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1. Introduction 
In recent years, methods that map many-fermion problems onto 
many-boson ones have been studied intensively. First 
established in the theory of spin waves [1,2], the boson 
representation of the bifermion operators has been extended 
to general ferntion systems [3-6]. Several approaches have 
been suggested to develop the boson representation 
techniques [7-12]. In nuclear physics, an aim of such 
studies is to obtain a microscopic support for the 
phenomenological models of nuclear collective states, like 
the interacting boson model (IBM). The bosonization of the 
fermion problem is thus accompanied by an identification of 
the subspace of relevant collective degrees of freedom and 
truncation of the full space to that subspace. 

There are three classes of microscopic investigations of 
nuclear collective structure in terms of boson models. In 
the first one, the collective Hamiltonian is constructed 
within a simple underlying symmetry group [13]. Thus, the 
collective variables are fixed independently of the real 
physical problem. As a result, a considerable coupling of 
the collective and noncollective degrees of freedom may 
occur. 

I In the second class, one does not demand that the 
collective Haailtonian has an exact symmetry group 
structure. Collective variables are determined so as to 
minimize the coupling of the collective and noncollective 
boson variables[14]. 

The third class of studies represents an intermediate 
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approach [8,9,15] in which, the coupling between the 
collective and noncollective variables is not fully 
minimized. Instead, the structure of the boson collective 
variables is taken from the lowest fermion pair in the 
Taam-Dancoff approximation (TDA). Such an identification 
seems to give a reasonable definition of the collective 
subspace. 

In this paper, we proceed within the last approach. We 
start with the BCS quasiparticle representation of the 
fermion problem. The truncation to the lowest quadrupole TDA 
pair is made. In the bosonization step, we develop a 
procedure based on the correspondence of the fermion and 
boson quadruple collective states. Our approach goes beyond 
the SU(6) symmetry of the IBM which we obtain as a limiting 
case. 

In sect.2, we discuss the mapping of the fermion 
guadrupole collective states and the pair fermion operator 
onto the boson ones. In this procedure, the norm matrix 
plays an important role and an approximate procedure how to 
calculate it is suggested. The boson image of the 
particle-hole operator is investigated in sect.3. In sect.4, 
the collective boson Hamiltonian is derived. Results of some 
calculations are presented in sect.5. At the present stage, 
we do not start with the microscopic fermion parameters. We 
rather inspect whether the present approach is able to give 
results which differ from the phenomenological IBM. 
Conclusions are given in sect.6. 
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2. Collective pair operator 
In the TDA, the lowest quadrupole state is generated by the 
operator t 

A^ = ^rl*«' {< < ^ • (1) 

v г >t 

Using A , we construct the subspace of the collective 
guadrupole states in the fermion space by the recurrence 
relation [8,9] 
lnvflIM> = — \ (n-l v.£l I ;2|)nv£Jl)x 

r v^ L , 1 1 1 " 
v i n

1
I , " 1

m 

x (1Д2Ш11М) A+Jn-1 VJOJIJM^ . (2) 
In the above, 11,1,0,2,М>р=А*мЮ> and (n-lv^Ij ;2 | }nvni) 
are the L=2 boson fractional parentage coefficients (cfp). 
In the boson space, the L=2 collective states are given 
analogously to eg.(2) 

|nvOIM)B= — \ (n-l vinili;2|}nvlll)x 
^ v , Q i I , M . f f l 

x ( W m | I M ) d^Jn-1 v.Q,!,!!,), , (3) 

where |1,1,0,2,M) =d* Ю) and &* denotes the creation 
'В 2Ш 2ГО 

operator of the collective guadrupole boson. 
The boson states (3) form an othonormalized system by 

definition. That is not true for the fermion states (2) for 
which the norm matrix is considered 

F<n'v'n'IMInvniM>r - - n. v. n. 1 H > n v n i H (4) 

We introduce the boson operator exp(-A), which in the boson 
space reproduces the norm matrix 
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„(n'v'Jl'lMle"AlnvniM)e = A , ,_, _. 

The TDA amplitudes and the L=2 boson c.f.p.'s could be 
chosen real so that the norm matrix Л is real and symmetric. 
The unitary mapping of the fermion collective subspace (2) 
onto the boson collective subspace (3) is brought in as 

lnvMM>F » exp(- | A ) |nvniM)B. (5) 

One easily sees that the mapping (5) implies the mapping of 
the TDA operator 

< a » exp(- f A ) < ш exp<§ A ). (6) 

From the unitarity of the mapping it follows 

A z m > exp( | A ) d^ exp(-| A ). 

