrate the general features we now discuss the

simple example of H — p®3. For q generic X splits as pt © pi. ® pi., which it is convenient

to draw as

V

W
n

i t i i
1 1

where arrows represent the action of S1^. In particular, let v = |j^ >= ( I j ^ >) -

Suppose now q3 = ±1. Then according to (3.15)

C,=C,_. (3.17)

Consider now w ~ S~v which is clearly non vanishing. We have

Cw = S~S+w + Ciw (3.18)
T

and also, since C commutes with S~

Cw^Ciw. (3.19)
2

Comparison of (3.17)-(3.19) implies

= 0. (3.20)

If 5+«; were not zero it would be proportional to u which is not annihilated by S~. Hence

we conclude

S+w = 0. (3.21)
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(Although (3.21) is more easily checked using [5+,S ] = 2(Sx)q it is instructive to expose

its relation with (3.15).) w is actually a "zero norm state". This is established by

< w\w > = < S~v\S~v > = < v\S+S~v > — < v\S+w >- 0

or by direct calculation

and

<u; | u ,>= l + <72 + <T2 = (3), = 0 (3.23)

Moreover due to (3.12) (S~)3v = 0. Hence we must erase two arrows from the above

picture when looking at the "p^ like" set of states. Notice that || - \ >®3 can still be

obtained from |^| >.®3 using the analytic continuation in q of (•5"")3/(3)q! since

(5-)3 |i |>®3=(3),!|i-I>®3 (3.24)

Now consider the weight space V ^ with Sz — i. In that space it is easily checked that

Ker5+ has still dimension 2. This for q generic would have been used to build the two

highest weights of the two p i . Here because we already have w in KerS+, any basis of V *

must contain a state which is not in Ker5+, hence has an image by S+ proportional to u.

Reasoning similarly for V~? gives finally the diagram

I t

Thus >/ splits into two kinds of representations. The "big one" is not irreducible but

indecomposable (i.e. not fully reducible) and contains null states. We denote it (p* ,pi)

and call it "of type I". The "small one" is still like in the generic case, denoted pi and

called of type II.
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The mixing of pi and pi has important consequences for the spectrum of T^. For

q generic we expect T^ to have three distinct eigenvalues A a , A i and A', , whereas two

of them must merge when q3 = ±1, leading to new coincidences in a numerical study. A

very schematic plot of the eigenvalues against (complex!) q looks as follows:

—q
q = eIItr/3

Hence Uq sl(2) symmetry is responsible of a multiplet structure in the generic q case

and of a "supermultiplet" for q a root of unity.

S-4- More on q a root of unity.

The above example is typical of the general case. W splits into type I and type II repre-

sentations. Those of type II are still like generic q ones, with spins 0 < j < ^j—- Those

of type I are either non irreducible and indecomposable and made of mixtures (py, py)

(with j' ~ —j — 1 modn, \j' — j'j < n] or irreducible and like /?„-! . In any case they are

characterized by a zero g-dimension.

One can show that the number of type II representations of spin j is given by

(3.25)

with fy ' given in (3.10). fly ' is also the number of descending paths of L steps going

from 0 to j on a truncated Bratteli diagram where all spins larger than (n — l)/2 are
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deleted. For q3 = ±1 for instance, one has

and if L = 3 we recover that a single type II representation of spin i appears in the M

decomposition.

As will be clear later, it is quite interesting to "truncate" W and keep only eigenstates

of T* ' that belong to type II representations. This is accomplished by inserting c25 in

the trace since

i

= £ tr(q25'r^r) (3-26)
type II

The pattern of representations of type II is very reminiscent of the one of represen-

tations of the SU(2} Kac-Moody algebra. We recall [16] that at level k - n - 2, the

only unitary representations that may occur in the latter are characterized by a spin j

that satisfies 0 < j < (n — 2)/2. This parallel between representations of SU(2)k and of

Uq sl(2), for q = expt'vr/fc + 2, is actually a deep and not yet fully elucidated phenomenon.

