21.22 7:11.22

NIIEFA - B -- 0835

НИИЭФА Б-0835

НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ Электрофизической аппаратуры им. Д.В. Ефремова

А.М.Астапкович, В.М.Комаров, С.Н.Садаков, В.В.Филатов

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В ВАКУУМНОЙ КАМЕРЕ ITER

Препринт

москва цнииатоминформ 1989

Асталкович А.М., Комаров В.М., Садаков С.Н., Филатов В.В. Численное моделирование нестациснарных электромагнитных электромагнитных процессов в вакуумной камере ITER : Препринт Б-0835.- ЩИИ атоминформ, 1989, 15 с., с ил., цена 9 к.

Рассматривается задача численного моделирования нестационарных электромагнитных процессов для динамической модели плазмы в токамаке, приводятся результаты расчета для вакуумной камеры *ЛТЕК* при срыве тока плазмы вихревых токов, электродинамических нагрузок и скорости изменения касательной составляющей магнитного поля на сверхпроводнике ОТІ. Рассчитано экранирующее действие вакуумной камеры *ГТЕК* на старте разряда.

Проанализирована зависимость полученных результатов ст степени секционирования камеры и электросопротивления ее секторов и сильфонов.

ОГЛАВЛЕНИЕ

	Введение
.1	Постановка задачи
5.	Оценка электродинамических нагрузок на вакуумную камеру <i>ITER</i> при срыве тока плазмы
3.	Расчет экранирующего действия вакуумной камеры
	Список литературы

С Центральный научно-исследовательский институт информации и технико-экономических исследований по атомной науке и технике (ЦНИМатоминформ), 1989г. Для численного моделирования нестационарных электромагнитных процессов в вакуумной камере ITER /I/ (рис.I) применяется метолика, основанная на использовании двумерной динамической модели МГД-равновесного плазменного шнура совместно с эквивалентной электрической схемой азимутально-секционированной вакуумной камеры. Методика реализована в вычислительной программе *EDDYC-2* /2/.

I. ПОСТАНОВКА ЗАДАЧИ

Миновенное распределение плотности продольного тока плазмы описывается известной аппрокотмирующей функцией

$$j_{P} \mathcal{L} = j_{o} \left(\varkappa \frac{\gamma}{\gamma_{m}} - (1 - \varkappa) \frac{\gamma_{m}}{\gamma} \right) \left(1 - \left(\frac{\psi_{m} - \psi}{\psi_{m} - \psi_{B}} \right)^{c} \right), (1)$$

- ψ_m значение ψ на магнитной оси τ_m ;

 $\mathcal{L} = \mathcal{L}(t)$ - параметр модели, связанный с величиной полоидальной бета;

- $\mathcal{L} = \mathcal{L}(t)$ параметр модели, характеризующий профиль плотности продольного тока;
 - Jс нормировочный множитель.

Величина полного тока плазмы $\overline{L}_{\rho\ell}$ как функция времени определяется из решения системы нелинейных дифференциальных уравнений, описыващих переходные электромагнитные процессы в системе индуктивно связанных контуров, одним из которых является подвижный плазменный шнур /3/:

$$\frac{d(L \cdot I(t))}{dt} = -R \cdot I(t) + \mathcal{V}(t) - \frac{d(Ld \cdot I_d(t))}{dt}, \quad (2)$$

$$I(0) = I_0,$$

где

- // матрица индуктивностей контуров с неизвестными токами //(f), одним из которых является ток плазменного шнура;
- L_d матрица взаимных индуктивностей консур в с неизвестными и заданными $I_d(t)$ токами;
- *R* матрица собственных и взаимних сктивных сопротивлений контуров с неизвестными токами;
- U(t) напряжения источников в контурах с неизвестными токами;
 - <u>Г</u> начальные значения неизвестных токов, включая ток плазмы.

