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i) During the last vears a lot of efforte have ean prede:  to  invest iwate
the topolegical vacuum structure of lattice gauge theories [17. As on
indicator, probing the contribution of topologizally non-trivial excitations
10 the quantum vacuum usually serves the topologicn) sasesptibility

x =@ /v (H

where Q  represents the topological charge f the gange Field and v

the volume in the d-dimensional epace-time. Varicnz methods have been
invented to define Q on the lattice (see kef. [11). For the quantized
fields generated numperically by Monte Carle (M) simnlations they  lead
typically to different Ql values event by avent and to somewhat  different
x, estimates at accessible couplings in the scaling region. Surely, the
disagreement is due to short-range fluctuations and possibly to  lattice
artifacts, which are taken into account or are suppressed in a fferent
manner {2]. However, a briori, it is very diffioalyr. tn eay in as far
short-range fluctuations with Q( = 0 should be jrrelevant in the continuum
limit or whether instanton-iike saemi-classical lackground fields alone
determine the topological propertiss of the vacum siate.
In this letter we are going to discuse this question within the framesork of
the two-dimensional ﬂ’n_l model, which has a lot of simllarities with the
Yang-¥ills theory in four dimeneions. The latter fact concerns also the
emall voluwe limit for both theories formulatest in the oontinuum on  splieres
and S* , respectively. It has been showm for the Yang-Mills theory by
Luscher (3] and afterwards for the uv““ madet Ly Aehwab (4] that in this
limit x, terds to zero and becomes dJominated Ly the one-instanton
contribution, provided the semi-classical spproximation makes sense at all.
We want to see, whether the same will happen within the formilation of the
theory on a latticized sphere, l.2. mnder the =am= boundary conditions as in

the continuum case.

i1) The Q’"l model we are considering 15 defined in a curved contimnm

space by the action
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where the complex veotors 2% = 20 . as1,2,...,n satiafy the

normalization condition E z"(zu)‘ = 1. gJ'W denotes the metric tensor on
§2 ana & x{& mpresun:,s the invariant volume element. The covariant
derivative D}J = 0;4 - i'A.l-' contains the Abelian “gauge" field A‘J which can
be ensily expreesed by the 2-fleld using the equations of motlon.,  Here we
want to trext it ae & dynsmical field which &allows to read off the
topological charge ss » sum over winding numbers

1
q = ;E*dxpﬁp 3
®e

in a straightforward manoer.

The theory i approximated on a  triangular lattice. In principle, the
latter could v a random one, but we prefer to generate esn almost rvegular
lattice. It can be obtained by starting from a regular tetraeder in [

the comers f which sre flazed on the sphere 52 . Then successively finer
lattices enumersted by N = 1.2,... are provided by dividing all the edges

into two parls each =and projecting the midpoints onto the sphere.
Connecting the newly projecied sites with each other by new linke gives us
the next. finer lattice, In this way the lattices produced contain
P = 242 sites and L = 3(P-2) links. Bvery site has six nearest
neighboire except the original comer points of the tetraeder which have
three.  This Jattice const.uction has the advantage easily to be mapped onto
the two-dimensional plane by cutting the lattice along three of the original
edges of the ietrasder. We take the simplicee of the lattice to hbe plane
ones in F? | Already for N = 2 the area sum of all simplices represents
88% of the area of the sphere.
The lattice formulation of the model (2) looks a8 follows. We approximate
the covariant derivative at lattice site x in the standard way

pxy —> (#8002 )0 (@
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where I” ia the length of the link vector lu connecting the neighbour
sites x LI The link varieble is defined by

) € (1)

U A= exp('-i.Ap(x‘)l ~) = exp(—ip""“
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The metric tensor st the flat simplex (i,3.k)
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with the eimplex area

4 s

1 2z 2 2 2 2 . 12
A = 3 [21lej|<+ R R A Wl N ]

The lattice action can be cast into a form of a sum over 1linke joining

the

nearest neighbours 1, j

5, = nz s . op=l (6)
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where 8 » gete contributions of both adjacent simplices (1.4.,k) and
(1,3.k7)
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Qur lattice action is menifestly locally (1) gauge invariant. In

contrast to !I;‘_l lattice actions invented in earlier papers [6,7,B8] it is
a non-local one containing products of two U(1) link variables. In the
following we restrict ourselves to the C!'s model, i.e. n=4 .

iii) The mdel is gquantized according to the functional integral

v
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The quantum fielda z and s have been generated in the MC simulation acc.
to (9) by the heatbath and the standard Metropolis algorithms, respectively.
We tried as well different Metropolls update codes for the z-fields. ULat
found the configurations to be satrongly correlated from iteration to
iteration.

fur MC rnns were carried out for lattices with divisions N =2, 3 and 4.
Usually we made 400 thermallzation eweeps, after which we started
measurements during 5000 sweeps (except for N = 2, /3 = 4.75, 5.00 where we
have run 50000 eweeps). We checked our MC code by comparing the rowerical
results fc,r'1 < :.LU1 J:; + with a vorresponding strong coupling expansion up
to order f°.

iv) The topolegical charge on the lattice for the ! nodel is
defined by
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where the first sum runs over all simplices ¢ and the zecond one over the

corresponding links (the latter one implies to take the angles L in the
right orientation). The brackets mean the reduction to the Lntprval

