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Supersymmetric field theories have the distinctive feature of being invariant

under transformations that mix bosonic and fermionic variables. Reduction to

0+1 dimensions yields mechanical models with an analogous invariance. In this

case, the Grassmannian variables are interpreted as describing (classically) the

spin degrees of freedom of the particles involved. After canonical quantization, the

corresponding quantities obey the standard anticommutation relations of fermionic

creation and annihilation operators M.

It is known that paraquantization offers alternatives to the usual quantization

scheme. In this framework, one can expect that it is possible to construct parasu-

persymmetric theories, that is, theories which are invariant under transformations

between bosonic and parafermionic variables. As a matter of fact, Rubakov and

Spiridonov have recently M shown how the parasupersymmetric generalization of

supersymmetric Quantum Mechanics proceeds. In this case, the fermionic creation

and annihilation operators obey paracommutation relations.

The applications of supersymmetric Quantum Mechanics are many. One

might hope that its parasupersymmetric generalization will be as useful. The

elaboration of parasupersymmeric Quantum Mechanics moreover has led to new

mathematical constructs; indeed, the symmetry generators realize algebras involv-

ing products of degree higher than 2. In view of the increasing role that algebraic

methods are playing in Physics, these structures clearly deserve investigation.
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This set of lectures is aimed at giving an introduction to parasupersymmetric

Quantum Mechanics and parasuperalgebras. Their contents are given below.

Lecture 1: Parasupersymmetric quantum mechanics

1.1 Paraquantization

1.2 Supersymmetric quantum mechanics

1.3 Parasupersymmetric quantum mechanics

Lecture 2: Conformai parasupersymmetries in quantum mechanics

2.1 Conformai symmetry

2.2 Conformai supersymmetry

2.3 Conformai parasupersymmetry

2.4 Representations of the parasuperconformal algebra

In Lecture 1, we mainly summarize the work of Rubakov and Spiridonov. In

Lecture 2, we introduce the second order parasuperconformal algebra which gener-

alizes the OSp{2,1) superalgebra. An explicit realization will be given in terms of

the symmetry generators of a quantum mechanical example. The relevant unitary

representations will be constructed, allowing for an algebraic determination of the

energy spectrum and wave functions.
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LECTURE 1: PARASÜPERSYMMETRIC QUANTUM MECHANICS

1.1-Paraquantization

Following Ohnuki and Kamefuchi M, we shall illustrate the philosophy of
paraquantization with two simple examples. Let us consider first a Bose oscillator
whose classical Lagrangian is given by

L = \tf-<1*)- (1-1)

The Euler-Lagrange (i.e. classical) equation of motion is

9 + 9 = 0. (1.2)

Introducing the conjugate momentum p = q, the associated Hamiltonian is the
usual

H = ±(p2+q2), P = 9- 0-3)

When the system is quantized, the Heisenberg (i.e. quantum) equations of motion

i%t=[q,H) and i * =\p,H) (1.4)

are required to be compatible with p = q and with the Euler-Lagrange equation
(1.2). Hence, one demands

[q,H] = ip, (L5a)

[p,ff] = -«9. (156)

The paraquantization point of view consists in asking what kind of commutation
relations between q and p should we have for equations (1.5) to be verified. We
know, of course, that the canonical commutation relation [q,p\ = i does the job,
but as shown by Wigner W, it is not the only possibility.

Let us now introduce the standard creation and annihilation operators

^ + Í^ t ^ Í^

In terms of these operators, the Hamiltonian (1.3) becomes

tf = i (a'o + aa») (1.7)
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and Eqs. (1.5) take the following form:

[C:ffj = a, [a\H\ = -a*. (1.S)

One possible way of satisfying (1.8) is by imposing

[0,0*1 = 1 (1-9)

which, of course, is equivalent to [q,p] = i. But, as already mentioned, there are

other solutions. Rewrite the first of the relations (1.8) as

[o,[at,a]+] = 2a. (1.10)

Equation (1.10) will be regarded as the fundamental commutation relation to be

satisfied in the parabose quantization procedure. Let us show with an example

that it admits solutions other than (1.9). Suppose that we write a and a* in the

form

a = a^ + a^\ a» = a*»1 +a<2>\ (1.11)

and that we require the "components" to satisfy

[a i o \a ( o ) t ] = l. aj = 1,2 (1.12a)

( « ( o ) , « w t ] + = 0, [a<°\a<»]+=0, a*$. (1.126)

It is easy to see that

ia\aU = [a<»\al% + [aV\c'»U. ' (1.13)

Since

we have using (1.13)

l«.[«f.«W = f ^ M * " ' V ' M + («(2\[n(2)t,a<2>l+l
= 2(a<1> + a<2>) = 2a,

and indeed, a solution to (1.10) which is clearly incquivalent to (1.9).

