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1CAN /25

International Atlomic Encrgy Agency
and 1. The Theorcms

United Nations Educational Scientific and Cultural Organization Here is an example of @ sirictly (not uniformly) elliptic varationsl problan whose

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS minin are smooth.
Let u: Mo B be a funcion defined on a smooth Riemannin sunifold. Vhe

expaonrential energy density is the function e(uw) : Mo R given by

REGULARITY OF EXPONENTIALLY HARMONIC FUNCTIONS (1.1) e(w)(x) = exp | Dux) 1 272,

where | Dufx) | 2 = gli(x) Dyu(x) Dju(x) with (gjj) representing the metric of M,

{g") = (gip-y and D, = 97dx1,

Duong Minh Duc ™
International Centre for Theoretical Physics, Trieste, Il . . ,
niermazonal Lentre fo cul Fhy y (1.2) Weare interested in extremna of the functional
L]
and .
(1.3 [t {u) =fe(u) det 8 dx . dxm
1. Eells
Intermuional Centre for Theoretical Physics, Trieste, Haly ) . . ‘
4 on comipact domains of M. Let
an

Muathematics Institute, Univeristy of Warwick,

Coventry CV4 TAL, United Kingdom. ra0 M) = ue WIAM) : () < ool

Say that u € WM) is a local [E-minimum if for every v € W (M) there is € > 10)

sl thit

(1.H Eu)<Eu+ (v - u)) forall te [0, el

MIRAMARE - TRIESTE

February 1991 [Here are our nin results:

(1.5) Theorem. Everv local E-minimum is in CO(M),

T Pernanent address: Depactment of Mathematics, University of Ho Chi Minh City, Nooyen Van Cu

Sureet 227, Ho Chi Minh City, Vietam.




. . §2] we face a serious complication: The integrind of £ involves the domain variable, so
(Lo) Theorem., Suppose that M s compair and has smooth bowndary oM.t . _y o . :
i o . we cannot appeal to the maximum principle to obtain interior gradient estintes from those
v WIM), then thiere i a wnique T -minimian 1€ WM, @) = {wc WM w= @
on the boundary.
o MY, Furthermore, u e CO(N\IM).
Nonetheless, we do establish a key result (Theorem 2.1} on the boundedness of

) o ) positive subsolutions of certain non-uniformly elliptic equations. That 1s used 1o oblain

(1.7 The Euler-Lagrange operator formally associated with [E 15 the quasi-linear strictly
A the required interior gradient estimates from which Theorems 1.5 and 1.6 follow by
ulilpm\,vpcr;uor
standard regularity methods.

: Ny ) The authors record their thanks 1o J.M. Ball, §. Hildebrandr, Le Dung, L, Lemaire, and
(1% Au = div {e(u)Du) = g1 Vj(e(u)Diu) ) o )
M. ). Micallef for their interest and assitance.

= 1:(u)()ij(|.|)V_1 Dju, .
2. Boundedness of subsolutions

where
(Jii(u) = g¥ + P gld Dyu Dyu . _ ) o .
Throughout this section M denotes an open subset of RP, with induced flat meune.
Let K{p) be a disc of radius p contained in M. Take u € WLoiM) with n>m > 1,
and V] denotes the covariant derivative; thus Vj Diu = Djju - I“rj Dy A C2 function and let Atk, p}={x € K(p}:u(x) >k} and

Mo R s exponentiafly Turmonic if Au = 0.
MA(k, p)l its Lebesgue measure,

(1.9} la the context of Theorcus 1.6, it is well known (Theorem 11.9 in [GT, p. 289] that if

g & CHM) then we C3 iy a sohuion of the Dirichler problem 2.1y Lemma. For some k and 69 <1, take p. 6 such thit py - Oy py S p Gg

p<p Assume that for any concemric discs K(p), Kip - opy, Kipy) and k> k the

function v € WLNM) satisfies

(1.1 Au=0 with u=¢ on IM
iff u iy the unigue £ -minimun in 5 1/ 8
m
70 m dx < . o e .
(-.‘.)A X I FDulrdx <y (p) m J. (u-k) dy T tn o l[_z\(k, 1))]1 £-m/n
fwe C3M): w=¢ on dM}, (k, p-op) Alk, p)
Clearly that problemis cquivalent 1o solving where ¥, 8, a and € are positive constants with £ £€m/n, 1 €8 < n/(n - m),

m<a<em+m Thea lull L% i3 bounded by a constant depending: oty

(K{py o pph)

(1.11) Q) V;Dyu = 0 with u = ¢ on oM in CHM). .
on Op k, n,m, Y, 8, £. 00 and the average

If the metric on M s flat (g5 = ﬁij in suitable charts), then standard methods provide
asolution of (1,111 That has been verified by Eells-Lemaire, using [S, Theorem 1, p.