Поведение плазменного шнура при анализе эффектов срыва тока плазмы может быть определено лишь тремя относительно простыми функциями, характеризующими только электротехнические, а не плазмофизические параметры шнура /2/:

 $c = c (t), \quad \mathcal{L} = \mathcal{L} (t)$ из соотношения (I) и $R_{akt} = R_{akt}(t)$ либо $U_{ckt} = U_{akt}(t)$ из уравнения (2). Функции $\mathcal{L}(t)$ и $\mathcal{L}(t)$ определяют изменение профиля $\tilde{J}_{p}\ell$ в результате ухудшения теплоизоляции плазмы и снижения ее температуры в фазе теплового орыва /4/, а функция $\mathcal{J}_{akr}(t)$ либо $\mathcal{R}_{GKr}(t)$ определяет изменение во времени активного падения напряжения на обходе плазменного шнура в фазе спадания тока плазмы.

Тиличние трафики изменения параметров C(t), $\mathcal{L}(t)$ в $\mathcal{L}_{Gas}(t)$, вкоранные на основе феноменологического описания процесса срыва тока плазмы /3, 4/ и использованные автос оми пля респетов, сриводены на рис.2. Длительность фази тентового срыва тринята равной $\mathbb{Z}_{4} = 0.5$ мс. а фази спаления тока – се

= 16-20 мс. Причем величина $\mathcal{T}_{akr}(t)$ недовреется на разована исчезновения тока плазмы к моменту \mathcal{T}_{2} . задышому на базе реноменологического элисания процесса.

AL AL AND ALL A

Fuc.2. Charlet nonecount intermediation interaction openbe intermediate $C_{1}(t, t) = C_{2}(t, t) = C_{2}(t, t) = C_{2}(t, t)$

Сопсандение уревной расчетных электродинамических напризон с. слуумную камору токамака, полученных с применетием статическох и диналических моделей плазменного шнура, проводится в работах /г. 5/. Двухвратное - трехкратное возрастание смплитур доминирующих напрузок и появление новых составляющих сил, обусловленных вертикальным смещением плазменного шнура, свидетельствуют о необходимости использования динамических МГД-равновесных моделей плазмы.

Энвивалентная электрическая схема тороидальной вакуумной камеры (рис.3) имеет 16 периодов, 28 независимых продольных и 28 независимых полеречных ветвей с неизвестными токами. Дополнительно в модель включены 48 изолированных от камеры и друг от друга пассивных седлообразных витков и 6 независимых групп катушек обмотки полоидального поля (ОШП), подключенных к низкоомным источникам электропитания.

2. ОЦЕНКА ЭЛЕКТРОДИНАМИЧЕСКИХ НАГРУЗОК НА ВАКУУМНУЮ КАМЕРУ ITER ПРИ СРЫВЕ ТОКА ПЛАЗМЫ

Для численного моделирования в качестве базового варианта были приняты следующие основные исходные данные: номинальный ток плазмы Ісс, МА.... . . 20 суммарные активные сопротивления, мкОм сильфонов вакуумной камеры R_c 32 секторов вакуумной камеры \mathcal{R}_{k} 3 пассивных витнов \hat{R}_{a} . . . 600 количество секторов или сильфонов вакуумной камеры Nc..... . . I6 относительные азимутальные протяженности секторов и сильфснов в эквивалентной схеме камеры 0.5/0.5

į

Применявшаяся расчетная схема установки (рис.1, 3) содержит всего одну проводящую оболочку, поэтому найценные значения нагрузок следует понимать как суммарные, приложенные совместно к камере и модулям бланкета *ITER*. При определении полных величин сил, действующих на секторы вакуумной камеры, следует учитывать и силы, возникающие в модулях бланкета и передаваемые на секторы камеры через механические крепления, соединяющие модули бланкета с секторами камеры.