We shall now turn to Fermi-like oscillators. In this case we take for the

Hamiltonian

/i = i(«»a-aat) = i[nt,f l]., (1.16)
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while keeping the same equations of motion, that is (1.8). Substituting for H the

expression (116). the equations of motion now amount to

[a,[a\a]_] = 2a, \a\[a\a]_] = -2a». (1.17)

The above are the fundamental fermionic paracommutation relations. The stan-
dard anticommutation* relations

{a,a*} = l, a* = a t2 = 0, (1.18)

associated to the canonical quantization of fermionic variables are the simplest

conditions that we can impose on the creation and annihilation operators so that

eqs. (1-17) be verified. There are however, other possibilities in this case also.

This may be seen as follows. Define

h = \[a\a] = H, (1.19a)

7+ = a f, y_ = a. (1.196)

As the notation suggests, these operators obey the SU(2) commutation relations:

[J3, J±) = ±J±. (1.20)

They therefore admit representations in spaces of dimension p = 1,2,3,... . Ac-

cordingly, the spectrum of Jj = H is —p/2, -p /2+l , . . . ,p /? - l ,p /2 . The parameter

p is called the order of paraquantization.

When p — 1 we have in terms of the Pauli matrices: J3 = 5^3, a* = o+ and

a = o~. In this case, a and a* clearly satisfy the commutation relations (118) of

ordinary Fermi oscillators. When p = 2 we have

/I 0 0\
= 00 0 ,

\0 0 -1/
(1.21a)

(0 0 0 \ / 0 1 0\

l O O ] , af s v51 0 0 1 I . (1.216)
0 1 0 / \0 0 0/* We shall use indifferently the notation [, ] + or { , } for the antkommutator

and [, ] or [, ]_ for the commuator.
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We see that a and a* do not satisfy anymore the anticommutation relations (1.18);

one can quickly check that they instead verify

aa*a = 2a, a3 = 0, (1.22a)

a V + a V = 2a. (1.226)

As in the Bose case, one can also obtain a realization of (1.17) through a

decomposition of the form (1.11). Here, one must impose the following relations

on the components:

= 0, (1.23a)

[al"\a^]. = 0 , [a<a),a<«]_ = 0, a f &. (1.236)

The a and a* so defined, are actually of second order since they obey the rela-

tions (1.22) which in turn imply the equations (1-17). This representation how-

ever, contrary to the 3-dimensional one given in (1.21), is reducible. This can

be shown as follows. Let |0) be the "vacuum state" defined by the conditions

a*°*|0) = 0, a = 1,2. We may take for basis of the representation space the set

{ |0), a ^ V ) , a(2)t|0), a0 ) ta ( 2 ) t |0) }• It then can straightforwardly be checked

that a*1* |0) — at7) \0) spans an invariant 1-dimensional space since it belongs to

the kernel of both a and a*.

Let us conclude this section by saying that all that has been discussed so far

can be generalized to situations (like field theory) where there are many oscillators

l3l. The general paracommutation relations read

(1.24a)

[ak,[a],al\d = 26k,al * 2Skma\, (1.246)

[a*,[a;,am]7] = 0. (1.24c)

The upper and lower signs respectively correspond to the parafermi and parabose

cases.

A realization of the above relations is provided by the so-called Green rep-

resentation which is in general reducible. Examples of this representation have

already been given. For paravariables of order p, it is constructed by taking

_ iO)t , (1-25)
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with the components a^° satisfying

[ak »a/ J± = vkl, [ak ial ]± = ^) (1.2UOJ

: = [a[a\aW =0 (a ̂  0). (1.266)

1.2-Supersymmetric quantum mechanics M

We shall review in this Section the main features of ordinary supersymmetric

Quantum Mechanics before we discuss its parasupersymmetric generalization.

