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Abstract

A thermal power measurement error of the Korea Multi-purpose
Research Reactor has been estimated by a statistical Monte Carlo
method, and compared with those obtained by the other methods
including deterministic and statistical approaches. The results show
that the specified thermal power measurement error of 556 cannot be
achieved if the canrercial RTD's are "jsed to measure the coolant
tempteratures of the secondary cooling system and the error can be
reduced below the requirement if the corrmercial RTD's are replaced by
the precision RTD's. Also, the possible range of the thermal power
control operation has been identified to be from 1005B to 20a= of full
power.

1. Introduction

Korea Multi-purpose Research Reactor (KMRR) is a research reactor
being built by Korea Advanced Energy Research Institute [1]. It is
an upward flowing, light water cooled reactor with an open
chimney in pool arrangement. Fig. 1 shows a schematic flow
diagram of the KMRR heat transport system. The light water primary
coolant enters the inlet plenum, flows through the core and directs
to the chimney. About 1095 of the total primary flow returning
from heat exchangers flows into the bottom of the pool, and
slowly rises in the pool outside the reactor assembly. Then, it is
drawn into the chimney and flows downward to the chimney bottom
where both bypass flow and the flow from the core are sucked into the
outlet nozzle. This primary coolant flows through pumps and heat
exchangers, and comprises the closed loop.
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In KMRR, the core thermal power is measured to provide the
reference power for the continuous calibration of the fission
chamber [2]. The error associated with the fission chamber is
typically less than 1% over the power range of the upper two
decades. But, the thermal power measurement error is usually
dependent on the errors of the measuring devices of process
parameters such as coolant flow rate and temperature and it is below
5* of the measured power in a typical corrmercial power reactor.
On the design of thermal power measurement system of KMRR, the
maximum allowable error associated with measuring the reactor thermal
power is required to be below 5% for the whole range of the thermal
power control mode.

The new method of estimating thermal power measurement error
based on the Monte Carlo simulation has been introduced and it is
applied to KMRR along with the deterministic and statistical
linear perturbation methods. A series of analyses shows that the
thermal power error requirement can be met if the commercial process
RTD's are replaced by the precision RTD's. Also, the possible range
of the thermal power control operation has been identified.

2. ihermal Power Measurement System of KMRR

The thermal power is measured from the secondary cooling system
as shown in Fig. 1. This system reflects the design simplicity
and provides the accessibility and installabi1ity of the associated
instruments. The thermal power measured from the secondary cooling
system is the sum of the core heat, the heat removed from the pool
by the bypass flow, and the primary coolant pump heat. The bypass
flow detour ing the reactor via pool picks up the heat generated from
the experimental sites and/or the spent fuels temporarily stored
in the pool. The net core thermal power, Q, for a steady state
operation can be expressed by Eq.(1).

Q = C W (Ts - Ts) - C WK (T - T ) - Q (1)
p s o i p by cm by p

The values of the process parameters for the full power
steady state operating condition are obtained from the plant
simulation study and are summarized in Table 1. The inlet
temperature of the secondary flow to the heat exchangers is taken to
be 32° C for the simplicity of the analysis. The temperature rise of
the secondary coolant across the heat exchangers is only 8°C and its
associated enthalpy rise is much smaller than that of a power
reactor. The uncertainty range of the comnercial RDT takes quite a
fraction of the total temperature rise and it can be expected that
the temperature measurement uncertainty will results in the large
portion of the thermal power measurement error.
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3. Thermal Power Measurement Error Analysis

As mentioned above, the error involved in the core thermal
power estimation results from the errors of the associating
measuring instruments and can be approximated as following equation
using the principle of superposition of errors ;
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This equation can be further approximated to the following one
considering that the heat load to bypass flow is much small as
compared to the core power.
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Based on this equation, various methods have been applied to
evaluate the thermal power measurement error as described in the
following paragraphs. In Table 2, is shown the accuracy of the
instruments used for the analysis.

Deterministic Perturbation Method

A rudimentary and conservative way is to assume that all the
errors of individual instruments are sunned in the most adverse way
and to find the possible upper bound of the error. For this purpose,
Eq.(3) can be modified as the following equation.
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Using this method, the thermal power measurement error was 15.5&
of tho measured power at full power. Also, the analysis shows that
the summation of the second and the third term of RHS in Eq.(4) is
8.4 times of the first, which means that the power measurement error
is mainly due to the temperature measurement error.

Although this method is very straightforward in finding the
possible maximum bound of the thermal power error and identify the
major source of the error, it is too conservative to be used in
practice.
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Statistical Error Combination Method

To provide more practical result, the root mean square error
method was applied to Eq.(2) to derive the following equation and
the thermal power error value below which the actual error occurs
with 95% probability was computed.

