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1. The Theorems

Mere is an example of a strictly (not uniformly) elliptic variations! problem whose

minima are smooth.

Let u : M -• IR be a function defined on a smooth Riemiiiimau manifold. The

exponential energy density is tlie function e(u) : M -» [R given by

(1.1) e(u)(x) = explDu(x)|-/2,

where I Du(x) I 2 = y'J(x) D,u(x) Djii(x) with (g;j) represemiin: the metric of M,

(g'J) = 'Pjjj-1; and I), = d/dx'.

(1.2) We are interested in extrema of the functional

(1.3) E ( u ) = / e ( u ) /det g.. ilx1 ... dxm

on to]ii|iint domains of M. Let

= (u 6 V/1.2(M) : li:.(u)<oo).

Saylh.it u e V.(M) is a local IE-minimum if for every v e V.'(M) there is e > 0

s u c h lh;:t

(1,1) E(u)<E(u + l ( v -u ) ) for all t e [0, r).

are our main results:

(1.5) Theorem. Fvcrv local \E-minimum is in C™(M).



(l.d) T h t t i r e m . Suppose that M is compact and has smooth himndury <)M. If

(p i V(M) , then then- is a unique II -minimum u £ W(M, <{>) = \w c V/(Mj : w - <p

,-H a M ( . Funhcn,i,,re, l i t (

(1.7) The Hulcr-Laj-Tange operator formally associated with [F is the quasi-linear strictly

\

(1 M) Au - div (e(u)Du) = g'J Vj(e(u)Dju)

where

= c(u)QiJ(u)VJ DJU,

Q'j(u) = g'J + g'P g'4 Dpu Dqu

ami V, denotes the invariant derivative; thus Vj D;u = D,,u - V, . DMI. A C- fuiKtion

ii : M-> R is exponentially harmonic if Au = 0.

(1.9) In the context of Theorem l.d, il is well known (Theorem 11.9 in ICiT, p. 2fW] that //

ip G C-'(M) then u e C ' is n solution of the Dirichlet problem

(1,10) An = 0 with u = tp on t)M

iff u is the unique ^.-minimum in

(w e C3(M) : w = tp on DM}.

Clearly lhlit prolilcn) isa[iiLv;ilfNtlosolving

(1.11) (J'i(ii) Vj I5,ii = 0 with u = (p on t)M in C-^M).

If the metric- on M is flat (i!,j = 8jj in suitable charts), then standard methods provide

a solution of (1.11). That has HL-L-II verified by Hells-Lemairc, using (S, Theorem 1, p.

•1.')2|. hi general, however, in following the basic existence/regularity programme of [S,

§2] we faee a serious complication: The inlcjirand of E involves the domain variable, so

we cannot appeal to (he maximum principle to obtain interior gradient estimates from those

on the lx:undary.

Nonetheless, we do establish a key result (theorem 2.11) mi ihe boitiuledne.ss of

positive subsolutionx of certain iu>n-unifonnly elliptic equations. Thai is used to uhuiin

lhe required interior gradient estimates from which Theorems 1.5 ami 1.6 follow by

sta ndard regularity methods.

The authors record their thanks to J.M. Ball, S. Uildebrandt, l.e Dung, L. Lemaire, ,md

MJ. Micallef for their interest and assitance.

2, Boundcdness of substitutions

Throughout this section M denotes an open subset of IR", with induced flat men ic.

Let K(p) be a disc of radius p contained in M. Take u e W ' ^ M ) with n > m > l ,

and let A(k, p) = {x e K ( p ) : u(x) > k}; and

WA(k, p)] its Lebesgue measure.

(2.1) L e m m a . For some k and O ( ) < 1 , take p , o such thai p() - o ( l p ( ) < p o f :

p < pd. Assume that for any concentric discs K(p), K(p - ap ) , K(p0) and k > k <lin

function U G W 1 ' " ' ( M ) satisfies

(2.2)

A(k, pop)

( i i - k ) ' " S d yJ
A|k,p)

1/ 6

+ ,>•'"' k " X[A(k, p)]
1 - (••• m / i i '

wlierc y, 5, a and e are positive constants with £ < m/n, 1 < 5 < n/(n - in),

< a < t - m + m. Then II u II
,p0))

is bounded by a constant depending •••ity

on O(), k, n, ni, y, 5, e. a and the average



- io"\lx.