A quantum mechanical system is said to be supersymmetric if there exist

supercharges Q and Q* which together with the Hamiltonian H realize the super-

algebra

[(?,Q']+=2ff, (1.27a)

Q2 = Q*2 = 0, (1.276)

[H,Q]_=[H,Q']_=0. (1.27c)

In one dimension, such supercharges can be constructed with the help of the

fermionic creation and annihilation operators / and /* that satisfy

[/,/']+ = 1, / 2 = / f 2 = 0- (1-28)

These operators are irreducibly represented by the following 2x2 matrices

Let p=—idx and Q, Q* be of the form

Q* = {p-W)f\ (1-30)

with W{x) an arbitrar)' function. Substitution into (1.27a) gives the following

Hamiltonian
\ + W2 + W'[f\f}_). (1-31)

As usual W stands for d\V(x)/dx. Note that [ /», /] . = (J _0,) =<r3. The Hamilto-

nian H governs the one-dimensional motion of a "spin-|" particle in the potential

i l l ' 2 and the "magnetic field" \\V along the third axis.
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Let us record that the structure relations (1.27) are replaced by

{Q>,Q,)=26ijH, [#,<?.] = 0, i,i = 1,2, (1.32)

if one uses the hermitian basis

Q. = -j-(Q + Qf), Q* = -j=(Q - <?')• (133)

1.3-Parasupersymmetric quantum mechanics W

The second-order parasupersymmetric generalization of supersymmetric Qua-
ntum Mechanics is achieved through the replacement of the fermionic operators /
and /* by the parafermionic operators a and a* defined in Section 1.1. Recall that
these creation and annihilation operators satisfy the trilinear relations (1.22) of
which a 3-dimei.sional representation has been given in (1.216). In analogy with
the supersymmetric Quantum Mechanics construction, we look for parafermionic
charges Q, Q* such that

Q3 = Qf3 = 0. (1.34a)

The simplest generalisation of (1.30) which satisfies the condition (1.34a) is

( 0 0 0 \ / 0 p - i W , 0 \

P + iW, 0 0 1, Q f = 0 0 p-iW2), (1.35)
0 p + i\V2 0 / \ 0 0 0 /

with Hri(x) and Hr2(x) for now arbitrary functions of x. We shall refer to the
parafermionic charges Q and Q* as the parasupertranslation generators. At this
point, we want to determine the associated Hamiltonian H and the algebra which is
realized when it is adjoined to Q and Q*. One can check that bilinear combinations
of Q and Q* do not yield expressions of the form p7+U(x) with lr(x) a 3x3 matrix
depending only on x. We therefore look for trilinear combinations of Q and QK
For the Hamiltonian H given by o o \

O -WÍ-3W}/
AH = 2p2 + TK2 + \\'l + O Ŵ  - IV; O ) (1.36)

V O
and provided W\(x) and N^x) satisfy

KHj + H',)" = 0, (1.37)
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we find the following algebra:

Q*Q* + QQ*Q + Q<Q* = 4QH, (1.346)

These relations, when realized, define what we shall call a parasupersymmetric

system. Using a and a*, Q, Q* and H can be written as follows:

Q = ^ ((P + iWi )a V + (p + ilViya*), (1.38o)

<?f = ^ ((P - «IVi^1 . + (p - tU^aa»2) , (1.3SÍ)

(1.38c)

In terms of the hermitian charges Qx = (Çf + Q)/2 and Q2 = ( Q ' - C J ^ i , the

relations (l.ZAabcd) can be cast in the form

[H,Qi] = 0, ( i , j = l , 2 ) (1.39a)

(Low)
+ <?*({<?<<<?>}-2^0 =0-

Note how the relations that define the ordinary' supersymmetry algebra are fac-

tored in (1.396).