Эволкима положения и формы поперечного сечения плазменного шнура в базовом варианте расчета показана на рис.4. На рис.5 для этого же варианта приведены графики изменения во времени полного тока плазмы $I_{\rho\ell}$, полных тороидальных токов камеры I_k и индунированных во всех катушках ОШІ – ΔI_{OHII} . Участки ускоренного спадания $I_{\rho\ell}$ и соответствующего подъема I_k коррелируют с моментами быстрого сжатия сечения плазменного шнура (рис.4) при его быстром вертикальном смещении ($\ell = 6-8$ мс) и исчезновении ($\ell = 14-16$ мс). Пунктиром показаны кривые изменения токов при пониженном активном напряжении на обходе шнура ($I_2 = 20$ мс) для статической и денемической моделей плазмы.

Рис.4. Эволюция положения и формы сечения плазменного шнура в базовом варианте расчета

Распределение вихревых токов на внутреннем обводе тора накуумной камеры в момент времени $\mathcal{L} = I4$ мс показано на рис.6.

Рис. 5. Изменение во времени полного тока плазмы Ipl. Излики тороидальных токов камеры Ir и индупрованных во всех катушках ОШ - Ir I инду-

÷

В общей картине электролинамических нагрузок явно доминируют силы \mathcal{F}_r взаимодействия так называемых поперечных токов \mathcal{I}_{τ} в секторах с тороидальным магнитным полем. Локальные максимумы F. доститаются на внутреннем обводе тора при быстром вертикальном смещении плазменного шнура (t = 6-8 мс). Эпюры распределения I_{τ} и F_{τ} вдоль оси Z на внутреннем соводе тора приведены на рис.7. Хорошо видна своесбразная "волна" псперечной силы, сопровождающая вертикальное смещение плазменного лнура. Локальный максимум Fr оценивается на уровне 8 MH/м, что примерно вдвое больше, чем для статической модели плазмы (см. таблицу). Максимум F_{τ} практически не зависит от нараметров \mathcal{T}_{2} и \mathcal{R}_{2} , но может быть существенно уменьшен в случае увеличения кратности секционирования тора N_c . Увеличение N_c лриводит к, примерно, квадратичному возрастанию суммаристо активного сопротивления участков протекания поперечных токов и при Nr = 32 расчетный максимум Fr ограничивается величипой 4 МН/м.

Рис.7. Распределение поперечных токов $\mathcal{I}_{r}(Z)$ в секторах камеры, погенных сил их взаимодействия $\mathcal{F}_{r}(Z)$ с тороицальным полем и объемной нагрузки $P_{v}(Z)$ на внутреннем обводе тора: $I - \mathcal{T} = 4 \text{ мс}; 2 - \mathcal{T} = 6 \text{ мс}; 3 - \mathcal{T} = 10 \text{ мс}; 4 - \mathcal{T} = 30 \text{ мс}$

Объемная плотность понеречного тока \hat{J}_{τ} в материале секторов при расчетах полагается линейно изменяющейся от $\hat{J}_{\tau} = 0$ в вертикальной плоскости симметрии сектора до $\hat{J}_{\tau} = \pm \hat{J}_{\tau}^{max}$ на его торцах. Соответственно линейно изменяется и объемная удельная нагрузка на материал сектора:

$$P_v = \dot{j}_\tau \cdot B_\tau(\tau) ,$$

где $\hat{\mathcal{B}}_{\tau}$ - тороидальное магнитное поле на радиусе \mathcal{C}

Основные результаты численного моделирования процесса срыва тока плазмы в установке класса

$(I_{Pl} = 20 \text{ MA})$									
	Вариант расчета	I	2	3	4	5			
	Модель камеры								
I. 2.	Суммарное активное со- противление, мкОм: сильфонов секторов пассивных витков Количество сильфснов	32 2 600 16	32 3 600 I6	32 3 600 16	16 3 600 6	32 3 600 32			
	Модель плазменного шну	pa C	татическа	я Д	Динамическая				
	Уровень активного на- пряжения на обходе шнура, кВ	6	0,6	1,3	I , 3	I,3			
	Результаты расчета								
Ι.	Время спадания тока, мс	20	20	16	16	16			
2.	Максимальная скорость изменения поля в ОТП, Тл/с	47	82	82	43	82			
3,	Максимальная локальная нагрузка на торец сек- тора, МН/м	4	8	8	6	4			
4.	Максимальное объемное давление в материале сектора, кГ/см ³	4	8	8	6	4			