It extends to the truncated tensor product or fusion of representations [17] and also to

higher rank algebras [18].

4. FACE MODELS.

4-1. Generalities.

We now introduce another family of integrable models. The degrees of freedom are attached

to the sites of the lattice and interact through "interactions-round-a-face" (IRF) around

each plaquette. The Boltzmann weights are thus of the form

"(ai,a2,a3,a4)=-;Q;; (4.1)
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In the simplest model that we shall first consider, the a's are integers (on a finite or infinite

range) that may be regarded as describing the height of a discrete fluctuating surface, and

heights at neighbouring sites must differ by ±1. Later, we shall generalize this to a more

abstract situation where the a's belong to general discrete set, and are subject to some

constraint. Accordingly, these models are called "height models", or SOS (solid-on-solid) ,

or IRF (or face) models.

All the considerations of the first lecture may be repeated for these models. One seeks

a one-parameter family of commuting row-to-row transfer matrices, and this may be found

if the Boltzmann weights satisfy the YB equation

j'a,-; b"a'.\v)w(atai+1; a'!+lb"\u

which may be represented diagrammattcally as in fig. 5.

(4.2)

v > a - , = a.Fig. 5.

One also introduces the face transfer matrix acting on configurations attached to

diagonals (see fig. 6):

(4.3)

(4.4)

a'0a\ • • • a'L\Xi(u}\a0 • • • O.L >= JJ 6a^a'. iu(a,-_,ai; a i+ia(|u

and eq. (4.2) amounts to

which is formally the same as (1.18).

Fig. 6.

4.S. Vertex-IRF connection.

The simplest IRF model in which heights take arbitrary integer values represents a dual

28



picture of the 6-vertex model as described in the previous lectures l. Instead of describing

the arrows (up or down, right or left, i.e. ±1) as we go from point to point on the lattice,

we suppose we start from j = 0 at the boundary leftmost site, focus on the representation

j that is reached at each point, and attach to it the height A — 2/+1 2. This is particularly

clear on the Bratteli diagram: configurations of heights along a diagonal from AQ — 1 to

XL are in one-to-one correspondence with the paths on the Bratteli diagram running from

the origin to spin JL = \(Aj, — 1) at level L. •' •

This connection actually extends to a construction of the representation of the TL

algebra for the IRF model. We recall that the TL generator e = (q + q~l)Po is given by

eq. (2.21)

(
0 \ . n,

'",' " K<3 <">-l q «\/a
oJ

in the basis |Ia > ®||/J >, (a,j9) = (5, 5), (5,-5), (-5, 5), (-5,-j)- If one assigns the

height A,-_i = 2ji-i + 1 to the first site of

fX3i-'\4
then the operator to consider is

|y.--i^i-i >< ji- i

Now the construction for the IRF model amounts to a change of basis, i.e. to a computation

of (q-analogues of) Clesch-Gordan coefficients.

(4.6)

1 There are other inequivalent ways of defining a height model dual to the six-vertex
model [19].

2 We use the notation A for these integer heights, and reserve the notation a for the
height of the generic model to be studied in lect. 5.
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or rather of (g-analogues of) Qj coefficients that relate the two bases [20],[2l],[l7]

(The normalizations are not the conventional ones if 9=1.)

Comparing the two decompositions (4.6), one finds

1 !_/
2

(4.7)

(4.8)

for any m,-_i, ITIJ^I, a and /?, a formula which is again a (/-analogue of a familiar expression

in ordinary 5C/(2) and which enables one to compute the 6j- symbols.

The couplings of spins j,_i ® | — * /,-, j, ® ̂  — » j,+ i is what we want to describe the

successive heights at sites t — 1, t and i + 1, whereas the coupling ^(g> | — » J is more suited

to use the fact that the projector PQ forces J = 0. A straightforward computation then

leads to

(4.9)

The relevant Sj-symbols do not vanish only if y,-_i = j,-+i and thus in the new basis, Pb

reads

-*-*«{T A ?}{Ai' **, I}
Computing the Clesch-Gordan coefficienta in (4.8), one finds
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and therefore returning to the height variables A = 2jf + 1, e = (2),Po reads

\i \< \< \a \\ \ \ ^ TT K UA«)<?(A t)<?) c tA 10\
A,A'. - 7 - ; - *>.-,*.• + , V4-12)

By the same formula as before, this yields an IRF solution to the YB equation (4.4)

Xf(u) = sin(f + u)l - sin u e,- (4-l3)

/îemarA:.