Let us now look at a simple example: the parasupersymmetric harmonic

oscillator. Take IV,(x), U2(x) to be

H-'i = W2 = x. (1.40)

When we substitute for these functions in (1.38), we find that the parasupercharges

can be written as

Q = 6fa, Q* = ba*, (1.41a)

with

6=-~(p- ix ) , b< = -L(p + i x). (
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The Hamiltonian is given by

" = 5 ^ + *2)+ ![«•.«!
l l ( 1 4 2 )

It is thus simply the sum of the Hamfltonians associated on the one hand to an

ordinary Bose oscillator and on the other hand to a second order para-Fermi oscil-

lator. Using the fact that [I, i f] = 1 and the definition of J3, we may equivalently

write

# = •*•+/, + ! . (1.43)

The eigenvalues of this operator clearly are

£ , , = 11 + * + ! , * = 0 , ± l , n = 0,1,2. . . . (1.44)

Note that the ground state has negative energy and that lewis above the second

one are three-fold degenerate.

We can use this example to illustrate the nature of parasupersymmetry trans-

formations. Since these transformations mix bosonic and parafermionic variables,

their parameters must be some second order generalization of the usual Grassmann

numbers of supersymmetry. Once therefore introduces a para-Grassmann algebra

generated by elements 9t which satisfy

These numbers are further require to obey the following commutation relations

with a and a*:

[o,[at,i,]] = 2 ^ -(1A6*)

(•.MÉ]]-PÍ.MJ1]-0. (1.466)

To the parasuperchargcs (?* and Q, we therefore associate two such numbers, say

9 and I. The corresponding infinitesimal transformation of a dynamical variable

4 is then given by

*> = ([*,<?]+ [*,<?'],<>]• (1-47)

For the oscillator, we get

206,
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(1.450)

= M-
We may then directly chi.-k the invariance of H under these transformations.

Indeed
6H = 6tfb + bUb + hsa\a] + \[a\6a]

2 í

\[29b\a) + \{a\28b\

= 0.
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LECTURE 2: CONFORMAL PARASUPERSYMMETRIES

IN QUANTUM MECHANICS

Conformai symmetries are playing an important role in many of the recent

developments in theoretical physics. In problems where they are present, they

typically enable one to solve the dynamics. We shall here discuss a case in para-

supersymmetric Quantum Mechanics where this is true.

In what follows, we shall identify the parasuperalgebra that generalizes the

OSp(2,1) superalgebra. To this end, we shall successively examine the supersym-

metric and parasupersymmetric extensions of a simple conformai invariant system.

2.1-Conformal symmetry l5l

Consider the following operators:

H = \p\ D = -\{xp + px), K=\x\ (2.1)

It is immediate to check that they satisfy the 0(2.1) commutation relations:

[H,K] = 2iD, [D,K] = iK, [D,H)=-iH. (2.2)

The same algebra is realized if the Hamiltonian H is replaced by

with A an arbitrary real parameter. The above operators give rise to an algebra of

conserved charges:

-iHtAeiHtA(t) = e-iHtAeiHt, A € {H, D, A'}, (2.4a)

For ip(t) a solution of the Schrodinger equation idi'/dt = #v>, it follows that

A(t)tl>(t) is also a solution. The Hubert space of state vectors 0(<)'s therefore

support a representation of 0(2,1). Note that it suffices to know the action of the

charges A at f = 0 to determine how they transform states at any given time.
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Please observe that we have the same 0(2,1) symmetry algebra if we take the

Hamiltonian to be

l ( 2 ^ 2) (2.5)

instead of H. In this case however, the conserved charges are given by

A(t) = e-iH'tAiM}e
iH't. (2.6)

Again, it suffices to know the action of these operators at < = 0 in order to obtain

the symmetries of the corresponding Schrõdinger equation.

2.2-Conformal supersymmetry I6-7'

Let us now consider the supersymmetric extension of the system introduced

in the preceding section. Substituting W = A/x in (1.30) and (1.31) gives the

following supercharges and Hamiltonian:

Q = (P + i^)f, Q' = (p-i^)f\ (2.7a)

The above Hamiltonian comprises a pair of Hamiltonians with 1/x2 potentials. If

we combine this operator with the generator D and K of the previous section, we

clearly get again a realization of 0(2,1). Since H is supersymmetric, there are

actually still more symmetries. Indeed, computing the commutator of Q and K

we find

[Q,A'] = [p,è*2]/= «(-*/) = «S. (2.8)