Характерные значения локальным максимумов P_{\checkmark} на торцах секторов и на краях сильфонов достигают уровня 80 МП/м³ (8 кг/см³). Приводя объемное давление P_{\checkmark} к поверхностному ($P_S = P_{\checkmark} \cdot \delta$, где δ – эквивалентная толщина материала), можно получить распределение поверхностного давления на сектор в функции от азимутальной координаты ℓ_{φ} . Эпкры давления P_{\checkmark} (ℓ_{φ}) и P_S (ℓ_{φ}) при t = 14 мс в сечении сектора плоскостью Z = 1,5 м приведены на рис.8. На рис.9 показано изменение во времени суммарных сил взаимодействия поперечных токов с тороидальным полем F_{RT} и F_{z_T} , токов в пассивных витках с тороидальным полем

8

-

t,

 F_{RPAS} , продольных токов в секторах с полоидальным полем F_{RPAS} и F_{277} и полного полоидального тока камеры с тороидальным полем F_{r} . Следует обратить внимание на необходимость восприятия сил $F_{RPAS} \approx 24$ МН (эколо З МН/м), возникающих в каждой лобовой части пассивных витков и через механические крепления передающихся сначала на модули бланкета, а затем на секторы вакуумной камеры.

На рис. 10 показаны максимальные величины и направления действия радиальных составляющих сил взаимодействия вихревых токов с тороидальным магнитным полем, приложенных к четвертям модулей бланкета, четвертям и октантам секторов вакуумной камеры. В фигурных скобках даны усредненные значения этих сил, полученные сопоставлением результатов данной работы с результатами работы /5/, изложенными на зимней 89 г. сессии *LiER*, и рекомендованные для независимой конструктивной проработки силовых конструкций бланкета и вакуумной камеры.

Рис.8. Распределение эквивалентной толщины сектора камеры \mathcal{O} , объемного \mathcal{P}_{V} и поверхностного \mathcal{P}_{S} давлений на материал сектора в азимутальном направлении $\mathcal{L}\varphi$ в сечении сектора плоскостью Z = 1,5 м

Рис.9. Лзменение во времени суммарных сил взаимодействия поперечных токов с тороидальным полем *F*₂₇ и *F*₂₇, токов в пассивных витках с тороидальным полем *F*₂₇₉₅, продольных токов с полоидальным полем *F*₂₇₇ и *F*₂₇₇ и полного полоидальным полем *F*₂₇₇ и тороидальным полем *F*₇

Рис. IO. Максимальные величины и направления действия радиальных составляющих сил, обусловленных взаимодействием вихревых тсков с тороидальным полем, приложенных к четвертям модулей бланкета, к четвертям и октантам секторов камеры На рис. II показана зависимость от времени скорости изменения касательной составляющей полоидального магнитного поля \dot{B}_{T} в ближайшем к плазме участке сверхпроводника обмотки тороидального поля (ОПІ) ($\mathcal{Z} = 2,6$ м; Z = 0). Для статической модели плазменного шнура при $R_{c} + R_{\kappa} = 35$ мкОм получено $|\dot{B}_{c}|_{max} = 47$ Тл/с (кривая I), а для динамической модели при тех же значениях R_{c} и R_{κ} $|\dot{B}_{T}|_{max} = 82$ Тл/с (кривая 2). Пунктиром даны результаты подобных расчетов для статической модели плазмы при

 $R_c + R_{\kappa} = 40$ мкОм, приведенные в работе /6/. Максимальная сморость изменения поля в сверхпроводнике достигается сразу после быстрого вертикального смещения плазменного шнура и практически пе зависит от параметра Z_c (кривые 2, 3), но может быть значительно уменьшена путем снижения мсуммарного активного сопротивления сильфонов (при $R_c = 19$ мкОм $|\dot{B}_{\rm T}|_{mak} = 43$ Тл/с, кривея 4). Из этого можно сделать вывод, что скорость изменения магнитного поля в сверхпроводнике при сольшом вертикальном смещении плазмы определяется экранирующими свойствами стенки вакуумной камеры на внутреннем обводе тора.