- = 3 4
"<[zpij]_ zpij+2nv0£+n, zaea_. (11)
By Monte Carlo simulation we measure Iz xt acc. to Eq. (1), where +the
average lattice scale 1= 2 1 / L should behave in accordance with

{i,31

the renormalization group

Al = (12)
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First topolegical investigations of the lattice (I'l model (which 1is
identical with the non-linear 3} o-model) shoved strong scaling
violations for 12 x, due to the dominance of dislocations with an action
SL(diEl) <n [7]. It has been argued that scaling should be restored for
nz4 . Moreover, Petcher and Luscher [8] have coonstructed a modified
("ferromagnetic”) lattice action for which in the n=3 case the MC data
were in agreement with ecaling. In our csee, the (1’3 model, we have made a
rough check, whether dislocations are expected to  spoil ecaling. For a
single simplex % with an arbitrary positicn we have chosen the

surrounding links with lpij' =n/3 +¢, £ « 1, such that ‘/o acc. to
o

(11) became just %1. All other ¢'s were put =qual to zero and the z's
equal to (1,0,0,0). For this kind of dislocation one finds

§L(d151; =3.2908 > np (13)

after averaging over all positions of the simplex o,. So this kind of
exceptional configuration does not cause darger in the continuum 1imit of
the theory.



v} The topological charge hag been measured every 10-th MC  sweep. In
thie way correlations between subsequent measurements were under control.

(ur results for the topological susceptibility 1 ztl/ 2 are presented in
the Figure for all lattice sizes considered. The errors indicated, for
simplicity, sre the pure statistical ones for Qtz. The stralght line

corresponds tn the scaling behaviour ace. 1o Eg. (12). We see that all the
data points very well fit to this behaviour. At the given accuracy we do
not see any scaling vialation in the range 3.25 B g 5.0. Very
surprisingly, at lesst for us, the pointe for N = 2,3 and 4 lie on the same
universal curve., 1. e. there is not any finite size effect visible!
Obviocusly, the topological susceptibility at large 3 is dominated by
short-range fluctuations only. For the Ns2  lattice, which containe 34
lattice sites only, we found 36 and 13 events with 'Qt.' = 1 among the 5000
measured charges at ¥ = 4.75 and 5.0, respectively. These non-trivial
events were isolated, they disappeared immediately. Nevertheleas, there 18
a region, where Qt-va]ues happen to be “frozen” over up to 0(100) sweeps.
For N = 4 this has been observed at 4.0 ¢ 7 ¢ 4.5. One would like to
interpret thie phencmenon bty the existence of long-range fluctuations, what
has been reported for the CP% model as well [8]. If one would like to
insist in suppressing short-range fluctuations in Qt. measurements, e. g.
by "cooling” (see Ref. (11), then finite size effects became visible for
N=4 at s =x4.5. It is only in this case that the senmi-classical
finite-volume picture [3,4] could be established as well on the lattice.

vi) Our findings very much resemble lattice results obtained 1in SU(2)
Yang-Mills theory, where Qt has been determined on MC egquilibrium
configurations by the geometric method of Fhillipe and Stone [9). There is
seen a beautiful scaling behaviour [10}, where at the same time short-range
fluctuations are present. Finite size effects are weak compared with those
seen after cooling [11]. Of course, 1t would be worthwhile to study the
finite volume effects in the 4D Yang-Mills case on the sphere in the same
way a& 1t hae been presented here for the (2’3 model.
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Topological susceptibility as fumction of /3. Dots, triangles and stare
correspord to lattice slzes with N = 4, 3 and 2, respectively, The dashed
line shows the renormalization group behsviour Bg. (12).
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Mosepunuu B,, Momnep-lipoiickep M,, E2-89-607
ltynsTka H.

HcecnepgopaHHe TONOJIOMHYECKOH BaKYYMHOH

CTPYKTYpbl OBYyMepDHOWM CP3-MopenH Ha

chepuueckoit nemeTKe

C nomombio MeToga Monrte-Kapiio omnpepensercsa Tononoruuec—
Kad BOCNPHMMYHMBOCTB Ha CHMHIIEXCHOH pemeTKe amnlnpoKCHMHDPYO~
weit chpepy S*. IMonmyueHHble HmaHHbIE XOPOMO COIJIACYTCA C pe-
HODMI'DYNIIOBhIM nosefeHHeM. B npenene maneHpkoro ob6beMma He
HabmogaeTCR YMEHbEeHHEe NIIOTHOCTH TONONOTHYECKHX GNIYKTYyauud
B OTJIHYMe OT MNpencasaHHOH HUHCTAHTOHHBIX BbUHCIIEHHT,

Pabora BrinonHeHa B JlaGopaTOpHH TeopeTH4YeCKOH GH3IHKH
ousu,

IMpenpuur OGbeanHeHHOr0 HHCTUTYTA AAePHBIX Hecnenon anuit. y6ua 1989

Jozefini B., Miller-Preusker M., E2-89-607

Schultka N.
Computation of the Topological Susceptibility
for the 2D CP2 Model on a Spherical Lattice

Using Monte Carlo simulations we calculate the topolo-
gical susceptibility for the CP2 model on a simplicial
lattice approximating the sphere S2.. Our data exhibit the
right scaling behaviour but do not show a suppression of
topologically relevant fluctuations in the small volume
limit.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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