Note that one may also say that the original and final matrix elements of e, are intertwined

as:

R
'

• I

(a special case of the cells introduced by Ocneanu [22]). These cells satisfy the orthogonality

and completeness relations of Clebsch-Gordan coefficients [20]

< J.-m.-lji-im.-.^a >< j.L^^^ttlj.-m,- > = J .^ ,

.5. Restricted IRF models

As discussed in the previous lecture, whenever g is a 2n— th root of 1, qn = ±1, repre-

sentations of Ugsl(2) split into two types and it is possible to restrict oneself to type II

representations, by projecting with the modified trace Tr(..) = tr(g25 ..-)- On the Bratteli

diagram, this means that spins j > £(n — l) i.e. heights A = 2j + 1 > n are discarded.

One is thus led to the RSOS (restricted SOS) model in which the height varies in a finite

range. (This was originally discovered and formulated in a different language in [23]):

1 < A < n - 1 (4.16)
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These heights may be regarded as living on the graph

An-i = », »2 »3 •«-! (4.17)

or alternatively, this pattern appears in two successive (generic) rows of the Bratteli dia-

gram (for L > n — 1).

It turns out that the matrix elements of e computed in the previous subsection are

consistent with the truncation operation: it is easy to see that the generators m of the TL

algebra have vanishing matrix elements

1 ~ ("•)? — ° an<*
n —2 2

and thus configurations of heights in the admissible range (4.16) do not couple to non

admissible ones. In other words, the representation of the TL algebra defined on the full

Bratteli diagram becomes reducible.

4-4- Modified tract.

We have introduced above a modified trace, defined in the Uq s/(2) language by:

, . tr(g x)
Trfi) = , „„ /

tr(q2S")

= blf*'? ?2^(® • • -V *'i\) (4'18)

This modified trace is normalized by Trl = 1 and enjoys two important properties (Markov

properties):

1) For two operators x and y which commute with Sz (in particular which belong to the

TL algebra, commutant of Uq sl(2) )

Tr(xy) - Tr(yx) (4.19)

2) For x belonging to the algebra generated by 1, e,, e2, • • • ,«*_,,

Tr(efcx) = rTr(z) (4.20)

where T does not depend on the explicit representation of the TL algebra, but only on q:

r = —^-rr = 7À- (4-21)
9 + 9 (2),
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This is a non trivial property which has to be checked in each new representation. In the

representation (4.5), it can be shown by direct computation. It may also be instructive to

see it as a consequence of another identity, on the sum at link j:

= 1 =

independent of a. Hence Tre = T and it is easy to see that this extends recursively to an

arbitrary chain t j < t°2 < • • • < i*:

TT(eilci,.:cik)=Tk (4.22)

which is equivalent to (4.20). By use of the defining relations of the Hecke algebra (2.47),

any polynomial in the e,-'s may be recast as a linear combination of expressions of the form

(4.22). Thus the modified trace of any polynomial is a universal polynomial of r.

These Markov properties are important in two different contexts:

— in knot theory, they are the key to the construction of knot invariants using the

trace Tr: see lecture 6.

- in statistical mechanics, this modification is not innocent: it amounts to introducing

an extra operator in the trace of x (the "sewing" term of [24]) and modifies the physics. For

example the physical partition function of the original model, computed with the ordinary

trace Z = trT^T does not equal the modified trace ZmoA = tr(?25"T(L)T). For large

"time" T (and finite L), however, the modification becomes irrelevant: if A'£) denotes the

largest eigenvalue of T^, Z « (2j + l)(\^)T whereas Zmod « dj(X(-L))T where j is

the spin of the eigenvectors corresponding to A^) and provided the latter q— dimension

does not vanish, the two partition functions have the same leading behaviour as T — »• oo.