Рис.II. Графики скорости изменения касательной составляющей полоидального поля $B_{\mathcal{E}}$ в ближайшем к плазме витке ОТП ($\mathcal{Z} = 2,6$ м; $\mathcal{Z} = 0$) длістатической (кривая I) и динамической (кривне 2-4) моделей плазменного шнура: I, $\mathcal{Z} - \mathcal{T}_{\mathcal{Z}} = 20$ мс; 3, 4 - $\mathcal{T}_{\mathcal{Z}} = 16$ мс; 1-4 - $\mathcal{R}_{\mathcal{K}} = 4$ мкОм; 1-3 - $\mathcal{R}_{c} = 32$ мкОм; 4 - $\mathcal{R}_{c} = 16$ мкОм; 5 - результат из работы /6/ при $\mathcal{R}_{c} + \mathcal{R}_{\kappa} = 40$ мкОм и статической модели плязмы Таким образом, наиболее эффективным средством для снижения амплитуд доминирующих нагрузок оказывается увеличение кратности секционирования камеры при сохранении или уменьшении ее полного сопротивления, а снижение скорости изменения магнитного поля в витках ОТП достигается путем уменьшения суммарного сопротивления сильфонов.

3. РАСЧЕТ ЭКРАНИРУЮЩЕГО ДЕЙСТВИЯ ВАКУУМНОЙ КАМЕРЫ ITER НА СТАРТЕ РАЗРЯЛА

Для анализа процессов проникновения электрического и малнитного полей в вакуумную камеру на старте разряда используется расчетная схема, приведенная на рис.1, 3. Цель расчетов состои: в определении момента t_d , когда в камере создаются условия для инициирования разряда. Эти условия ссетоят в достижении достаточно высокого уровня вихревой э.д.с. в камере ($E \ge E_d$) при достаточно малом уровне расселнных полоидальных полей в заданной области (< Bd). Начальные токи катушек ОШ и трафики изменения напряжений источников питания в их цепях соот-BETCTBYET DEWIMY PAGOTH OHH ITER /7/, PACCHUTAHHOMY GES YHETS влияния вихревых токов камеры. Приводимые результаты получены В предположении отсутствия тока плазмы. В результате вариации *R_c* были получены зависимости **па**раметра td и потерь магнитного потока $\Delta \psi(t_d)$ от электротехнических свойств вакуумной камеры.

 R_c = 36 мкОм, R_{κ} = 4 мкОм приведены кривые На рис.12 для изменения во времени напряженности вихревого электрического поля Е и результирующего полоидального магнитного поля В, на оси камеры, усредненной индукции результирующего полоидального в области 5.0 ≤ 2 ≤ 7,0 м; -1,0 ≤ Z ≤ 1,0 м поля < В> и полного тороидального тока в вакуумной камере Дул. Принимая пороговые значения электрического и магнитного полей равны- $E_d = 0,3$ В/м и $B_d = 5.10^{-3}$ Тл и анализируя в соответ-MĽ ствии с ними кривне, приведенные на рис.12, можно сделать вывод о целесообразности коррекции системы начальных токов OIIII для создания удовлетворительных условий инициирования разряда. Например, при изменении начального значения поля рассеяния на *B₂(с, к)* = -3.10⁻³ Тл удается совмесоси камеры ($2 = R_o$) до тить во времени моменти достижения уровня электрического поля $E = E_d = 0.3$ В/м и перехода через ноль магнитного поля в задан-ной точке сечения камеры ($\beta_z^c(t_d, R_c) \approx C$ на рис.12).