Proof. If 5 - 1 ill:ii is just Lemma 5.4 of [LU. p. 76|. We assume 6 > 1 and make llie

necessary tedimca] adjusimcnis.

We can suppose p(} - 1, ;ind transform (2.2) inli>

{ 1
(2.1) j I l.)u lnidy <y( n-m J (u » k)m dy

Al.k.p op) ^ A(k,p) j
k X A lk , p)

fur 1 - On < |) - op< p ̂  1. ' t; i k c k(| >niax(k, 1) and define the seqin.Tit.vs

ph = 1 - o ( , + <70/2>' and kh = 2k0 - k ( ) / 2 "

for iniciiLTS h > 0. Sel

J | , =
J («-kh)ni8dy

A(k,,.ph)

1/fi

J,,(y) - C(2h+1< I y I - 1 + a,,)),

whiTc ^ is ii nun-incR'asing smooth function on R with ^(1) = 1 lor 1 < CTo and

t j l ) - 0 for t > 3 o , / 2 . Thus Ch^(P l . t i ) ) = 1- t l . ( IR n \K(p h ) ) - 0, wliurc p,, = (ph +

Pln-i)/2 5 p h ) ] ; and A(k, p l H l ) c A(k, ph).

In Lhc fol lowinj ; cMiiiialcs c^, C2,... dendte positive consents depcudiim only on

O(|. k, n, in, y, 8, l \ a, and a. Hy [lie Sobolev inequality (2.12 in [LU, p. 45]>.

(2.-11
rnfi

IAS

< C, )JA(khi ,,()„) ]i/S-(«-m)/n J [ IDU i '" ^ ' + (u k|n ,)'" | IX,, I "' | dv

I Du I ilv

1/fi

vviicrc c : - max (I ^'(t) | m : t e [o0, 3o()/2| j .

Next, pulling k = kh+1, p = ph, p - ap = ph imo (23) gives

(2 5) lUul '"<ty <

in(h+3) I (u-k,
J "

1/S
t rn/n

1+c-m/n



On ilu-oilier kind.

(2 ,6 ) J h >
[lift

1/6
. 1/0

By (2,4), (2.5) and (2.6) we pet

l-&+m5/n

, i i / r m i l l t l ) -in ) mh^n'th+l) -•
+ M Ni ^ k

( l Jh J + c 2 2 ^ - K|,

, _2mh•• mh5 -m+niS in 6/n 2-S+niS/n
<cA\2 k0 J h

5-1

/n + mhS | ^ " v m 5 E j j j ' " 6 / n * 6 r

1 k0 Jh)

2-8+mS/n S-mS/n + & S
+ J + J

where 1(5 = nun (ni mS + ni2 + 111-8/n, - a + 111 + m5e, 1118 • 111) > 0.

Since uvcry J|, <;i ;ind

inin (2-5 + niS/n, 8 - mfi/n + 5E, 5) > 1,

iherc is (if > 0 k>i wfiich everv

h • « , 1 H n 2

Cfi (I Jh

We ;uc now in a position to apply Lemma 4,7 at [LU, p. 66]: I-'nr k(j MilTiiiently l;u;jf

'iiendingon a(l, k, n, m, "f, 5, F, n, ii), J|, ( i-»0 •** Ii-»oo; conse(|iiL-nlly

(2.7) I.LHlina. f'f»r M J 1 < i, j < n let Ajj, Bj, C anil 0 he im•nsurahti: functions mi

M, Assume that B^, C, 62 e LP(M)/«/-j«mt; p > n/2, and thai

n n nn n

l - > J i . j - 1

for every x e M and \ = (^j £,n) e IRn. Ler w be a nonncxative function in C-(M)

such timt

(2.9)
i . j - i

B j D j w + C w - °

^JI M. Then for any open relatively compact subset Mj of M, II w |J „,, depends

only on M , , II 0 II ?J), II Bj II 2p , II C II p and II w II j ,

Proof. Take a disc K(p) in M j with X[K(p)]<l, and C e CJ?(K(j>). [0, II). For k > 0

put A(k) = {x e M : w(x) > k}. Multiplying (2.9) by -C2 max(w- k, 0) and smeyraiimi

gives

J A,j C,2 DjW DJW dx < -2 J Ajj ^(w-k)IDjW D,^ dx
A(k) A(k)