Now consider two models associated with two different representations of the TL algebra

for the same value of q. Their transfer matrix T^T is in the algebra generated by the

c'a, and thus the modified partition function is a universal function of q, independent of

the representation. In the large T limit (with L fixed), the modified partition function

approaches the physical ones which are thus asymptotically equal. The two models must

be simultaneously critical or non-critical and in the former case, they must exhibit the same

central charge (but not the same operator content: recall that the central charge describes
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the leading finite size effect [25], whereas the other operators control the subleading terms,

sensitive to the modification).

In the height models, the representation of the TL algebra still satisfies the Markov

properties by construction. In that case, the modified trace takes a simpler form. For x

commuting with Uq sl(2),
_ £,(*,- + !).>,„, (X)

E,(2J :+ l),tr»,l

using -the notations of eq. (3.9). On the Bratteli diagram, contributions to trwy(i) come

from configurations of heights ranging from height A0 = 1 at site 1 to height At = 2j + 1.

Hence, one may rephrase (4.23) as

Tr(x) = A M e - i i o * " - - • • • * • (4 24)

Moreover, the sum in the denominator of (4.23) equals (2)£(Ao)q. Thus

Tr(i) - TL £ (At), < A0A! - - - A ^ l x j A o A , - - - XL > (4.25)

or alternatively, denoting M = ]C"=î(^)n = r l/(2sin2(^)), we can relax the condition that

AO = 1 and write:

Tr(x) = r -V^^XAoMA/;), < A 0 A| • • • Ar, |z |A0Ai • •• A/. > . (4.26)

In particular, the modified partition function may be regarded as the sum of contributions

•^AO^L > Partition functions with fixed boundary conditions at the ends of the chain, weighted

by (A0),(AL),.

5. FACE MODELS ATTACHED TO GRAPHS.

5.1. Rcintcrprctation of the RSOS model.

We have seen in sect. 4.3 that the heights of the RSOS model may be regarded as living

on the graph
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which is the An-i Dynkin diagram. It turns out that all the properties of the RSOS model

previously spelled out may be rephrased in this new language. The spectral properties of

the adjacency matrix of the graph

— number of edges between the modes À and

/O 1 0 ... 0\
1 0 1 . . . 0
0 1 0 . . . 0A= (5.1)

Vo o ... i oy
play an important role. The eigenvalues of A are

7^ = 2 cos — =

where p runs over the same set as the heights:

sm

sin '
(5.2)

(5.3)

The corresponding orthonormalized eigenvectors are

/2
= y -

2 .
- sin

i.e. equals the matrix element of the matrix S of modular transformations of characters

of the SU(2)k Kac-Moody algebra of level k - n - 2. As shown by Verlinde [26], the

fusion algebra of the representations of 517(2)* labelled by A = 2j + 1, 0 < j < k/2 i.e.

l < A < n — l i s described by the matrix

and the matrices N\ =

_ \^Sxp

~ 2-, o. '

satisfy themselves the fusion algebra:

(5.5)

(5.6)

In particular the fusion by the spin | representation (A = 2) is

^2/i" = / > ~~SppSl'P

(5.7)
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Indeed the adjacency matrix A which describes the hopping on the graph An-i also yields

the fusion by the spin £ representation in the Kac-Moody algebra, or equivalently, as

alluded to at the end of lect. 3, the truncated tensor product of (type II) representations

in the Uq a/(2) algebra by the spin j representation. This in of course in agreement with

the previous considerations on the Bratteli diagram: the An-\ diagram is what appears

on two successive rows of the truncated Bratteli diagram.