Рис.12. Изменение во времени напряжекности вихревого электрического поля Е, результирующего полоидального поля В_Z на оси камеры, усредненной индукции полоидального поля в области 5 ≤ 2 ≤ 7 м, -I ≤ 2 ≤ +I м и полного тороидального тока в вакуумной камере I_{V7} для R_c =36 мкОм R_K = 4 мкОм

На рис. I3 показаны кривые изменения но времени величин Е и $\mathcal{B}_{\mathcal{Z}}^{c}$ для трех значений суммарного сопротивления вакуумной камеры и сильфонов: $\mathcal{R}_{c} + \mathcal{R}_{\kappa} = 16 + 4 = 20$ мкОм; $\mathcal{R}_{c} + \mathcal{R}_{\kappa} = 36 + 4 \approx 40$ мкОм и $\mathcal{R}_{c} + \mathcal{R}_{\kappa} = 76 + 4 = 80$ мкОм. На рисунке отмечены моменты создания условий для инициирования разряда (t_{d_1}, t_{d_2} и t_{d_3}).

Рис. I3. Графики напряженности электрического поля Е и поля рассеяния B_{Σ}^{c} на оси камеры: I, 2, 3 – E; 4, 5, 6 – B_{Σ}^{c} : I – 6 – R_{κ} = 4 мкОм; I, 4 – R_{c} = I6 мкОм; 2, 5 – R_{c} = 36 мкОм; 3, 6 – R_{c} = 76 мкОм Зависимость потерь магнитного потока $\psi_d = \psi(t_d, R_o) - \psi(o, R_o)$, величин начального поля рассеяния $B_z^c(o, R_o)$ и его магнитного потока $\psi_c(o, R_o)$ от параметра $R_c + R_\kappa$ приведена на рис.14, где пунктиром отмечен результат подобных расчетов из работы /8/. Сопоставление этих данных с результатами расчета электроцинамических нагрузок может быть подезно при решении вопроса с выборе сопротивления склыронся.

Рис.14. Потари магиматило порока (Vd), начальисе пото расселний Ву(GR), сего магилтный ноток (Ve) по оси гласмы в зависимости от параметра Re-Rx (пунктиром показан результот овочать из работы /8/)

СИИСОК ЛИТЕРАТУРЫ

- I. ITER. Establishment of ITER: relevant documents. Vienna, IAEA, 1988, p.72.
- 2. Астапкович А.М. и др. Численное моделирование процесса срыва тока плазмы в токамаке с учетом эволкции плазменного шнура// ВАНТ, серия "Термоядерный синтез". 1988. Вып.4. С.9-15.
- 3. Мирнов С.В. Физические процессы в плазме токамака. М.: Энергоатомиздат, 1985.
- 4. Summary report of the IAEA specialists meeting on plasma disruptions. Vienna, IAEA, 1987, p.3.
- 5. Nishio S. et al. Electromagnetic Force of ITER Vacuum Vessel and In-vessel Components.- Report on ITER-MD-2-9-5, March 16, 1989.
- 6. Bottura L. Results of the preliminary calculation on the electromagnetic belaviour of the ITER vacuum vessel. Part.II:: fields and farces.- Report on ITER joint work session, March, 1989.
- Корнаков Е.В., Коршаков В.В., Моносзон Н.А., Спевакова Ф.М., Филатов О.Г. Оценка параметров системы полоидального поля варианта реактора ИТЭР с током плазмы 20 МА.- М., 1988.-26 с. (препринт/ШНИМатоминформ: 5-0795).
- B. Bottura L. Evaluation of the stray field use to the eddy currents in the ITER Vacuum Jessel. - opert on LEER - int work session, March, 1989.

Александр Михайлович Асталкович, Виктор Михайлович Комаров, Сергей Николаевич Садаксы, Владимир Викторович Филатов

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ В ВАКУУМНОЙ КАМЕРЕ LTER

Редактор В.Л.Гусева

Подписано в печать 17.12.89 г. Т-18205. ⊅ормат 60х90/16. Офсетная печать. Уч.-изд.л. 0,6. Тираж 140 экз. Зак. № 14/443. Индекс 3624. Цена 9 к.

Отпечатано в НИИЭФА