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1. Introduction

In recent years, methods that map many-fermion problems onto
many~boson ones have been studied intensively. First‘
established in the theory‘ of spin waves {1,2], the boson
representation of the bifermion operators has been extended
to general fermion systems [3-6). Several approaches have
been suggested to develop the boson representation
techniques ([7-12}. In nuclear physics, an aim of such
studies is to obtain a microscopic support for the
phenomenological models of nucleér collective states, like
the interacting boson model (IEM). The bosonization of the
fermion problem is thus accompanied by an identification of
the subspace of relevant collective degrees of freedom and
truncation of the full space to that subspace.

There are three classes of microscopic investigations of
nuclear collective structure in terms of boson models. In
the first one, the collective Hamiltonian is constructed
within a simple underlying symmetry group (13). Thus, the
collective variables are fixed independently of the real
physical problem. As a result, a considerable coupling of
the collective and noncollective degrees of freedom may
oceur.

In the second class, one does not demand that the
collective Hanilton:l'an has an exact symmetry group
structure. Collective variables are determined so as to
minimize the coupling of the collective and noncollective
boson variables{14].

The third class of studies represents an intermediate



approach [8,9,15] in which, the coupling between the
collective and noncollective variables is not fully
minimized. Instead, the structure of the boson collective
variables is taken from the lowest fermion pair in the
Tamm-Dancoff approximation (TDA). Such an identification
seems to give a reasonable definition of the collective
subspace.

In this paper, we proceed within the last approach. We
start with the BCS dquasiparticle representation of the
fermion problem. The truncation to the lowest quadrupole TDA
pair is made. In the bosonization step, we develop a
procedure based on the correspondence of the fermion and
boson quadrupole collective states. Our approach goes beyond
the SU(6) symmetry of the IBM which we obtain as a limiting
case.

In sect.2, we discuss the mapping of the fermion
quadrupole collective states and the pair fermion operator
onto the boson ones. In this procedure, the norm matrix
plays an important role and an approximate procedure how to
calculate it is suggested. The boson image of the
particle-hole operator is investigated in sect.3. In sect.4,
the collective boson Hamiltonian is derived. Results of some
calculations are presented in sect.S5. At the present stage,
we do not start with the microscopic fermion parameters. We
rather inspect whether the present approach is able to give
results which differ from the phenomenological IBM.

Conclusions are given in sect.6.
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2. Collective pair operator
In the TDA, the lowest quadrupole state is generated by the

operator .

+ 1 +
A= E v (x a ) . (1)
2N Va1 st t 2M
2 st *

Using A:", we construct the subspace of the collective

quadrupole states in the fermion space by the recurrence
relation [8,9]

1

InvQIM> = —= (n-1 v.Q I ;2{)}nvRI)x
F ‘/!_1 111
vaI Mm
+
x (IM2m{IM) A_ |n-1 VQIM> . (2)

In the above, |1,1,0,2,M>F=A:H|0> and (n-lvlnlIl;2|)nvnI)
are the L=2 boson fractional parentage coefficients (cfp).
In the boson space, the I=2 collective states are given
analogously to eq.(2)
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|anIH)B= - (n-1 v19111;2|)anI)x
n
vaIMn
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x(IM2m|IM) @ |n-1 vQIM) , (3)

where |1,1,0,2,M)B=d:mI0) and d:m denotes the creation
operator of the collective guadrupole boson.

The boson states (3) form an othonormalized system by
definition. That is not true for the fermion states (2) for

which the norm matrix is considered

r<n'v'n'IH|nvnIH>r = "n'v'ﬂ’ln.nvﬂln (4)

We introduce the boson operator exp(—ﬁ) , which in the boson

space reproduces the norm matrix

nl . —2



-A
0! =
a(" v/Q/IMle IanIM)B = dn,v_n,m'nvm"

The TDA amplitudes and the L=2 boson c.f.p.’s could be
chosen real so that the norm matrix 4 is real and symmetric.
The unitary mapping of the fermion collective subspace (2)

onto the boson collective subspace (3) is brought in as
InvRIM> —— exp(- 3 A ) |nvaiM), (5)

One easily sees that the mapping (5) implies the mapping of
the TDA operator

A+ —_ exp(-

zm exp(3 A ). (6)

A) at
2m

N

From the unitarity of the mapping it follows

12 14
Azm — exp( -iA)da_exp(iA),

To obtain the norm matrix from eq.(4) is not an easy task.
We can, however obtain an equation for the norm matrix
operator exp(—ﬁ) starting from the nonunitary Dyson boson
mapping. In that, the pair creation and annihilation

operators in the general single particle space ..s,t,.. are

mapped as

a ot — BT
- t st '

a'. al bi'. !