The matrix elements of the TL generators are

jjti A;_ ,

in terms of the components of the eigenvector '<j>^ of largest eigenvalue. Finally the

modified trace of eq. (4.25)-(4.26) may also be rewritten as

, °Tri=(r)

5.2. Representations of the TL algebra on the paths of a graph.

We have just reinterpreted the representation of the TL algebra pertaining to the RSOS

model as attached to the set P\^ of open paths running on the graph Am from AQ = 1 to

some given \i = p.

It is thus very natural to ask if there exist other graphs, such that their set of paths

supports a representation of the TL algebra [27)-[28]. We denote the nodes of the graph

by a, b, etc... The graph (assumed to be symmetric and without multiple edges) is un-

ambiguously described by its adjacency matrix G (Gab = 0 or 1). As the entries of the

matrix are non negative, the Perron-Frobenius theorem asserts that the eigenvector

of largest eigenvalue is unique and has positive components. One may then show that

< a'0 • • • a?L\ei\a0 • • • aL >= J 6a.a..
}& Va.-_,

satisfies the TL algebra with a relation between q and the largest eigenvalue (pertaining

to V^1^) given by

' ï ( l )=(2)g = ç + ç-1. (5.11)
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Generalizing what was seen before in the original RSOS case, we define the modified trace

by

for x in the algebra generated by 1, ei, . . . , e^-i. As we have the identities

i!>, = ̂  (5-

(5-136)

it is easy to prove recursively that Tr satisfies the second Markov property. The first

Markov property follows from the fact that the generators e i , - - - , e £ , _ i do not affect the

heights ao and a^ and therefore for x and y in the TL algebra:

< aQ---aL\xy\a0---aL > = < a0 • • -aL|yx|a0 • • • aL > .

We can thus construct a representation of the TL algebra, with a Markov trace,

associated with each symmetric (undirected) graph. Among all these representations, only

those corresponding to q of modulus one (and q ̂  l) concern us here. This means that we

look for graphs whose largest eigenvalue ̂ ^ satisfies

< 2. (5.14)

This is a well known problem [29]. The only graphs with this property are :

i) either the simply iaced Dynkin diagrams A, D, E

ii) or the quotients A-njZ^

(see Table). The Z2 quotients of A2^, however, are readily seen to produce the same

statistical mechanical models as the Ait and we discard them.

As a final remark, it is noteworthy that the matrix elements (5.8) and (5.10) (for the

same q) may be intertwined by cells (compare with (4.14)) [30],[3l]

a

c '. ' ' * (5-15)

6
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This is represented pictorially as follows

= (5.16)

The orthogonality relations that these°cells satisfy and their explicit expressions may be

found in [31].

Table

List of graphs satisfying (5.14) and of their exponents

A n _ l

Dk

£o

£7

£8

A-u/Z-2

Graph

*1 *2 ' ' *n-l

>*(*-!)

»1 »2 *A-2

*(*-!)'

. . I .

I

I

n «2 <Q

n

n

2(k-l)

12

18

30

n

Exponents

l , 2 , - . . , n - l

1 , 3 , - - - , 2 A : -3;fc - 1

1,4,5,7,8,11

1,5,7,9,11,13,17

1,7,11,13,17,19,23,29

1,3,...,2£-1

5.S. Spectral properties of the Dynkin diagrams and intcrtwincrs.

Each Dynkin diagram G of the ADE type has a spectrum of eigenvalues of the form (5.2)

where n is the Coxeter number of the Dynkin diagram and the r (= number of nodes in
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the diagram = rank of the corresponding algebra) values of p are the "exponents" of G

pe {pi = I,p2,---,pr =n- 1}

(see the Table). We denote ifrz' a set of orthonormalized eigenvectors. As above, <j>\^ —

S\p refers to the eigenvector of the An_i diagram with the same Goxeter number n as G,

for the same eigenvalue (5.2) as ijj(p).