J ftj 1} (w-k)DjW dx + J O;2 w(w-k)il\.
A(k) A(k)

l.xt t| be I he conjugate index of p. Then for any e > 0 we apply (he Caiichy-

Scliwa:!/. and Holder inci[ualities toobtyin



2 J I £;(w-k) Ay DjW D ^ I dx
A(k)

i , • > i f , ,
< t" J L,- Aj. D,w [):w dx •+• — 1 (w-k )^ A,. D,i, li^C, dx

A(ki ' A(k)

<e J Q Ajj Dj\v DjWdx +— J (1 + O2) (w-k)2 I DC I 2 dx

- 1 J C-' Ay n,w D ) W dx + ~ j" (i + e V dx J
A(l) E A(k) J [A(k)

A(k)

1AI

Also,

[ B, C2(w-k)D,w dx < - \ C2 I Dw I 2 dx + - - - H2 C2 (w^k)2 dx;
A{k) A(k)

J I C I
A(k)

< j ICK 2w2jx .

With (2.9) ;ind these three esiimatcs we c;sn argue in u manner similar to the proof of

Theorem 13.1 in [LU.pp. 197-199]: For any sufficiently small E > 0 we have

J I Dw I 2 1} dx < c0 J C2 A i j D j w D i w d x

S c ,

1/q
2 2 2f 2 B 2 2 ^

A(k)

uhere i j q,,.. deiKHe positive ci>nslai)is depending only on M|, | [0 l^ . , , II U. II >p and

I Cl l . , . Wiih A(k, p) = A ( k ) n K(p) we again apply I liildcr's iin.-i|iinliiy.

(2.HI)

< c 2 ' f 2q

J
(k.p>

A(k,p)

2<i

I 2 C :

l/'l

dx

For any O G (0,1) choose £ so thai £(K(p - op) ) = 1 arid I DC, I < c / o p .

CIUIM; p > n / 2 and X[A(k, p ) | < l , from (2.10) we ohtain

A(k.p)

A(k,p)
+ p

We see lhat 1 < q < n/(n-2), and for sulticicnily large k we can CIHKIM.'

t e (0, 2/n), and a e [2, 2 + 2e] for which k2 i 1 < k a . Thea-foa- w satisfies the

hypotheses of Lemma 2.1 with m = 2, 5 = q. The conclusion of Lemma 2.7 now

follows at once. D

Finally, arguing as in the proof of Theorem 13.1 in [LU, p. liW], wcoLiiiiin

(2,11) Theorem. // w e C°(M) n C2(M\t)M) is u nonncy,aiivc function suiisfy

(2,9), ilmn II w II „ depends only on M, II 9 II 2p> II 1L II 2p, 1) C II p, II w II , and

n * 1 0 M II „ .

(2,12) Remark. Similar argumems prodtice analogues of Ixmitia 2.7 and ['heoivni ' 11

for weak solutions w e W' - (M) {>f |(ic mlioinogencous form

PjfA,| D,w) + £ » | I >jW + (,'w = t
' j - i '



so

nl { . ! ' ) j , where f E I.I>(M) and p > n/2.

.V Our Auxiliary !'<|LiatiuM (3.<i)

In this section M dcniStcs a compact Riemannutn manifold with smooth boundary.