The supertranslation generator Q being conserved, we thus get two new symmetry

operators, namely

5 = - i / , 5 f = - x / t . (2.9)

These charges generate superconformal transformations as is seen from the fact

that

{S,5f} = x 2 = 2A'. (2.10a)

Evaluating the anticommutators between the supercharges, we further obtain an-

other bosonic constant of motion. We get

0 (2.106)
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and

{Q,S*} = 2D-2iY, (2.10c)

with
= \ ( T + A ) •Y = \

This last operator generates rotations in internal space. At this point a complete

algebraic set has been obtained. Thefermionic charges Q,Q\S,S* and the bosonic

operators H,D,K,Y, in fact, close under the graded Lie product to realize the

OSp(2,1) superalgebra. If one uses the hermitian charges

Q2 = -j=(Q - <?f),

5, = - ^ ( 5 + 5»), S2 = -L(5 - S»), (2.116)

one may check that the following structure relations are obeyed (i,j = 1,2):

[D,H] = -iH, [K,H] = -2iD, [D%K\ = iK,
(2.12a)

(2.126)

2.3-Conformal parasupersymmetry Í81

We now come to the parasupersymmetric extension of the l/x2-potential

which we shall use to abstract the structure of the second-order parasupercon-

formal algebra.

Let W\ = A / J and H \ - (A + l)/x, these functions satisfy condition (1.37).

Substitution into (1.36) and (1.3S) yields the following paracharges and Hamilto-

nian:

( )
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( 2 1 3 6 )

, / A ( A - l ) 0 0 \ (2.13c)

2 + £ ? ( ° A(A + 1> °
1 lx \ 0 0 (A + l)(A + 2 ) /

Here again H, D = — \{x,p) and Á' = \x2 form an 0(2,1) algebra and, like
in the supersymmetric case, commuting Q with K reveals the existence of the
parasuperconformal generators:

5 = -±=xa, 5» = - ^ x o * . (2.14)

The set of symmetries is completed with the addition of the internal rotation
generator Y given by

Y = \(J3 + A + I ) , (2.15)

with

J3 = \[a\a]. (2.16)

Our task is now to find the algebraic relations which are obeyed by this set of
charges. It is not difficult to see that the commutation relations involving at least
one bosonic generator are identical to those obtained in the supersymmetric case.
(See the previous Section.) The fermionic products however are drastically altered.
Instead of the anticommutation relations characteristic of superalgebras, one finds
that the fermionic generators satisfy trilinear relations among themselves. These
relations are explicitly given below.

o, (2.17a)

2 = 4QH, (2.176)

S2S* + SS'S + S'S7 = 45A', (2.17c)

< + QS-Q + S*Q7 = 4Q{D - iY), (2.17</)

f + SQ'S + Q'S2 = 45(D + iY), (2.17e)
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Q2S + QSQ + SQ2 = 0, (2-17/)

S2Q + SQS + QS2 = 0, (2.17?)

,Q*) + S{Q\Q) + Q'{Q,S) = *Q{D + ,T) + ASH, (2.17/i)

»} + Q{5f, S} + SMS, <?} = 4S(D - iY) + 4Q/<:, (2.17Í)

(p/u5 the htrmitian conjugated relations).

It is instructive to reexpress the above relations in terms of the hermitian
charges

<?i = \(Q + <?f), Q* = \(Q - Q'l (2.18a)

^ | (2.186)

One then finds (i,j, k= 1,2):

+ SidSitSt] - 26jkK)

- 2ijfcl? - 2ejkY)

Si({Sk,Si}-26kiK)=0,

- 2êtjD + 2^) + Qi({Sj,Sk} - 2éjkK)

i} - 2^D - 2ekiY) = 0.

Observe the factorization of the expressions which, if set equal to zero, would
represent the odd-odd part of the structure relations of OSp{2,\).