To obtain the norm matrix from eq. (4) is not an easy task. 
We can, however obtain an equation for the norm matrix 

л 

operator exp(-A) starting from the nonunitary Dyson boson 
mapping. In that, the pair creation and annihilation 
operators in the general single particle space ..s,t,.. are 
mapped as 

+ • 
- * ' 

" i e . " 
— » b . t . 

where b = - b is the ideal boson operator and 
at ts 

B +. = b +. - Y b + b+ b = b +, - [F,b+,], 
uv 

with 
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F ш _i_ У b +
4 b + b b . (7) 

s tpq 

Of course, the norm matrix in the collective subspace is 
expressed through the elements of the norm matrix in the 
single particle space. For the latter, we have 

<0|...oa .. .a* a*,... lo> = (01. ..b ...B+, ,...lo). 
t s t' s' st •' t • 

On the other hand, the matrix elements of any operator in 
the collective boson space are expressed through the matrix 
elements of this operator in the full ideal boson space. We 

л 
thus have for the operator exp(-A) in the ideal boson space 

л 
(0|...b ...B+, ,... |0) = (0I . ..b ... .e"A. . .b+,t ,... |0) . (8) 

at s t st. s t 

The operator exp(-A) which satisfies for every s,t the 
relation 

A A 

together with the normalization condition 
A 

e~ A 10) = 10), 

satisfies also eq. (8). We have shown [16] that the above 
A 

equations determine the operator exp(-A) uniquely. 
The relation between the ideal boson space b and the 

transformed boson space b,„ ( , ) with the collective 
quadrupole boson d

2 1 4
= b

2 H
( 1 ) i s 

LH 
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Note, that for i=l,L=2 the superscripts i and L are not 
written in eq.(l) and also in the following treatment. 
Equation (9) is transformed into the collective boson 
subspace as 

а'* <к " {<- I'-O } -A (10) 

Here, the operator F is expressed generally through the 
collective guadrupole bosons d as well as through the 
other transformed bosons b . At this stage, we made an 
approximation by restricting F in eg. (10) only to the 
collective guadrupole bosons. Using the definition (7) , we 
have 

= 4- £чЛ. (11) 
L = 0 ,2, 4 

where С = 50 Ф Ф Ф Ф 
sr rt su ut 

«L= £ << d2 >LM «*2
 d2 >LH ' 

H 

Н0= -§- [ 3 N + N г - Т г J , 
А 1 Г л А3> А 9 А*> Т 
Н2= -~- -4 N + 2 Г - I + 2 Г , 
A I Г А Лч Ло А Э Т 
Н4» -±g -36 Н + 18 Г + 5 I - 3 Г . 

А Л я 

Here N is the d- bosons number operator and I is the square 
of the angular Momentum. The eigenvalue of the operator T z 

in the SU(5) basis is equal to v(v+3), where v is the 



seniority of the state. 
From eq.(10), one gets the recurrence relation for the 

matrix elements of the operator exp(-A) in the SU(5) basis 

(nviniI|e"A|nvni)= У (n-1 v2n2Lle~Aln-l v3£l3L)x 
v П v fi L 
2 2 3 3 

x ( 1 - F(nv I) + F(n-1 v2L))x 

x{n-l vz£l2 L^DnVjOjI^xCn-l v 3 n 3 L?2|>nvni). (12) 

Note t h a t the matrix elements from eq.(12) are not symmetric 
A 

due to the approximation made for F.'' We symmetrize them by 
A 

neglecting the antisymmetric part of the exp(-A) matrix in 
the recurrence relation (12). In fact, we have found in 
actual calculations that the antisymmetric part from full 
eq.(12) is well smaller than the symmetric part. 

Another feature which calculations reveal is the 
smallness of the nondiagonal matrix elements of exp(-A) in 
comparison with the diagonal ones. We neglect the 
nondiagonal elements in the following, which simplifies the 

i A 

calculation of the square root operator ехр(-тА) and its 
inverse. 

If in eq. (11) the equality of С =С=C =C is assumed, the 
operator F reduces to F=jCN(N-l). Then the elements F(nvl) 

л 

of F depend only on the boson nunber n. Substituting this 
result in the recurrence relation (12), we have 

A A 

(nvOIIe^lnvniMl-fn-lJCKn-lVjOjIJe^ln-lv^Ij), 

or alternatively 
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в-А(П)+А(П-1)и !.,„.!,(,. 
А л 

Since A depends only on N, we write eg.(6) as 

A*„ >exp(- | A(N))d*Mexp(| A(N))=d^exp[|(A(N)-A(N+l))]. 