4521 I general, however, an Tollowing the basic existence/regularity progriunme of (S,



a pu“ J‘ (u(x) - R)“. dx.
AGK. )

Prool. 1f § =1 thatisjust Lemma 5.4 of [LU p. 76l We assume 8> 1 and muke the
nevessary technical adjusiments.

We can suppose py = 1, and vunsfornm (221 into

178
md

12.3) J- [ Dl My <+ 5
Alk.p op) Alk, p)

for 1-opsp-op<p=l Take ky > max(k, 1) and define the seqQuUences
Ppp=1-0p+op/20 and Ky = 2ky - ko2

for integers hz 00 Set
1/8

' md
Iy, = Jl (u-kyy dy
Alky.py)

aned
Tty = LM vl - 1 + o),

where 3 o non-increasing smooth function on B with {{) = 1 for t < gy and
Coy = 0 for ¢2 3ap/20 Thus LK) = 1. URMNKPY)) = 0, where iy = (py +
Pheyd/2 2 pyags and Ak, pyy 1 € Ak, Pr).

I the following estimaies ¢, ¢,... denote positive constants depending only on

o koo, Y, O, £, ¢, and a. By the Sobolev inequatity (2.12in [LU, p. 43).

4

(u-ky dy J . krr A [A:k, m }1 Vg nSn

145
mé _md
(2.1 M. s (uly) - by 0 g, dy

Athy g By) i

m o m
S op AAky g, ) [178-G-mim J [ID“] Cp + u Ry 0 1DG Ly
Alkh*—l"jh]

- n
SCl A’[A(khil‘ﬁh)]ll‘s 1+m/n J‘ | I)UJ ] \1)"
Ay g iy
‘ /o
) md mé
+ 1Atk g, oo 1170 =y, DG, Ty
."\(th, ﬁ]l)

Dyl dy

g.;1K[A(khn‘ﬁh)]lhﬁ—hm/n )
Aky g, )

_ 11 178
+¢3 2™ X [Alkp 1. Py Jh}

where ¢ = max (IC'(I) |7t e fog, 3op/2] )
Next, putting k =k, 1. P =Py P - Op = Py into (2.3) pives

(2.5) I Ibul "y <
Atk g )
5 178
m 141¢ m/n
m{h+3) j (U‘k' \ l) dy x
e l ALY l[A(kmi‘i’h)]

A(kh il 1qh)

mh o 1+E—‘m/n
<cyy2 Ih+k0?L[A(klul’ph):| :



)

O
On the other hand,
b /8
‘L -k )nlﬁ
‘ (260 Jy= 4 ko k" A[ A p
] . J
Aty r ) het Ky Kpyr- 1y
> 2-mhil) kg]){’l‘-(klull ph)]lfé.
By (2.4),(2.5) and (2.6) we pet
" 1-5+mb/n '
, Thog <oy (2"“ g Jh) {c3 2",
!
“ - §+8e-mb/n thel)
' oo miled} - mh{ m(h+ -m
* ek (2 ko I ) +ey2 (2 ky Jn
2nith-mhd | -m+md mzc'S/n 2-&+mb/n
m-n - I -
EC4 2 kO jh
+ omhS-mhd/n + mhd k;;""’m& Jﬁ——nsﬁln + be
mh§  -méen 5
+2 ko J‘h}
: h ' 2-8+mé/n  S-mém+ 8§
[ =ty ku {Jh + Jh + Jh}
1
]
where ¢ = min m md + m?2 + m8/n, —o+ m+ mde, md - ) > (1
Since every J, €a and
min (2-6 + mb/n, & - md/n+ 8¢, 8 > 1,
there is ey > 0 o which every
o tra,
. hirseg kg,
|1
1

}

We are now 1 a position to apply Lenima 4.7 of [LU, p. 66]: Tor kg sulliciently Lirge

(depending on o, k,n,m, 4, 8, €,.c, 2), I, =20 as ho oo, conseyuently

<
lall LK (pg- o)) = 2ky.