One may wonder if there is a property analogous to (5.13) satisfied by the other

eigenvectors. In fact, one has the identities 3

(S.13o)

(5.13*)
;.a;-)-1

Together with the summation over the first height, £0o t/'io)0io) = Spa., they lead recur-

sively to the following generalization of (4.22)

Here, /t- t- (ç) is a universal (G-independent) function of q. This is interesting because it

implies the following relation between partition functions with fixed boundary conditions

weighted by the various eigenvectors:

a,b

-6"
A '

Using the orthononnality of the eigenvectors, this may be inverted as

azW (5-20)

3 These arguments have been developped in collaboration with N. Sochen [36]
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where we have introduced the set of numbers

VA = Vat. /__,

Formula (5.21) is an extension of (5.5) to which it reduces for G = A.

The numbers V^ have the following properties:

i) Y^pAipV^ = Y^c
VacGct>, i-e. for fixed a, the rectangular matrix V*b intert%vines

between the matrices A and G: AV — VG.

ii) V^b = *Q& Va» = Gafc

iii) V^b are non negative integers.

iv) The square matrices V^ = (V*b) satisfy

A|I1/V (5.22)

Only property iii) is non trivial to prove: it may be checked by inspection of the various

cases D or E (A is already proved by (5.5)). Property iv), on the other hand, means that

these matrices form a representation of the SU(2)n_2 or of the Uqsl(2), q = c'~z~ , fusion

algebra for which the fusion coefficients N\^v form the regular representation (see (5.6)).

Conversely one may wonder what are the most general representations of the SU(2)

fusion algebra on matrices with non negative entries. In this case of SU(2), the problem

may be shown to be equivalent to condition (5.14) and therefore leads again to ADE.

Why are the coefficients V^ integers and what is the algebraic interpretation of these
f T \ f~*

numbers? We have found representations of the TL algebra on the space of paths P^b

of length L running from a to 6 on the graph G. Among these representations, call them

K.ab , the £jA are the only irreducible ones [13], whereas traces on the others may be

decomposed according to

tr^GU-^V^tr^Mt.) (5.23)
ab 1 \

with integer multiplicities. This implies (5.20).

The whole discussion of representations of the TL algebra may be extended to closed

paths. One has to impose the condition that also CL — CQ satisfies eq. (2.506). Then

one finds that irreducible representations ££" are labelled by a pair of integers s,s',
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5.^. Continuum limit.

These ADE models are critical and, according to an argument presented before, exhibit a

central charge c which depends only on q. For q = e^ one may show that

with a spectrum of conformai weights to be found in the Kac table (see Verlinde'a lectures

at this school)

( rn-3(n- l ) ) 2 - l f l < r < n - 2
4n(n -1) I 1 < s < n - 1 v '

When dealing with fixed boundary conditions, the partition function of a conformai

field theory is a linear form in the characters [32] and one shows J33],]13] that

XI.A (5-26)

while eq. (5.20) transposes into a similar equation in the continuum limit

A

The reason why the coefficients of the linear form have to satisfy the fusion algebra has

been explained in the A case and in the continuum limit in [34].

Among the conformai weights (5.25), not all appear necessarily in the primary fields

of the theory. The actual spectrum of the theory is described by the modular invariant

partition function of (A, A), (A,D) or (A,E) type [35]

n-2 , x
7 _ 1 VM V^ 1^ |2 , V^ '„ ~* \ ^98^1Z(*.C) ~ 2 2^ 1 Z-, I*"! + L^ Xr,Xr,' \ (5.28)

r=l ^ j exponent of G «?i«'

where we have written explicitly only the diagonal terms which display the exponents of

the algebra. In fact one may prove [13] that the contribution of the représentation R.^™ of

the periodic TL algebra gives in the continuum limit

n-2

y"Xr.X«' (5-29)/ _j /vra/vra \ /

r=l

and the coefficients of the quadratic form in (5.28) describe the decomposition of the

reducible representations of the periodic TL algebra attached to G in terms of the
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Notice that the (D, An) and (£, An] unitary models have not yet received an integrable

realization (but of course no theorem guarantees that there should exist such a realization).