In the next section, we shall be concerned with another Hamiltonian this one
gotten by taking for the superpotentials

\\\ = - + u/x, W2 = ̂ Í i l + UXj (2.20)
X X

with u an arbitrary real constant. In this case, equation (1.3Sa) gives for the
parasupcrtranslation generator

xl ± ^ (2.21)
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white correspondingly (1.38c) leads to the following Hamiltionian:

— I • 1 - — »

(2.22)

- 1/,
H=2\P

+ w V + u[a\ a) + u/(2A +

It is readily seen that H can be expressed as a linear combination of some of our

previous generators:

H = H+ w7K + 2u>Y. (2.23)

Comparing with H, we see that H possesses additional harmonic and constant

terms.

2.4-Representations of the parasuperconformal algebra M

The Hamiltonian H shares with H the same dynamical symmetries. We know

therefore that its eigenstates belong to a representation space of the parasuper-

conformal algebra defined in Section 2.3. We shall now determine the spectrum

and the wave functions of H by constructing the relevant unitary representations

of this algebra.

A complete set of quantum numbers is provided by the eigenvalues of Y (or

equivalently of J3) and of

R=hH+iK< (224)

the compact generator of 0(2,1). Let m = 1,0,-1 denote the eigenvalues of J3.

In the present realization, the 0(2,1) Casimir operator C=\(HK+KH)-D2 is

given by

(2.25)

(In obtaining this expression we have used the fact that a*a = J+J- •= J7—J3+J3 =

2—m(m-l).) For each value of m, the eigenstates of H will therefore span a definite

irreducible representation of 0(2,1). It is not difficult to see that the spectrum of

H is bounded from below. If we set the eigenvalues of C in the form A m ( A m - l ) ,

it then follows from the representation theory of 0(2,1) that the eigenvalues of i?

are given by ATO+n with n =0,1,2, . . . . From (2.25), we get two solutions for Am :

(2.26)
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Our basis states \n, m) are thus characterized by the following eigenvalue equations:

R\n,m) = (&m+n)\n,m), (2.27a)

K|n,m) = i(m + X + i) |n,m). (2.276)

At this point, it is convenient to introduce the ladder operators:

B± = ±H-'ÍK*iD1 (2.28)

1 4 - d c * * ^ * (229a)

* = J
Note that Ff is up to a normalization factor the parasupertranslation generator
associated to H, that is F*; = l/(2>/%J)Q. In this Cartan-type basis the stucture
relations of the parasuperconformal algebra read:

j (2.31)

[B±, F£R) = 0, [B±, F*'*]

í-11)3 = o,

(2.32)

£)7 = 0,
F«{Fi,Fj} = 0,

r

plus the hermitian conjugated relations.
The action of the 0(2,1) raising and lowering operators is well known; one

has

B± Km) = V(Am +n)(Am + n ± 1 ) - Am{Sm - I) |n±I,m). (2.33)
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The transformation law of the basis states under F±R depends on the solution

which is taken for Am . Let us take first Am = A+ = |(A - m + §). From the

commutation relation of JF± with Y we find

r(FÍ|n,m)) = FÍ(y-!) |n,m)

= I ( m - l + A + I)(F||n,m)).

We can therefore conclude that

Ft |n,m} = cWtTO|n\m-l). (2.35)

Similarly, from the commutation relations of F± with R we get

| )

From (2.35), we also have

l |n,m}) = (A+. t + n')FÍ |nfm). (2.37)

Equating the right-hand-side of (2.36) and (2.37), we immediately solve for n' to

find that

Ft Km) = cn,m |n - I ± I,m - 1). (2.38)

Since the basis states are assumed to be orthonormalized,

|cn,m|2 = (n,m| F*Fi \n,m). (2.39)

The following identity

* £ i ' [ ] * (2.40)

can be shown to hold in the present realization through a straightforward compu-

tation. It therefore determines the normalization factor cn,m up to a phase which

we can consistently choose to be unity. In the end, one has

Ft |n,m) =
i / (2.41a)
-yf[2 - m(m - 1)] [A+ + n ± J(A + § - m)] |n - I ± I , m - 1).
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n *

3

2

' • B + F+
L

1 m
Fig. 1. The action of the parasnpercharges F±'R which connect the towers of states that belong to

the three O(2,l) irreducible representations labelled by m is illustrated for the case A m = A + .

