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i) During the last years a lot of efforts havt-j V̂«-ti nwfe to invest ц/м.,«г 
the topological vacuum structure of lattice Range thuoriep. [11. As .-m 
indicator, probing the contribution of topological Jy пчч-trivial t-xoii-ationr. 
to the quantum vacuum usually serves the topoJogi'^J .^up^epUbiUty 

\ = < Q* > / v"1f (l) 

where ft represents the topological charge r-f Me e.wwf- field and V* 
the volume in the d-d linens ional space-turn1. Various methods have teen 
invented to define Q( on the l a t t i ce (see Hef. ( I l l - Kor the quantised 
fields generated numerically by Monte Carl'.- <MO simulations they lead 
typically to different Ĉ  values event by ev*^nt and to somewhat different 
X estimates a t accessible couplings 1л the scaling region. Surely, the 
disagreement is due to short-range fluctuations .;md possibly to la t t i ce 
a r t i f ac t s , which are taken into account <-•»• are suppressed in a different 
manner [21. However, a p r io r i , i t is v^ry di f f icul t tn say in as far 
short-range fluctuations with Q * 0 should Lie irrelevant in the continuum 
limit or whether instanton-like eeni-clat&icaj b*-kgrounri fields alone 
determine the topological properties of thv vaouim, ei-:ite. 
In this l e t t e r we are going to discuss this question within the framework <>£ 
the two-dimensional model, which has a lot o»f s imi la r i t ies with the 
Yang-Mills theory in four dimensions. The l a t t e r fact concerns also the 
email volume limit for both theories formula*>.••} iti the or<ntinuum on spheres 
I> and £>* , respectively. I t has been shown for the Yang-Mills theory by 
Luscher [31 and afterwards for the СР"~1 model by SV-hwab [4] that in th i s 
1 imi t * tends to zero and becomes dcminat-ed by the one - instanton 
contribution, provided the semi-classical .-approximation makes sense a t a l l . 
We want to see, whether the same will happen within the formulation of the 
theory on a la t t ic ised sphere, i . e . under the sam^ tvmndary conditions as in 
the continuum rase. 

i i ) The О* 1 " 1 model we are considering i« defined in a curved continuum 
space by the action 

S = - Jd*xJ«" ^""'{D a a )(D^z a )* . v.» ^ 1,2 (2) 



where the complex vectors г ~ z (x) , a=l,2,. . . ,n satisfy the 
normalization condition E г (z ) - 1 . g denotes the metric tensor on 

5 and a x/g~ represents the invariant volume element. The covariant 
derivative D = <* - iA contains the Abelian "gauge" field A which can 
be easily expressed by the a-field using the equations of motion. Here we 
want to treat it as a dynamical field which allows to read off the 
topological chares as a sum over winding numbers 

'•-Ш 2л 
d x ^ (3) 

in a straightforward manner, 
The theory is approximated on a triangular lattice. In principle, the 
latter could I*1- a random one, but. we prefer to generate an almost regular 
lattice. It can be obtained by starting from a regular tetraeder in K 3 

the corners of which *re f'Mced on the sphere о 77jen successively finer 
lattices enumerated by N = 1.2,... are provided by dividing all the edges 
into two partR each and projecting the midpoints onto the sphere. 
Connecting th** newly projected sites with each other by new links gives ш 
the next finer lattice. In this way the lattices produced contain 
P = 2 **+2 sites and L - 3(P-2) links. Every site has six nearest 
neighbours exo?pt t.h*~ original corner points of the tetraeder which have 
three. This lattice cnnet .motion has the advantage easily to be mapped onto 
the two-dimensional plane by cutting the lattice along three of the original 
edgec of tht- tetra^ier. We take the simplicee of the lattice to be plane 
ones in IP Already for N = 2 the area sum of all simplices represents 
B8% of th* area of the sphere. 
The lattice formulation of the model (2) looks as follows. We approximate 
the covariant derivative at lattice site x in the standard way 

- Л г а л О * - га}/1 ~ 

where 1 is the length of the link vector 1 connecting the neighbour 
sites xt , x . The link variable is defined by 

The metric tuneor at the flat simplex (i.j.k) 
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ie given by [6] 

v i ik 

with the simplex area 
1 Г 2 2 2 2 2 2 4 4 4 . . 

& .. = i I 21 1..+ 21. .1 + 21 1 - 1 - 1 - 1 
L J k 4 I 4 1» 4 ik Jk 'k ' J Jk T " J 

The l a t t i c e action can be cast into a form of a sum over links joining the 
nearest neighbours i , j 

Su = "I VP (6) 

where s gets contributions of both adjacent simplicee ( i i j . k ) and 
( i , J ,K ' ) 

в ., = z°(U Г - U.tt.ft - U. U. О' ) ( z a ) + c .c . - ЗГ., (7) 
U.J) t i j i j ik kj ij i k ' k-j i j J l j 
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2 2 2 2 Z Z 
1 -1 . - 1 1 - L - 1 . . 

with the weights 

П = L • 1. /12Д . 
i j kv k j i j k 

12Л ... 
- + — 

12Д 
I J k -

• » -* 
= 4- L k ' j ijk* * 

(8) 

Our lattice action is manifestly locally t.I(l) gauge invariant. In 
contrast to СУ 0 - lattice actions invented in earlier papers [6,7,8] it is 
a non-local one containing products of two U(l) link variables. In the 
folLowing we restrict ourselves to the model, i.e. n=4 . 

ili) The model is quantized according to the functional integral 

p 4 ГТ . 