SQ [ (5w 12
II si

1
+

Q I I W

a6T" )z
+

r - rj \js - T8,
O ] ' v O 1'

(5)

where the errors from the bypass flow heat load are neglected due to
small contribution.

The basic assumptions underlying this method are that the errors
associated with each instrument are statistically independent and
normally distributed, and the instrument accuracy specified by the
manufacturer is the error bound value corresponding to the 95%
probability of having the actual error within these values. In
principle, the instrument accuracy cannot be used to characterize
the error characteristics in this kind of statistical error
analysis because it is usually not a statistically defined quantity
regarding to the instrument error. In practice, however, this is
usually the only information available from the manufacturer
regarding to the instrument behavior. Thus, the first two
assumptions are thought to be reasonable, but the last one is
questionable. The thermal power error predicted by this method was
significantly reduced from that of the previous method and was 6.8%
of the measured power at full power.

Monte Carlo Method

Recently, Monte Carlo method was applied to improve the con-
fidence on this error estimation. The mean and standard deviation
of the thermal power error have been estimated based on the 1000
data points produced using the individual pseudo values of the
parameters generated by the random numbers equally distributed
over the instrument accuracy span. The equation for thermal power
error is described below ;

<5Q(j) «5W (j) /35Ts(j) - «5Ts(j) W (j

(j) T (j) - T*(j) W (j)

(6)

where the mean value is zero and the standard deviation is computed
from the following equation ;
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5Q/Q
(N - 1)

1/2

(7)

Since the random variable composed of linear combination of
equally distributed random variables may have a histogram-like
probability density distribution (pdf), the standard deviation
derived from the 1000 random data should be interpreted according to
the corresponding pdf distribution. In order to have the actual
thermal power error inside an interval around the mean value with 95%
probability, the half width of the the interval should be 1.645
times of the standard deviation for the equally distributed error and
two times of the standard deviation for the normally distributed
error. It is not clear what form of the pdf this thermal power error
takes in practice. In this simulation method, however, the
thermal power error is expressed as a function of at least 25 random
variables in the case of using process RTD. This numbers are, at
least to authors, thought to be large enough so that the central
limit theorem may be applied to these cases. Thus, the pdf of the
simulated thermal power error is assumed to be normal distribution
and the error value below which the actual error occurs with
probability of 95% on every measurement is determined to be two
times of the standard deviation computed as above. The numerical
result is 8.88£ at full power. Note that this value is larger than
that predicted by the statistical error combination method and this
observation can be explained as follows. In the statistical
method, the instrument accuracy is taken as the error value
corresponding to 2P value of the normally distributed random
error whereas, in this method, it is taken as the boundary value of
the uniformly distributed random error. As shown in Fig.2, the
standard deviation of the equally distributed random error is greater
than that of the normally distributed one. Furthermore, the equation
for the thermal power error used in this method contains various
multiplication of two equally distributed random variables and this
operation is thought to have accentuated the discrepancy between the
standard deviations predicted by these two methods. Therefore, the
reason for the conservative prediction of this Monte Carlo method
lies on the fact that the instrument errors are assumed to
distribute uniformly over the accuracy span. This implies that a
caution should be exercised when the random number is used to
simulate a random instrument error because the pdf used to generate
the random number can make a difference in the simulated result.

Statistical Monte Carlo Method

Another method, a blend of statistical and Monte Carlo method,
was also tested to estimate the thermal power error. The basic
equation of thermal power error used is as below;
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(8)

This is essentially a kind of root mean square error version of
Monte Carlo simulation ; i.e., all the square of each random number
are surmred and this sumnation is taken as a random number
representing the thermal power error. After 1000 iterations, the
mean and standard deviation of the most probable error can be
obtained instead of just one value when computed by eq. (7). Thus,
the mean of eq. (8) is equivalent to the standard deviation computed
by eq. (7) while the standard deviation of eq. (8) provides the
dispersion of error about its mean value. The range of thermal power
error for the process RTD at full power becomes 8.32±2.56%
which confirms that the thermal power errors calculated by the
other methods fall within this range except the deterministic
perturbation method. Thus, we have confidence in the various
evaluation methods by the calculation of a range of the thermal
power error.

4. Application of Thermal Power Error Analysis

Precision RTD

The thermal power errors evaluated by the various methods are
given in Table 3. All these methods predicts that the thermal
power measurement error is above the design requirement, of 5% and
the major factor of this error is the temperature measurement
error. The reason is that the KMRR is a low enthalpy rising system
and the uncertainty range of the comrercial process RTD takes quite a
fraction of the total temperature rise.

As one option to resolve this problem, the replacement of the
comnercial process RTD by the precision RTD was proposed. The
accuracy of the precision RTD is surrmarized in Table 2. The thermal
power error was calculated using the above four methods and given in
Table 3 with the results for the process RTD cases. As
expected, the error was significantly reduced owing to the smaller
value of "accuracy" of this precision RTD and the design
requirement was satisfied.