(2.7) Lemma, Foranyl <i,)<n ler A BJ.C and O he measurabie functions on

j:
M. Asyume Hhar BJ?. C, 62 e LM Jor some p>n/2, and thuat

n

n n
(2%) Yogle Y AE G 00m Y Y

3=1 Lhi=1 y=1

forevery x€ M and § = (§),...8) € RN Let w be a nonnegative function in. CHM)

such that

n n
(2.9) 2 DA D)+ D ByDw+Cw20
=1 j=1

on M. Then for any open relatively compact subset My of M, lwll dependy

LN,

ondy on My, 101l e I B, I 2 Ici p and [Iw I LM,y

Proof. Take a disc Kip) in My with A[K(ml<1, and L€ CoKip [0, 1. For k20
put Afk) = {x € M: w(x)>k}. Mulliplying (2.9) by -2 max(w-k, 0} and miegrising

alves

J Ay g2 Dyw Djw dx < -2 J Aj Clw-KIDjw DL dx
ALK) Atk)

+ J Bj L2 (w—k)])jw dx + J CL2 wiw-kdx.
A(K) A(k)

Let ¢ bethe conjugate index of p. Then for any € > 0 we apply the Cauchy-

Schwartzand Holderinequalites to obtain



2 J [ Ziw-k) Ay Dyjw IGE | dx
Alk)

<€ J. g2 Ajy Dypw Dow dx +l_ J' (w-k)? Ay DG DT dx
Atk Tl

<€ J (‘;3 A” Dyw I)Jw dx +‘1- _[ {1 +62) (w-k)y2| D12 dx
Alk) ‘ ALK)

i/p 1/

2 24 2
i j L2 Ay Dyw Dy dx+é. j (1+6)" dx j w-k) D s
Alk) Ak A (k)

Also,

: 1
J B, {2ow-k)Dpw dx < j 2 1Dwl2dx to B2E2 (w-k)2 dx;
A ' A €

(ST

j 1CI2w(w-kidx < j FClE2 w?dx,
A(K) A)

With (2.9) and these three estimates we can argue in a manner simitar to the proof of

Theorem 131 in {LL, pp. 197-199] For any sufficiently small € >0 we have
Pl Y

J‘ l Dw i 2 cz dx SC() J‘ t:,g AU [)JW Diw dx

Ak Alk)

R ) 1/q

RS q Ay 9
<oy { (w-k) DL dx } +J' w1 s
Lf'\(k} AlL)
2
N J [C1L wdx
Alk)

where ¢y ey, denore positive constinis deponding onty on My, 16115, B0, and

NN, With Ak, p) = Alkd v Kipy we again apply Hilder's incgquality.

(2.1 j [w 2L da
Ak, p)

144

174

R 24
< j (w-k T hg | d"] ITSESTr Y

Ak, p}

Forany o € ((,1) choose L sothat {(K(p - op)) =1 and i DC| < e/op. Now

because p>n/2 and AAKk, pil < 1. from (2.10) we obtain

[Dwl2dx s
Adk, )

144

2q

. 2 - X ne 2 2

) (opm .[ (w-k) Ty +p "k +1)J'L[A(k‘|))]lH 2
Ak, )

We see that 1 < g < n/(n-2), and for sutticiendy large k  we can choose
ce(0,2/n), and € [2, 2 + 2] for which k2 1 1 £k Therefore w o satisfies the
hypotheses of Lemma 2.1 with m =2, 8 = ¢ The conclusion of Lemma 2.7 now

follows atonce. D
Finally, arguing as in the proof of Theorem 13.1 in [LU, p. 199]. we obiain

(2.11) Theorem, if we COM) n CIMNGM) is « noRRCLdlive Junction satisfying
29, ihen N w il depends only on MBI o, Bl Ch hwliy aud

“ W | oM " 00-

(2.12) Remark. Similar arguments produce analogoes of Lemuna 2.7 and Theeram * 11

for weak solutions w € W12(M) of the inhomogencous form

n n
2 DA DI+ 3 BiDw+ Cw =
1)=1 IER]
9



HYJ

ot €29y, where Fe LMY and p>n/2
3. Owr Aunxitiary Fquation (3.6}
[n this section M dendles a compict Riemannin manifold with smooth bouncdiry.