where b':t = - b:" is the ideal boson operator and
+ + + .+ _ ot At

Blt = blt - va.u btv buv—. blt [F’blt]'

with
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Of course, the norm matrix in the collective subspace is
expressed through the elements of the norm matrix in the

single particle space. For the latter, we have
+ * — +
<0)...a¢x ...a @, ...10>= (0l...b ...B_, ,...10}.

on the other hand, the matrix elements of any operator in

the collective boson space are expressed through the matrix

elements of this operator in the full ideal boson space. We

thus have for the operator exp(-ﬁ) in the ideal boson space
-

+ -A +
(0l...b_...B., ,...10)=(0l...b_...e™*...b], ,...10). (8)

s't’

The operator exp(—l’-'\&) which satisfies for every s,t the

relation
A A
- + o+ -
e b, =B8] e, (9)

together with the normalization condition

A

e™ (o) = |0y,

satisfies also eq.(8). We have shown [16] that the above
equations determine the operator exp(-a) unigquely.

The relation between the ideal boson space b,  and the
transformed boson space b“(n with the collective

quadrupole boson d2 H=bznu) is

+ s +
b“-ff Z (3, m3jmI1M) b/ e,
]

+ it
b“(-t)- -!_t b"u).



Note, that for i=1,I=2 the superscripts i and L are not
written in eq.(l) and also in the following treatment.
Equation (9) is transformed into the collective boson

subspace as

eA gt = {d:u— tF,at ] } ™R, (10)

Here, the operator f’ is expressed generally through the
collective quadrupole bosons dzn as well as through the
other transformed bosons bm. At this stage, we made an
approximation by restricting F in eq. (10} only to the

collective quadrupole bosons. Using the definition (7), we

have
A _ 1 A
F——Z——ZCLHL, (11)
L=0,2,4
}: J, 3, 2
where CL = 50 1. 3, 2 \Ilsr ‘Pn ‘Il“ ‘Ilut B
2 L

rstu

1
5
=+[-4ﬁ+2ﬁ2-i2+2i‘3],
A A A
—§5~[-36N+1sﬁ2+512-3'r2].

Here N is the a- bosons number operator and 12 is the square
of the angular momentum. The eigenvalue of the operator 2

in the SU(5) basis is equal to v(v+3), where v is the
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seniority of the state.
From eq.(10), one gets the recurrence relation for the

matrix elements of the operator exp(-f\) in the SU(S) basis

-A _ -, _
(nvlnllle InvQI)= Z (n-1 vznlee In-1 vanaL)x

vzﬂzvanaL

x (1— F(nvll) + F(n-1 sz))x
x(n=1 v Q L:Zl)nvlﬂlli)x(n-l v.Q, L;2|}nvQI). (12)

Note that the matrix elements from egq. (12) are not symmetric
due to the approximation made for F." We symmetrize them by
neglecting the antisymmetric part of the exp(-ﬁ) matrix in
the recurrence relation (12). In fact, we have found in
actual calculations that the antisymmetric part from full
eq.(12) is well smaller than the symmetric part.

Another feature which calculations reveal is the
smallness of the nondiagonal matrix elements of exp(—i) in
comparison with the diagonal ones. We neglect the
nondiagonal elements in the following, which simplifies the
calculation of the square root operator exp(-%;\) and its
inverse.

If in eq.(1l) the equality of ¢,=C,=C,=C is assumed, the
operator f‘ reduces to f‘r%Cﬁ(ﬁ—l). Then the elements F{nvI)
of f‘ depend only on the boson number n. Substituting this

rasult in the recurrence relation (12), we have

A~

A
(nvazie M nvar)=(1- (n-1)C)n-1v Q1 le”Mn-1v 0 1)),

or alternatively
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A ~
Since A depends only on N, we write eq.(6) as

A ——exp(- % A(N))a] exp( A(ﬁ))=d:"exp[-21-(A(ﬁ)-A(ﬁ+1))].

We obtain the final result

At — Lat Vi-cn .

2H 2N
Thus, in the case of C°=Ciﬂa=c, the boson representation
(6) of the gquadrupole TDA operator reduces to the SU(6) IBM
expression with ¢ being the maximum number N _of bosons
in the IBM. v

We introduce the cutoff in the boson number when the
corresponding matrix element of exp(—ﬂ) are less than zero.