(3.1) Lemma. / / u e C"(M) n C3(M\<)M) I.V a solution of the Dirichlet problem

(1.11) with boundary values (p e G3(M), then il Du I ̂ Mll „ if bounded by a constant

depending only on II ip II ,.. ., .T ( (M)

Proof. We use the method of barrier functions IS, Theorem 1, p. 432]. For t > 0 and

il > 0, set 6(i) = rj log (1 + t); ihus

O'(t)
t + 1

and 8"(t) =
1 + 1

We shall consider u in a tubuiiir neighbourhood of dM in M, and work in a ch;irt in

whiuh x1 is the distance il(x) of x to 9 M Then

D,0(d(x))) = ex*1)©;1 and D,jO(d(x)) =
1 +x

Sel wi-(\) = ± 8(d(x)) + lp(x); then

7+X1

Dyw+(x) = - J ~ -
(1 + x 1 )

Write (l.S) in the form Au/f(u) = Q(u) and subslitute w± for u toobliiit)

Q(w,) ~ A ( r i
3 + A2 \\

2 + A t T| +• A()l

11

where ihc coefficients are functions of g'K Tt ,, ll,ip \\nt\ Ojj<f>; in fact,

A , = + g'l g j ' (8? 6j + r- j ( l + x ' ) ) / ( l \ x 1 ) 4

= + 1/(1 + x 1 ) 4 because g'1 - 5 '1 and r j j = (I;

thai lias constant sign in a sufficiently thin lube.

We can choose v\ > 0 depending on II (p II c i { M ) so that

Qw. > 0 = Qu > Qw+.

Because w_ < u = tp < w+ on 9M, we can apply the comparison piinciple [CiT, p. 2(>3]

to conclude ihat w. < u < w+ in a neighbourhood of t)M. From that it follows thai for

any point y e DM, I Du(y) I < max ( I Dw_(y) I, I Dw+(y) I ) < s\ + I Dip(y) I. That

contl udes the proof of the lemma. •

(3.2) Lemma. / / u e C°(M) r\ C3(M\i5M) is a solution of (1.11), ilwn II Du II ,„ i.v

bounded by a consuuu depending only on II sp II f3 ( i f^ ' " " ' C-(u), for any open

relatively compact subset M] of M, II Du II depends only mi M | (v/n/ il .M (u),
L (M^J ' 1

Here (Ey (u) denotes the integral (1.3) evaluated on M j .

I'rtiof. We shall abbreviate Dpu by up and the covariani derivative \\

Set v = e(u). Then

V( = vgP4 Up j uq ; and

(3.3)

V|j - gM(vup y uq + vupi i u4 j + VJ Up,, i\t).

Sltp 1. From (1.10) we obtain

pii liy

(3.-1)

And applying V% lo both sides of (1.11) gives
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Multiply lhal hy vjL;Jsiir and apply 03):

(3.5) vQ'iuOg™ tir u; is = 2v"l i;isv; v,.

Slep 2. Next we compute

v,) = Q'J(u)j;rs(vur.i ,j us + vufi | us_ j + Vj ut , u s |

We calculate each of those terms separately; for T[ we use the cominiiiatKin I or nuil.i

u i . j s - u i . s j = " k R k i J s .

where K denotes (he curvuture tensor of g; and Uj ; = U: j . Consequenily, hy (.v?)

Also, using (3.3) repeatedly,

T2=

T3 = V- l g'J V, Vj + V- ' g'P gJ4

T̂  = V"1 g'rvivr.

12

13

Thus

T5 = - v"1 £" gis ur us Vj Vj, using (3.4).

iJ(u)vi) = T, + ... + T5

Step 3. Rewrite that as an equation in v;

(3.d) Dj(QU(u)vj) + Q ^

= v l VDul2 + v ' l IDV I 2.

^ vk

The rij;ht member is non-negative so the left has the form (2.')). The hypotheses fit

Lemma 3.1 and Theorem 2.11 are satisfied. We conclude lhat tl v I! m depends ooly on

II ip II ci,M) and E(u); and the same for II Du II m .

Similarly for Mj : By Lemma 2.7, II v H and hence II ]>n II d e f s , , i u n ! y

011 M] and E ^ (u). D

4. Proof of the Theorems

We begin with (wo standard results, in Ihe context of Section 1.

(4.1) Lemma. Let u e C°(M) n C^(M\3M) be a solution of ihc Dirirlilei problem

(1.11). Then u e C ^ M ) for some a > 0. Furthermore, a and Hull ,,

depend only on I! (p II ci(My If Mj is any open relatively compact subset of M then

u e C''P(Mi), where [i and II u II cl_p j depend on Mj and tL^ (u).