He obtain the final result 

*»« > < к / x ~ С Й ' 

Thus, in the case of С =С =C =C, the boson representation 
(6) of the guadrupole TDA operator reduces to the- SU(6) IBM 
expression with C _ 1 being the maximum number N of bosons 
in the IBM. , 

We introduce the cutoff in the boson number when the 
л 

corresponding matrix element of exp(-A) are less than zero. 
In the case of different parameters с , С , and С , this 
cutoff depends not only on the d boson number n but also on 
the other SU(5) quantum numbers. In this way, we go beyond 
the SU(6) symmetry. 

3. Particle-hole operator 
In order to define the boson mapping completely, we have to 
find the boson image of the particle-hole operator. The 
matrix elements of this operator in the single-particle 
basis are given in the Dyson boson mapping by 

<0|...oca ...a*a .. .a*.a*.... |0> 

t ft U V t* •' 

= (0|...bit...puy...B+,t>...|0) , (13) 

where 
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Р = У ь + ь . 
uv Lt vx их 

Using the properties of the operator exp(-A), we write the 
right- hand side of eg.(13) as 

(0|...bst...ptivexp(-A)...b^,t,...|0)= _ 

= (01. ..b ... exp(™A) p exp(-|A).,.b+, ...10). st 2 u v r x 2 s't' 
л 

Here, the commutativity of the operator exp(-A), and 
л л 

consequently of any function of exp(-A) , with the p has 
been used [15]. The relation (5) generalized to the single 
particle basis is 

. ..<x+V, ...|0> = exp(«A)...b+, ,...10) . s' t' * 2 s' t ' 

In order to make the equality of the particle-hole matrix 
elements consistent with this mapping, we set 

-> p 
U V 

or in the transformed boson space 

ot*<x > 2> ( j m j m ILM) ( j m j m |L'M') 
U V / V V X X U U X X 

LH1 
L ' H ' I ' 

x 4 > L ф«'«-'* b + „ ( i ) b , , , ( i ' ) . 
vx их LM L ' H ' 

Of course, in the discussion of the following section we 
restrict ourselves in the above relation only to the 
collective quadrupole boson terms d й . 

4. Collective HaMiltonlan 
The fermion quasiparticle representation of the nuclear 
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Hamiltonian is written as follows: 

T / s s s / w r s t u j _ r s i t u ' l j 

s r s t u l 

r s t u i * ' 

r s t u i *• ' 

Using the boson representation of the fennion operators as 
discussed in the preceding section, we obtain after 
truncation to the quadrupole collective degree of freedom the 
collective boson Hamiltonian in the form H=cn+-i-V g • 2L+1 r(d+d+) (d d ) 1 + 2 l^ yL |_ 2 2 L 2 2 L J 0 0 L=0, 2, 4 

+ V jexp(- | A)[d+exp(| A)(d*d2)J + h.c. • 

+ W Jexp(- | A) ( d ^ ^ o o ^ P ^ * ) + h* c- f' ( 1 5 ) 

The coefficients of the boson Hamiltonian (15) are expressed 
in terms of the parameters of the original fermion 
Hamiltonian (14) and of the TOA amplitudes Ф [17] 

е=У(с +е)Ф Ф +20> GI<fZ>(2I+l)'* Ф * * , | j ? ? l ( J 3 ! l 
I p n tuv 

д-гоо^С1'22'* * * * /ai«" / " 2 Ш 2 ? U T
I 2 2 1 , 

г a t upql 
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V = -1CV2 Г GZT * * * t IU ? } , 
rstuv 

w = 2 V G2'40' * Ф • (16) 
/ rstu rs tu 

г s t u 

We see immediately another feature in which the boson 
Hainiltonian (15) differs from the IBM Hamiltonian. Namely, 
the presence of the exp(-|A) and exp(^A) operators 
implicitly introduces many-body effects. These are not 
considered within the ordinary IBM which deals only with 
one- and two-body terms in the Hamiltonian. 

5. Calculations 
The procedure of calculations with the fully microscopically 
determined collective quadrupole Hamiltonian should start 
with the fermion quasiparticle Hamiltonian from which the 
TDA amplitudes, the norm matrix operator and the boson 
Hamiltonian would be derived. It appears, however, in 
different microscopic studies of the collective nuclear 
structure that the truncation only to the lowest collective 
pair is restrictive in most cases [18]. Other degrees of 
freedom, as for example the L=4 collective pair, play an 
important role. These degrees of freedom can be included 
either explicitly or implicitly through the renormalization 
of the parameters of the quadrupole boson Hamiltonian. 