The action of F± is obtained by repeating the same steps and one finds

F*|n,m) =

U - m(m + 1)] [A+ + n ? ±(A - \ - m)] \n + \±\,m + l).
(2.416)

The above actions are depicted in fig. 1. From (2.41), we see that there is a unique
state, namely |0,1), which is annihilated by Ft and F3-

• (2.42)Ft |0,l) = Jf |0,l) = 0.

Repeated application of F+ and F+ on this state will then allow to reach all

the other states. The spectrum of H on this representation space is immediately

derived from (2.23), one obtains

En = 2~-(n + A + 1), n = 0,1,2,.... (2.43)

Since it is independent of m, all levels (including the ground state) exhibit a three-
fold degeneracy. This is easily understood by recalling that F+, which here does
not change n but decreases m by one unit, commutes with H. Parasupersymmetry
is thus spontaneously broken in this representation. The shape of the spectrum
given by formula (2.43) is illustrated in fig. 2a.
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E

3d)

1 0 -1

(a)

m 1 0 -1

(b)

m

Fig. 2. Energy levels associated to the series (a) A m = A + »i d (&) A m = A ~ .

If the other solution for Am is adopted, that is, if Am = A~ = \{m —

equations (2.41) should be replaced by

Fj;|n,m) =

-y/[2-m(m-l)]

F±\n,m) =

n ± I(A + § - m)] |n
(2.44a)

- m(m + 1)] i ( A - i - m)] |n - | ± i,m + 1).
(2.446)

One would illustrate these actions by exchanging the roles of FL and FR in fig.l.

In this case, |0,-l) is the state which is annihilated by Fj? and Ff. As for the

spectrum of H on this module, it is given by

(2.45)

Its form is sketched in fig. 2b. Here, p; rasupersymmetry is unbroken, the ground

state has negative energy and a three-fold degeneracy is observed only above the

second level.

To conclude we wish to obtain the wave functions. This is done by returning

to the coordinate realization and setting

(2.46)
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Let us focus first on the case where Am = A+. From (i |F^|0,1) = 0 , we get for

tl?oti(x) the following equation:

whose normalized solution is

" A + l - I 1 . - ' " . (2.48)

One may now easily determine ^o,o(x) and Vo,-i(*) with the help of (2.41a) by

acting respectively once and twice on ^oi(x) with F+; one thus finds

*' '2 , m = 1,0, - 1 . (2.49)

The wave function ipn,m(x) for an arbitrary state is then obtained by applying n

times the raising operator B+ to ^oifn(x). Proceeding inductively one shows that

+ n - l)n

( 5 ) " 1 ; % A - - ^ (2.50)

I dyn

with y=wx2 . Using F> drigues' formula for the generalized Laguerre polynomials

L%, i.e.

we finally get for VTn,"»(x):

' ) . ( 2 .52 )

Upon repeating appropriately the above analysis, it is seen that the wave functions

for Am = A" can be obtained by substituting A~ for AjJ, in (2.52).
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Fig. 3. The values of A and m for which tk« O(2,I) series are «mtary are gives. Tke catry "+"
indicates that A + is positive for the corresponding valne of m and range of A, the entry "—" similarly
indicates that A " is positive.

Let us add the following comments. The 0(2,1) representations arising in our

problem will be unitary if A is positive. This condition is easily derived from the

requirement that the eigenvalues of B-B+ be positive definite M. It can also be

inferred from the fact that the Laguerre polynomials L% are defined for a > —1.

For values of A and m such that A+ >0 and A~ > 0 simultaneously, both sets of

0(2,1) representations provide admissible quantum states. The values of A and

m for which either series should be retained are given in Fig. 3. It should be

remarked that A^ and A~ cannot be positive at the same time for all values of

m. It is clear however that the three (m = O,±l) 0(2,1) irreducible representa-

tions associated to A + or A~ are needed to construct a unitary representation

of the full parasuperconformal algebra. It therefore follows that for — | < A < | ,

parasupersymmetry is at best realized only on a srbset of the physical states.

It is interesting to relate these observations with the self-adjointness properties

of H. By computing Ker(H±i), one can show that H is self-adjoint provided

|A — m + j | > 1 (see Ref. [10]). This condition is satisfied for all m when we

have A > | o r A < — | . We thus note that H is self-adjoint in the cases where

parasupersymmetry is unitarily implemented on all physical states.
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