Proof. Equation (3.6) satisfies the hypotheses of Theorem 7.2 in (l.U, p. 2901. WV-

conclude thai v e C a(M\8M) for an a depending only on I! «p II , . Using 1(1:11 in

(1.10) we can now iipply standard regularity theory to verify each assertion in the lemm;i

n
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(1.2) I ' r o p o s i t i n n . For any <p e ( ^ ( M ) the Dirichkl problem (1.1(1) )nt.\ a Hrinpte

Miluiion u f C?"(Mi r i C?(MV)M). wi.iriVHcr, u is the unique \E-ininiiniim in V/(M.

ifi). Also, fur any open relanvctv compact subset M[ r;/ M there, is u > 0 Mich linn

(i <JH</ II u II ,,,i(1 M depend only on M[ <iru/ EMi(tp).

This is an application of ihe fixed point method described in Tlieoicm 11 .N in [GT. p.

287], using (1.9) and Lemma 4.1.

(4.3) Proof of Thturcm 1.5. Let u be a local E-minimum. We can find a sequence

(uk)k> ] c C^(M) which converges to u £ W ' ^ M ) , and

lim E(uk) = E(u).

Take a small geodesic disc M(j in M and let

| : w e *W(M) and w = uk on

By Proposition 4.2 there is a unique Ep,^ - m i n i m u m w k e WfMy, u k ) such ih;it \vk t=

C ' ^ M i ) for any relatively compact Mj in My, where a and I! wk II , depcml

only on dist (MjdMo) and E(uk).

Therefore we ciin find a subsequence of (wk) - still called (wk) - which universes

weakly to some w e W'.P(Mo) for each p > 1; and for relatively compact M| in Mo

there is p>() such that (wk I ^ ) converges to w | M in C'>P(Mj). Hence

IEM|)(w) < iim irif EMo(wk).

w is an II ^ -iniiiiiiium in W(M(], u).

Since w G H |w'-l'(M(,) : p > l} and u e f) I : p > l } , we see tli;it

w = u on <")M,,, w e C"- " (Mo ) , u c ("». «(M).

IS

f'onsequeiilly the functions

I w(x) if x 6 M.j

I u(x) if x e M \ M()

u(x) u(x)) if x e
V2(X):

u(x) if x c M \ Mn

are bolh in W(M), where e is taken from the definition (1.4) of u ;is .i local

niiniiiuinl.

Clearly e(v,) e C». a(M0) and

(4.4) E(v,)<E(u).

On the other hand, strict convexity of the exponential function insures ih;it

e (v 2 )< ( i - e ) c ( u ) + £e(vj)

;it every point of M; and that inequality is strict if I Du(x) I - jt |

and (4.4) together gives

(4.5) e(u) = c(vj) a.e. on M.

I - . Tak ing ( ] . I]

Therefore, the solution of the Dirichlei problem

(4.6) div(c{vj)Du) = 0 with u = ip on dM(j

is smooth. We conclude that our local E -minimum ii6Cn l(M). •

(4.7) Proof of Theorem 1.6. Take (p e WtM) and (uk) c CK1(M) t •, ( ^ ( M V J M ) ;I

minimizing sequence in ~W(M, if). Thus (uk) is hounded in every W'J ' IMVM), and

we can suppose that (>ik) converges weakly 10 u there. It follows llial u is an I:

minimum in Vv'"(M), hy Sernn's theorem [M, p. 221. The argument proceeds as in the
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pruof <>1 riHiiiLin 1 S. D

(•l.K) Remark, li is a straightforward tusk to retrace ihe steps in tin- proofs oi Lemmas

3.1, .U . 4.5 \

;uul Proposition 4.2, to see how the estimates depend on (gy) and (I",' )•

(1.9) Remark. In the early stages of this work, John Ball established (at our request) that

if geC- ' (M) , any if-minimum u e W^'fM) with u = tp on DM is a weak solution

of (1.10); and /,

i furthermore, that I On I 2 c(u) e I ^ f M ) -

(4.10) Remark. Our results are valid for a more general class vi equations, of ihe

form div (p(l Du I-)Du) = 0, where <J> : M x R -> B is a positive smooth density. That

is the F.iiler-Lagningc equation of the functional

IntiOOl

F(u) = }_ f J p(x, ... dx'

We require at least strict ellipticity, which can be expressed by

for some constant A; however, our proof of 1-trnma 3.1 requires the stronger condit ion <>l

si!K 1 m o n o i o n i c i t y (if p, as w e l l .