(3.1 Lemma. if ue ChM) N CHMNOM) is a selution of the Dirichlet problemn
(1.11)  with boundary values ¢ € CHM), ther 1Dl 3l o is bounded by ¢ consiant
deprending only on | gl My
Proof. We use the method of barrier functions S, Theorem 1, p. 432]. For 1> 0 and

N = ser 80) = log (1 +1); thus

1 and 8"(1) = — o

U(t)=1+l 1+t

We shall consider u in a tubular neighbourhood of dM in M, and work in o chart in

which x1 is the distance d(x) of x 10 M. Then

1

. -
D)) = H(:HB] and DL((x)) = -%l 55, .

1+x
Set widx) = 2 0(d(x)) + @(x); then
D, wy0) == 814 Dypin)
1+x!
+N

Dyws() = —1 8! 5 + Dia(x).
(1+x")

Write (1.8} in the form Au/Ze{u) = Q{u) and substitute w, for u to obain

Qwe) = A+ A2 + A N+ Ay,

where the coetTicients are functions of gil, rik,‘. Dy and By infuct,

Ay=3 el gl B8 + 1 e xhyz0

= 1701+ x1)? because g = 51 and I'“}] ={);

that has constant sign in a sufficrently thin wbe.

We can choose 1 () depending on [l gl s0 that

M)
Qw_>0=Qu> Qw,.

Because w_<u =1 <w, on dM, we can apply the comparison principle [GT, p. 203]

10 vonclude that w_ <o < w, in a neighbourhood of dM. From that it follows that for

any puint y € M, IDu(y)| € max (I Dw_{y) |, | Dw,(y} 1) =1+ [ DBolyy ] Tha

contludes the proof of the lemma. O

(3.2) Lemma. If ue COM) n CHMA\3M) is a solution of (1.11), then 10l o is
bownded by a constant depending only on ¢l o) and Wiuy for any open

relutively compucet subset My of M, BDull depends only i My and T M, (.

L=(M,)
Here {EMl(u) denotes the integral (1.3) evaluated on My,

Proof. We shall abbreviate Dpu by v, and the covanant derivative Vo by g
Set v = ¢(u). Then

vi = vgMug ju and

q:
(3.3

vij = BV, i ug + vug U F v U
Step 1 TFrom (1.10) we obtain

(3.4) 0= ghvuy j+vju)

And applying V¢ 1o both sides of (1.11) gives



0= Q”(“)Ul,;x + 2P ply Up Uy, s W,
Mualtply that by vp™u, und xpply (3.3):
(3.5) vQIWE™ b uj g = 2vT gy v
Step 20 Next we compute
ViQUtudv;) = QUGWET VUL 55 U + Vit U+ VL )

+ gir gis Up, j U Vi + ISy Ug,j vi

We cileulate cach of these terms separately; for “I'p we vse the commutation formla

u,js - Y, 55 = e RKje,
where R denotes the curvature wensor of g; and Uj j = 4j j. Consequently, by (3.5)

Ty = vQii(u)gr Up, jj Us

= -2v-1gls vj vg = vQUWE™ up vy R¥ ijs
Also, using (3.3) repeatedly,
To = vQU(u)g™ vy ug 5
= vl g ug j+ vilprsy v

Ty=v-lghviv+v1ghgy, vju

ivj p YUy

Tg= vl gy v,

13

Ts =~ vl gibuugvivg, using (34).

Thus
Vj(Qij(U)Vi) =Ty+.. +T;s
= - vQU@E g R+ vl g5 ug a4 e v

Step 3. Rewrite that as an equation in v,

(3.0} Dy Qiitulvy) + QMWL vy + Q0w 2 ugu R, v
=viVDul2+v-1IDv|2

The right member is non-pegative so the left has the form (2.9%  The hypotheses of
Lemma 3.1 and Theorem 2.11 are satisfied. We conclude that 1l v [l depends oaly on

Nl i And [E(u); and the same for || Dulf 4.