J D t ? t d V *( E lz*|z-l) J П — - expf-SL({Zi>,{¥>k})l (9) 
-n 

The quantum fields z and *> have been generated in the MC simulation ace. 
to (9) by the heatbath and the standard Metropolis algorithms, respectively. 
We tried aa well different Metropolis update codes for the s-fieldS: bat 
found the configurations to be strongly correlated from iteration to 
iteration. 
Our MC rune were carried out for lattices with divisions N = 2 , 3 and 4. 
Usually we made 400 thermalisation sweeps, after which we started 
measurements during 5000 -sweeps (except for N = 2, ^ = 4.?5, 5.00 where we 
have run 50000 sweeps). We checked our MC code by comparing the r̂ voerical 
results for < 5.U, ,з. * with a corresponding strong coupling expansion up 
to order ft*'. 

iv) The topological charge on the lattice for the OP"" 1 model 16 
defined by 
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«••^I[ I •«] 
where the first sum runs over all simplices с and the second one over the 
corresponding links (the latter one implies to take the angles p . , in the 
right orientation). The brackets mean the reduction to the interval 

~n < [ 2 <4j ] • I * u + 2™o ( in 

~2 By Monte Carlo simulation we measure 1 *. ace. to Ecj. [I), where the 
average lattice scale 1 = У 1. . / L should behave in accordance with 

сиз 
the renormalization group 

- (in ^1/2 , l*r 

v = [ — J « - ( - — J < 1 2 > 
First topological Investigations of the lattice CF model (which is 
identical with the non-linear 0(3) c-model) showed strong scaling 

2 violations for 1 *. due to the dominance of dislocations with an action 
S. (disl) < TT [7]. It has been argued that scaling Bhould be restored for 
r£:4 . Moreover, Petcher and LUscher [81 have constructed a modified 
( "ferromagnetic-) lattice action for which in the n=3 case the MC data 
were in agreement with scaling. In our case, th model, we have made a 
rough check, whether dislocations are expected to spoil scaling. For a 
single eiroplex o- with an arbitrary position we have chosen the 
surrounding links with |*>. . | = "/3 +e, a" •< 1, such that ь> асе. to 

о 
(11) became just +1. All other *>'s were put equal to zero and the z's 
equal to (1,0,0,0). For this kind of dislocation one finds 

S,(diBlJ = 3.29 ft > nft (13) 

after averaging over all positions of the simplex о So this kind of 
exceptional configuration doee not cause danger iri the continuum limit of 
the theory. 
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v) The topological charge has been measured every 10-th MC sweep. In 
thie way correlations between subsequent measurements were under control. 

- J/9 
(Xir results for the topological susceptibility 1 я;. are presented in 
the Fu?ure for all lattice sizes considered. The errors indicated, for 

2 simplicity, are the i-ure statistical ones for Q. . The straight line 
corresponds V» the seeling behaviour ace. to Eq. (12). We see that ail the 
data points very well fit to this behaviour. At the given accuracy we do 
not see any scaling" violation in the range 3.25 < ft <, 5.0. Very 
surprisingly, «t least for ue, the points for N = 2,3 and 4 lie on the вале 
universal curve. i. e. there is not any finite size effect visible! 
Obviously, the topological susceptibility at large ft is dominated by 
short-range fluctuations only. For the N=2 lattice, which contains 34 
lattice sites only, we found 36 and 13 events with IQ. I = 1 among the 5000 
measured charges at ft -4.1$ and 5.0, respectively. These non-trivial 
events were isolated, they disappeared immediately. Nevertheless, there is 
a region, where Ц.-values happen to be "frozen" over up to 0(100) sweeps. 
For N = 4 this has been observed at 4.0 < f? <, 4.5. One would like to 
intei-pret this phenomenon by the existence of long-range fluctuations, what 
has been reported for the CP 2 model as well [8]. If one would Ш е to 
insist in suppressing short-range fluctuations in Q+ measurements, e. g. 
by "cooling" (see ftef. £1]), then finite siae effects became visible for 
N = 4 at ft % 4.5. It is only in this case that the semi-claBsical 
finite-volume picture [3,4] could be established as well on the lattice. 

vi) Our findings very much resemble lattice results obtained in SU(2) 
Yang-Mills theory, where <L has been determined on MC equilibrium 
configurations by the geometric method of Hillllpe and Stone [9]. There is 
seen a beautiful scaling behaviour [10], where at the same tijoe short-range 
fluctuations are present. Finite size effects are weak compared with those 
seen after cooling [11]. Of course, it would be worthwhile to study the 
finite volume effecte in the 4D Yang-Hills case on the sphere in the sane 
way as it has been presented here for the CT" model. 
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Topological susceptibility as function of /?. Dote, triangles and stare 
correspond to lattice sizes with N = 4, 3 arid 2, respectively. The dashed 
line ehoHi the renormaliaation group behaviour Eq. (12). 
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Using Monte Carlo simulations we calculate the topolo
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