In the case of different parameters ¢, ¢ and C,, this

2'
cutoff depends not only on the d boson number n but alsc on
the other SU(S5) guantum numbers. In this way, we go beyond

the SU(6) symmetry.

3. Particle-hole operator

In order to define the boson mapping completely, we have to
find the boson image of the particle-hole operator. The
matrix elements of this 6perator in the single-particle

basis are given in the Dyson boson mapping by
<0l...0a ...c'a ...a . ...10>
t s U v L s

+

= (Ol.e.b...p, ...B,, ,...10) , (13)

where
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Using the properties of the operator exp(-ﬁ), we write the

right- hand side of eq.(13) as

A A +
(OI...bst...puvexp(—A)...bs,L,...|0)—\‘
. _l/\ A -l.ﬂ +
= (Ol...bst... exp( ZA) P.y exp ( 21-\.).,.bs,'_,...l0).
Here, the commutativity of the operator exp(—ﬁ), and

consequently of any function of exp(-f\), with the suv has
been used [15]. The relation (5) generalized to the single
particle basis is

+
s't’

+ + _ _l‘
...as,at,...|0> = exp( 21-\.)...b .10y .

In order to make the equality of the particle-hole matrix

elements consistent with this mapping, we set

- A
auav puv '

or in the transformed boson space
* » » . s
a o —> ZZ (Jvmv]xmleM) (]umujxmle'H')

Lu1
LM’ i’

iL | 54 R NS S .
x \Ilw \Ilux bLH(l)bL’H'(l ).

Of course, in the discussion of the following section we
restrict ourselves in the above relation only to the
collective quadrupole boson terms d:“dm,.

4. Collective Hamiltonian

The fermion gquasiparticle representation of the nuclear




Hamiltonian is written as follows:

H Ze ale + Z Gigi) [(a: o ) (e, o )x]m

rstul
IMO) V# + +
rstu { z )I(at % )I] * h'c'}
ago

rstul

1(31) ¢ * + =

+ «Co ¥

rstu { as )I(at au )I]OO h.c } (14)

rstuI

Using the boson representation of the fermion operators as
discussed in the preceding section, we obtain after
truncation to the quadrupole collective degree of freedom the

collective boson Hamiltonian in the form

f=ef+Ld g v 2141 [(ata) @ay | +
2 L 27271 22 ]

L=0,2,4
+ v {exp(— 14 [d:exp(—zl- A) (d“;dz)] + h.c.}
o0
+ W {exp(-— A) (dzdz)mexp(% A)+ h.c.}. (15)

The coefficients of the boson Hamiltonian (15) are expressed
in terms of the parameters of the original fermion

Hamiltonian (14) and of the TDA amplitudes ¥, [17]

C—Z(c +e )% ¥ +z£@“2‘”(21+1)~p IR 2R {;f § g }{I 22 },

ve up pt 333,
Iprestus
- I(22) I.22 I22 I22
g, 200% CL=w, v ¥, ¥V 21n {jp',j.}{jqjtju}{mz}'

restupql
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V= IOV—Z Grstu rs uv vt. {j ]!.j f ’
rstuv M u
_ 2(40) -
W= Z Grs'.u ¥ rs ‘I’tu * (16)
rstu

We see immediately another feature in which the boson
Hamiltonian (15) differs from the IBM Hamiltonian. Namely,
the presence of the exp(—%ﬁ) and exp(%';\) operators
implicitly introduces many-body effects. These " are not
considered within the ordinary IBM which deals only with

one- and two-body terms in the Hamiltonian.

5. Calculations
The procedure of calculations with the fully microscopically
determined collective quadrupole Hamiltonian should start
with the fermion quasiparticle Hamiltonian from which the
TDA amplitudes, the norm matrix operator and the boson
Hamiltonian would be derived. It appears, however, in
different microscopic studies of the collective nuclear
structure that the truncation only to the lowest collective
pair is restrictive in most cases ([18]. C(ther degrees of
freedom, as for example the L=4 collective pair, play an
important role. These degrees of freedom can be included
either explicitly or implicitly through the renormalization
of the parameters of the quadrupole boson Hamiltonian.

We do not perform the microscopic calculations in the

present paper in which the truncation to the quadrupole




boson is only considered. Rather we want to investigate the
possible aspects of the deviations of the boson Hamiltonian
(15) from the SU(6) symmetry and from the ordinary IBM
Hamiltonian. For this purpose, we fix the Hamiltonian
parameters so as to get for c0=c2=c‘=u;:x the SU(3) or the
0(6) limits of the IBM. Then, the variation of spectra
depends only on one of the parameters Cb, Cz, and C4 while
two other being still fixed.