All the discussion of the previous lectures may and must be generalized to higher rank

algebras, in particular to SU(N). One follows the same steps: construction of a vertex

model, in which the degrees of freedom living on links are weights of the fundamental

representation D of SU(N); study of the quantum algebra Uqsl(N), of its commutant

in D®2, described by a factor of the Hecke algebra (2.47) and of its representations, in

particular for q a root of unity; reformulation of the vertex model as a face model in

which the degrees of freedom are now fundamental weights of SU(N); truncation of the

weight lattice whenever q is a root of unity, and possibility of other restrictions, attached

to graphs; continuum limit in which these restricted models are described by coset theories

S U ( N ) k _ l < g > S U ( N ) l / S U ( N ) k - This is a vast program in which no complete classification

has been achieved yet, in contrast with SU (2). For references, we refer the reader to

5.5. More on the continuum limit.

By lack of space, we do not discuss further the connections between integrable lattice

models and conformai field theories (CFT). We shall content ourselves with giving a list

of topics and references for the interested reader.

a) At a formal level first, there are many algebraic structures that appear in a similar

way in both fields. In this respect for instance, the six-vertex model behaves as the Feigin-

Fuchs free field (13], Uqsl(2) playing the role of the algebra of screening operators, TL

the role of the Virasoro algebra [13] ,[38], while the truncation of the Bratteli diagram

corresponds to discarding null states in CFT. Also the fusion algebra of CFT may be

described by quantum algebras [17], the braiding of conformai fields provides braid group

representations [39] and 6 — j coefficients are related to the braiding and fusing matrices

[40]. Modular invariance itself can be used for finite integrable systems [13]. For other

related topics, see [41]. The study of these common algebraic stuctures is far from complete

and remains somehow mysterious.

b) At a more physical level, it is of course of importance to take the continuum limit

of integrable critical lattice models and to identify the associated CFT. Rather well under-

stood techniques have been devised for this purpose: Bethe Ansatz and scaling analysis

[42], mappings on the Coulomb gas [43]. . .
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c) Most common systems turn out to have an integrable model in the same universality

class. This allows to get predictions of experimentally observable properties, for example

in polymer physics [44].

The relation between critical models and CFT may be summarized in the diagram

CFT
'/

|b)

Full arrows (6) represent the continuum limit, the dotted arrow (a) refers to the existence

of algebraic structures similar to those of the CFT but present for finite systems before the

continum limit. Whether there is always an integrable realization of a CFT, and how its

Boltzmann weights can be explicitly built from the properties of this CFT are still open

questions.

6. YANG-BAXTER EQUATION, BRAID GROUP AND LINK POLYNOMI-

ALS.

This last lecture is a short introduction to link polynomials in relation with YB equa-

tion. Knot theory [45] is a theme common to various subjects addressed to in this school:

integrable systems [46], conformai theories (via the "braiding" of operators[47][39J) and

topological field theories [48].

6.1. Definitions.

By abstraction of everyday's experience, a link is an embedding of a collection of circles

in three-dimensional euclidean space. Two links are ambient isotopic if they can be

continuously deformed into each other. We are primarily interested into equivalence classes

of ambient isotopy.
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A link is conveniently represented in the plane by a link diagram

Trefoil

A one-component link that is not isotopic to the circle is called a knot. The circle is

the unknot.

Reidemeiter moves. 1. \. ̂ -—^ ^

/^-J ~

2. 3Z-3EOC
3.

"0".

Reidemeister moves represent deformations of link diagrams that correspond to ambient

isotopic links. More precisely, two link diagrams represent ambient isotopic links if and

only if they can be transformed into one another by a finite sequence of Reidemeiter moves.
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Oriented link and its mirror image

Question: are T and T* ambient isotopic?

6.2. Alexandcr-Conway polynomial.

The Alexander-Conway polynomial is defined by the following axioms:

1. To each oriented link K, there is an associated polynomial V/f (z) € Z(z). Equiv-

alent links yield identical polynomials.

3. Skein relations

(6.1)

Examples.

For a split link, V = 0:

V = zV

The first two links are ambient isotopic by a type 1 Reidemeister move, hence have

the same V. Hence the polynomial of the split link of the r.h.s. vanishes. For the trefoil,
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V = V

V = V

VT = 1 -|- 2(0 + z) = 1 + 22 = VT..