We do not perform the microscopic calculations in the 
present paper in which the truncation to the quadrupole 
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boaon is only considered. Rather we want to investigate the 
possible aspects of the deviations of the boson Hamiltonian 
(15) from the SU(6) symmetry and from the ordinary IBM 
Hamiltonian. For this purpose, we fix the Hamiltonian 
parameters so as to get for С «С =C -N"1 the SU(3) or the 

0 2 4 MX % 

0(6) limits of the IBM. Then, the variation of spectra 
depends only on one of the parameters С , С , and С while 
two other being still fixed. 

The results obtained are shown in figures l and 2. It is 
seen that the variations in the wide limits of the values of 
the C" 1, C~* and C"1 near N do not change drastically the 

0 2 4 шах 
spectrum of the collective states. 

6. Conelusions 
We have presented an approach to the description of the 
low-lying nuclear collective states in which the fermion 
problem has been transformed into the boson one. Starting 
with the mapping of the guadrupole collective states in the 
fermion space onto the boson space, we have found the boson 
images of the bifermion operators and fermion Hamiltonian. 
In this mapping, the operator reproducing the fermion norm 
matrix in the boson space plays an essential role. We have 
suggested recurrence relations for this operator and solved 
them in the truncated quadrupole boson space. 

The resulting Hamiltonian contains the terms which go 
beyond the ordinary SU(6) IBM Hamiltonian. However, as far 
as one stands on the phenomenological level, the deviations 
from the IBM results are not drastic and could likely be 
reproduced by changing the phenomenological IBM parameters. 
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Fig.l The spectrum of the collective states for different 
• l values of C. C"1 and C"1. 

2 4 
In every graph, one of the para­

meters «Г 1, C"1, and C"1 is changed and the others are equal 
to 10. The parameters of the Hamiltonian are fixed so that 
the SU(3) limit is realized when C^-C^'-C^IO. For conve­
nience, the ground stete quasirotational band (left part) 
and the excited bands (right part) are shown separately. 
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The norm matrix operator exp(-A) is closely related to 
the projection operator onto the physical boson space [16]. 
We have to note, however, that the problem of mixture of the 
nonphysical boson components is not solved in the present 
approach and remains to be an important challenge to the 
boson models of nuclear collective structure. 

Another problem is the inclusion of the degrees of 
freedom other than the lowest guadrupole collective states. 
On the phenomenological level, such an inclusion increases 
the number of model parameters enormously. Therefore, the 
microscopically motivated models should be developed. In 
principle, the present approach can be extended easily to 
include them. Then the norm matrix operator exp(-A) could 
contain large nondiagonal elements which might influence the 
results significantly. However, handling the square root 
operator exp(-=A) and its inverse should be more difficult. 
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Довеш Я. и др. E4-90-3I9 
Бозониое представление и микроскопический 
коллективный ядерный гамильтониан 

Получено бозонное представление фермионного гамильто­
ниана на основе боэонного представления бифермионных 
квадрупольных коллективных операторов. С помощью прибли­
женного рекуррентного соотношения вычислена матрица нор­
мы бозонного представления. Полученный бозонный гамильто­
ниан содержит члены, обобщающие обычную SU(6)-симметрию 
гамильтониана модели взаимодействующих бозонов. Результа­
ты расчета показывают, что отличия между полученным га-

j мильтонианом и гамильтонианом модели взаимодействующих 
бозонов несущественны. 

Работа выполнена в Лаборатории теоретической физики 
ОИЯИ. 

, Препринт Объединенного института ядерных исследований. Дубна 1990 
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I Dobes J. et al. E4-90-319 
I Boson Mapping and the Microscopic 
I Collective Nuclear Hamiltonian 
f 

Starting with the mapping of the quadrupole collective 
states in the fermion space onto the boson space, the fer-
mion nuclear problem is transformed into the boson one. 

i The boson images of the bifermion operators and of the I fermion Hamiltonian are found. Recurrence relations are 
used to obtain approximately the norm matrix which appears 
in the boson-fermion mapping. The resulting boson Hamilto­
nian contains terms which go beyond the ordinary SU(6) 
symmetry Hamiltonian of the interacting boson model. Cal­
culations, however, suggest that on the phenomenological 
level the differences between the mapped Hamiltonian and 
the SU(6) Hamiltonian are not too important. 

The investigation has been performed at the Laboratory 
J of Theoretical Physics, JINR. 
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