B y w a y o f c o n t r a s t , f o r i h e m i n i m a l g r a p h e q u a t i o n [ G T , p . l ] w e h a v e p ( o ^ ( 1 + ^ ' f ~ .

i n t h i s c a s e w e h a v e

i.e., ell 11 lie. Inn not strictly so.

16
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l'"or flat domains M c ( R 2 (he minimal graph equation lakes the form

(1 + I D2u I 2 ) D l t u - 210,11 D2u D ] 2 u + (1 + I I V I -))Jj2u (I,

which is die adjugate of she exponentially hannonie equation

(1 + I D j u I 2 ) D , , u + 2D,u D2u D1 2u + (1 + I D2u I -) U22u •-• (I.

(Incidentally, that latter is cited in [S, p. 431] as an example of a turn-uniformly elliptic

equation which is regularly elliptic (in Serrin's sense)).

(4.11 ) Remark . Theorems 1.5 and 1.6 are first steps in ihe study of exponentially

harmonic maps M ~» N between Rienvit man manifolds - a pionranmie undertaken in

collaboration with L. Lemaire. They are valid in case N = !Pr!, a significant extension

because of the highly coupled nature of Ihe defining system; the proof requires a

generalization of Lemma 3.1 based on induction on n.

5. Representation by Differential Forms

In this section M denotes a compact oriented Riemannian manifold without bound.try.

The following result is in the context of the main theorem of LSS, p. Vj]; however, our

density p is not admissible in their sense.

(5.1) Proposition. Lei p(̂ ) = exp ((;/2). Then every mil 1 dimensioinil

eohomoloity class of M is represented by a unique smooth \-ft>nn cu such that

(5.2) dw = 0 and d*(p( 1 w I 2w) = »-

Here d denotes the exterior differential operator; and d* itsadjo

rouT. Firstly, we construct a weak solution. As in (1.12) we set

17

- j r
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Th;u convexity insures that the functional

F(co) =•-JM f( I to I 2) Jdct g|j dx> ... dxm

is weakly lower semi-continuous on the Hilbcrt space P of square ink-tirable 1 • forms

(Ml M .

Lei y be a smooih closed 1-form representing a given cohomoloyy class. Then y I

d W ^ M ) is a closed - hence weakly closed - uffine subspace of P [M. 57.4); therefore

f; Lichieves its minimum co on 7 + dW' 2 (Mi . Such minima are just the weak solutions

of theecjuuiions (5.2). Indeed, for any u6W' .>(M)

— F(co + c du) I e _ 0 = <p( | (i) I 2)co, du>,
de

ihe brackets denoliii!; the L 2 - i nnc r product on V. But the left member vanishes fur all u

ill d*(p( I co I 2)u)) ••- () weakly. Uniqueness of to is elementary.

It remains to show lhat (o is smooth, which we do now: In any chart U we can write

(u = dv tor some fuiKlian v e W ^ - t U ) ; explicitly, we can take

v(x) = f to

where Yj is any smooth path in U from a fixtd point of U to x. Btcause il (v) -• I-'(tD) +

Volume (M) < oo, we see that v € W ( l l ) . Smoothness follows upim npi'licitiinn of

Theorem 1.5. •

l^i.3) There is w canonical isomorphism of the integral 1-dimensional L«i)ioniolnj:y group

of M with the group [M, S ' l of homolopy classes of M into the circle S ' . (Thai is

described and applied in [ES, 541)].) .Say thai u smooth map M -» S ' iv c\i)<mciui<>l!\

luirmimiv if it is totally an cxponenlially harmonic I unction. Then Proposition b,\ has IIIL

(5.<1) Corollary. Every liomoinpy class in [M, S1] has an f\/mm'iiiitilly IHIIHUDIU

representative.
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