The results obtained are shown in figures 1 and 2. It is

seen that the variations in the wide limits of the values of
1

the c;' , ¢

2 and C? near q“x do not change drastically the

spectrum of the collective states.

6. Conclusions
We have presented an approach to the description of the
low-lying nuclear collective states in which the fermion
problem has been transformed into the boson one. Starting
with the mapping of the quadrupole collective states in the
fermion space onto the boson space, we have found the boson
images of the bifermion operators and fermion Hamiltonian.
In this mapping, the operator reproducing the fermion norm
matrix in the boson space plays an essential role. We have
suggested recurrence relations for this operator and solved
them in the truncated gquadrupole boson space.

The resulting Hamiltonian contains the terms which go
beyond the ordinary SU(6) IBM Hamiltonian. However, as far
as one stands on the phenomenological level, the deviations

from the IBM results are not drastic and could 1likely be

reproduced by changing the phenomenoclogical IBM parameters.
12
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Fig.1 The spectrum of the collective states for different

1

values of C;1, C; and C?. In every graph, one of the para-

-1

-1
nmeters co R c2

, and cr is changed and the others are equal

to 10. The parameters of the Hamiltonian are fixed so that
the SU(3) limit is realized when c;’=c;'=cf=1o. For conve-

nience, the ground state quasirotational band (left part)
and the excited bands (right part) are shown separately.
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Fig.2 The same as fig.1l, but for the 0(6) limit.
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The norm matrix operator exp(-i) is closely related to

the projection operator onto the physical boson space [16].
We have to note, however, that the problem of mixture of the

nonphysical boson components is not solved in the present
approach and remains to be an important challenge to the
boson models of nuclear collective structure.

Another problem is the inclusion of the degrees of
freedom other than the lowest quadrupole collective states.
on the phenomenological level, such an inclusion increases
the number of model parameters enormously. Therefore, the
microscopically motivated models should be developed. 1In
principle, the present approach can be extended easily to
include them. Then the norm matrix operator exp(-ﬁ) could
contain large nondiagonal elements which might influence the
results significantly. However, handling the square root

operator exp(-%ﬁ) and its inverse should be more difficult.
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HoBew . u ap. E4-90-319
Do3onHoe npeacTaBneHue N MHKPOCKOIMUECKHH
KOJITEKTHBHLI AJEDHLII raMuiIbTOHHAH

llostyueHo 6030HHOE npencTaBlneHue $epPMHOHHOrO raMMibTo-
HMHaHa Ha ocHoBe 6030HHOrO npeucTaBileHHA G6HdepMHOHHBIX
KBAAPYMOJNbHMX KOJIIEKTHBHLIX onepaTopoB. C moMoubio HPHEIIH-
HEHHOro peKyppeHTHOrO COOTHOIWEHHA BbluHCIeHa MaTpHua Hop-
Mb GO30HHOIrO npeAcTaBneHus . llonyueHHH 6030HHBIH I'aMHILTO-
HHaH CoUepkKUT ulleHsl, obobwawune obbiyHyw SU(6)-cuMMeTpuio
raMMJIbTOHHAaHa MoJenH B3auMOJeHCTBYWHX 6030HOB. PeaynbhTa-
Thl pacuyeTa [OKA43bBAaWT, YTO OTIHYHA MexAy nonydyeHHmM ra-
MHIILTOHHAHOM H TIaMHABLTOHHAHOM MOMENH B3auUMOJEHCTBYWHX
6030HOB HecylleCTBeHH,

Pa6ora BbimonHeHa B JlabopaTopHd TeopeTHYECKOH OOM3IHKH
OHAH.

Mpenpunt O01eAHHEHHOr 0 HHCTHTYTA ANEPHBLIX Hecnegopanuii. JlyGxHa 1990

Dobes J. et al. E4-90-319
Boson Mapping and the Microscopic
Collective Nuclear Hamiltonian

Starting with the mapping of the quadrupole collective
tates in the fermion space onto the boson space, the fer-
mion nuclear problem is transformed into the boson one.
The boson images of the bifermion operators and of the
fermion Hamiltonian are found. Recurrence relations are
used to obtain approximately the norm matrix which appear
in the boson-fermion mapping. The resulting boson Hamilto-
nian contains terms which go beyond the ordinary SU(6)
symmetry Hamiltonian of the interacting boson model. Cal-
culations, however, suggest that on the phenomenological
level the differences between the mapped Hamiltonian and
the SU(6) Hamiltonian are not too important.

. The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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