643

Power Range of Thermal Power Control Mode

As the coolant temperature rise at the secondary cooling system
falls off with the reduction of reactor power, one can easily expect
that the thermal power error would increase with the reactor
power decrease. In order to determine the range of thermal power
control mode, it was necessary to investigate at which power the
thermal power error begins to exceed the error limit given by
design requirement. Thus, the thermal power error with precision RTD
was calculated for the whole power range and its trend with power was
investigated.

For Monte Carlo method, the error stays less than 5% for the
power from 100% to 20% of full power but begins to increase
sharply after the power drops below 20% of full power as shown in
Fig.3. For the statistical Monte Carlo method, the trend of the
mean error value is basically the same as that of the standard
deviation of the previous method except the minor discrepancy in
the error value. One new information generated in this method is
the fluctuation of the error about its mean value. Based on this
study, The range of the thermal power control mode was determined to
be 20% to 100% of full power.

5. Conclusions

Four methods have been applied to evaluate the measurement
error of the reactor thermal power for KMRR to meet design
requirement and some design implications were drawn out. Throughout
this study, the following were drawn as conclusions:

1) The deterministic perturbation method is useful in estimating the
maximum error bound and identify the major source of measurement
error. However it predicts too conservative value to be used for
any practical design resolution.

2) The statistical error combination method provides the realistic
estimation of the measurement error with reasonable amount of
computing effort. Thus, it is most recorrmendable for this type of
analysis.

3) The Monte Carlo method provides more realistic estimation of the
measurement error provided the physically reasonable probability
density function is used to describe the nature of the random
measurement error. In this study, this method predicts more
conservatively than the statistical error combination method
because the uniformly distributed pdf over the accuracy span was
used.

4) The statistical Monte Carlo method is useful in identifying the
degree of fluctuation of the thermal power error about its mean
value.

5) The replacement of the process RTD's by the precision RTD's was
judged to be a good design resolution.
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6) The power range of reactor thermal power control mode was found
to be extendable to as wide as 20X to 100S6 of full power.
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Nomenclature

C - specific heat
p

j - iteration number
N - total number of iteration
Q - core power
Q - pump heat
p
T - temperature

W - coolant flow rate

Superscript and Subscript

by - bypass flow
cm - chimney
i - inlet
o - outlet
s - secondary coolant
Greek

«, fi, y» ^ , '-* - random number between [ - 1 , +1 ]
5 - error
o - standard deviation
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TABLE 1. Steady State Operating Conditions

Reactor Power (Q) 28.4 MWth

Secondary Flow Rate (Wg) 840. kg/s

HX Exit Temp, of Secondary Flow (T°) 40.°C

HX Inlet Temp, of Secondary Flow (T*) 32.°C

Bypass Flow Rate (W u) 72.5 kg/s
by

Chimney Inlet Temp, of Bypass Flow (T ) 35.°C
cm

Pool Inlet Temp, of Bypass Flow (T ) 35.°C
by

Pump Heat Generation Rate (Q ) 0.4 MWth
p
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TABLE 2± Accuracy of the Instrument Associated with Reactor Thermal

Power Measurement
l)

Fiowmeter
Flow element error
Flow transmitter error
Flow transmitter drift error
A/D conversion error

Process RTD
Temperature element error
Tenperature element drift error
Tenperature transmitter error
A/D conversion error

Precision RTD
Temperature element error
Tenperature element stability error
Tenperature element selfheating error
Tenperature element calibration error
Tenperature transmitter error
A/D conversion error

1 %
0.25 %
0.25 %
0.05 %

1 %
0.2 %
0.2 %
0.05 %

0.005 C
0.01 °C
0.002°C
0.005°C
0.005°C
0.005°C

1) The overall error of an instrument is also composed of the
various sources. Here the individual errors are combined using
root-msan-square error sum for the statistical error combination
method and the following equations for the Monte Carlo method and
statistical Monte Carlo method.

for Monte Carlo method5Y = ) (x -fix

SY 1"$ r )z\wz
= ) \fi.dx. for statistical Monte Carlo method

where /i. is the random number whose range is [-1, 1].
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TABLE sL Comparison of the Thermal Power Measurement Error Predicted
by Various Methods for the Cases with Process RTD and
Precision RTD at Full Power Steady State Condition

Method 2t7(process RTD) ^(precision RTD)

Deterministic1' 15.5 % 2.40%

Deterministic
with instr. 10.73 % 1.46 %
error sum

Statistical 6.8 % 1.09 %
error comb.

Monte Carlo 8.8 % 1.90%

Statistical
Monte Carlo (8.32±2.56)% (1.8±0.72)«

1) The overall instrument error is calculated by multiplication of
the constituent errors.
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