6.3. Braid group.

A braid is made of n strings joining n points on a horizontal line to n points on a parallel

line. , _ . . . . _
1 2...i i *1 i *2..n

The braid group Bn is the group formed by ambient isotopy classes of braids, with the

obvious concatenation operation. It has n — 1 generators &,-,«' = 1,... ,n — 1:

bj =

i itt i i-M

Notice that the index t does not label an individual string but refers to the relative location

of the strings. These generators 6,- satisfy the following set of constraints:

M,-]=o
(6.2)
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The latter equation is nothing else than the YB equation without spectral parameter, and

the similarity with denning equations of the Hecke algebra will not escape the reader. (In

fact any representation of the Hecke algebra yields a representation of the braid group.)

Time closure of a braid a gives an oriented link a:

and conversely any oriented link is the closure of some braid (Alexander theorem). This

representation, however, is far from unique and it is an important question to identify

which braids give equivalent links. Let us define the Markov moves:

Type I: a <S £„ -> /Ja/T1 where /3 6 Bn

Type II: a 6 Bn -> ab*1 where 6*1 6 Bn+l.

,-1 X \ \
a

I

^
n n «• 1

Two braids a € Bn and /3 6 Bm have isotopic closures if and only if there is a finite

sequence of Markov moves taking a io ft.

6.4. Markov trace and link polynomials. Homfly polynomial.

Given a representation of the braid group Bn in some vector space, a Markov trace is a

linear functional Tr(.) on that space such that (we denote the representative of the element
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a. of Bn by the 3ame letter a)

Tr(/?a/rl) = Tr(a) , <*,P € Bn

Tr(a6n) = rTr(a) , a G Bn,6n € Bn+l (6.3)

Tr(a&-') = fTr(a)

Then let P& be

'e(a)

Tr(a) (6.4)

where e(a) is the sum of the exponents appearing in the expression of a in terms of the

generators 6,-. P& is invariant under Markov moves: it is a link invariant.

Example: Jones polynomial

We choose as a representative of &„ the È matrix in the spin | representation:

' 1 0 0 0 '
0 l-q-2 q~l

0 q~l 0
, 0 0 0 1 .

We then use the Markov trace of lect. 4 and compute

Tr(a)=7^rtr(9«'a) a 6 Bn

The trefoil is the closure of 63

1 0 0 0'
3 I 0 1 - q~2 + q~4 - q-6 * 0

0 * <T2-<T4 0
, 0 0 0 1 ,

hence
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In this case, P& of (6.4) is a Laurent polynomial in q,q~l called the Jones polynomial

-ï\ Tr(63)

_2 _0 _8

The mirror image T* of the trefoil is the closure of b~3.

pJ°nea = c-2 + 9-« - q~* pJ?«» = g
2 + c° - c8 (6.7)

Hence PJ°nc3 discriminates T from T*.

From (6 — <75)(fr + 9~5) = 0 or 6 = q? - q~^ + q~lb~l, we get

pJonea = / 1 _ c _ J j / ̂ V pJoa

~~
Besides this algebraic approach, the Jones polynomial may also be defined axiomatically,

as the Alexander-Conway polynomial. Axiom (6.1) in particular is replaced by

Ul}sl(N) polynomials.

Take l/gs/(AT), AD'D provides a representation of the braid group. The analogues of the

above Markov trace allow to define a link polynomial in Z(q,q~l) that satisfies

qkpW -q-*PW =(q-q-l)P^ (6.10)

Formally the Alexander-Conway polynomial is reproduced by letting k — 0. It is actually

associated to the Z2 graded quantum algebra Uqsl(l, l) (49).

Homfly polynomial [50].

The p(N) are specializations of the two-variable Homfly polynomial which satisfies in

particular

aH^. -a-lH^ =zH^ (6.11)
's* -*^k — *•

For the trefoil:

=(2a2 - a4) + z2a2. (6.12)
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