Similarly for My: By Lemma 2.7, vl LM, and hence 1 12 ”l“"(Ml) dcr-.»nluni_\.

on My and [EML(U)' o
4. Proof of the Theorems
We begin with two standard results, in the context of Section 1.

(4.1) Lemma. Let ue COM) m CYMN\IM) be a solwion of the Diricller probicm

(111, Then u € CLEM) for some >0, Furthermore, w and lu "C‘\“&M)

depend only on ol If My is any open relatively compacr subset of M 1hen

CIMy

we CLBMy), where B and Nul ) depend on My and [I_Ml(u).

CHm,

Proof. Eguation (3.6) satisfies the hypotheses of Theorem 7.2 in {11, p. 2901 W

conclude that v € CE(M\IM) for an o depending onty on § ol Using that in

My
{1 .1()))wc can now apply standard regularity theory to venify each assertion in the lemina
n

13
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(1.2) Proposition, For any @ € CYM) the Dirichier problem (110 has a senigiee
selution w o CUM) oy CAMNIMy. moreover, u s the wnique B -mininmin in WM,
g, Alse, for any open refanvely compact subset My of M odhere i o >0 ek thar

e and lull depend only on My and EMl(np).

(_‘l,(n(M1)
This is an application of the fixed point method described in Theorem 11X in [GT, p.
287, using (1.9) and Lemma 4.1,

14.3) Proof of Theurem LS. Let u bealocal E-minimum, We can find a sequence
ka1 € CY{M) which converges 1o u € wl2(M), and

lim  Edug) = Equ).

[N ]
Tuke a small geodesic dise My in M and et
W (Mg, uy) = 4wl My WE WM) and w =y on Jdh,h

By Proposition 4.2 there is a unigue [EMo—minimum wi € W(Mg, up) such that wy e

CLeM,) for any relatively compact My in My, where o and | w, [l depend

CLEAM )
only en dist (MOMg) and Equy).

Therctore we can find a subsequence of (wy) - still called (wy) - which converges
weakly to some w e WLP(My) for each p > 1; and for relatively compact M) in My

thereis B> 0 such that (wi |y ) converges to wly in CLBM,). Hence
) S Timind Epg (w0,

soow s an b M[]~|ninimum in WM, u).
Since we (] {W‘-P(Mn) p> 1} and ue () {WH'{M} P 1}, we e that

w=u on M, we M), ue ChaM),

15

Consequently the functions

wix) if x € MU
vi(x) = )
. ulx) if xe M\ M(l

ufx) + r,(vl(x) ~ux)y if xe M”

Va(X) =
200 u(x) i x€ M\ M,

are both in W (M), where £ is taken from the definition (1.4) ol u as a local f -

miminunm.

Clearly e(vq) € C%a(My) and

(4.4) E(vy)r < E(u).

On the other hand, sirict convexity of the exponential function insures thut
e(va) S (1 - &) elu) + Ee(vy)

at every point of M; and that inequality is strice if [Du(x) 12 £ 1 Dv 00 12 Taking (1. 1)

andd (4.4) together gives

(4.5) e(u) = e(vy) ae on M.

Therefore, the solution of the Dirichlet problem

(4.0} div(e(v)Du) = 0 with u = on JdM;

is smooth. We conelude that our local [ -minimum ue C®(M). O

(4.7) Proof of Theorem 1.6. Tuke qﬁE WM} and (n) © CHM) o3 CHAMNOND o
minimizing sequence in WM, @). Thus () is bounded in every WL M\JGM), and

we can suppose that (uy) converges weakly w0 u there. It follows that v is an [

minimom in WM, by Sernin's theorem M, p. 22). The argumient proceeds as in the
) } L |

15
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proef of Theorem 15, D

48 Remark. Iis a straightforward task to retrace the steps in the proofs of Lomnis

A1,82.40 0

"'> and Proposition 4.2, 10 see how the estimates depend on {gg) and (ITJ).

(19 Remark. Intbe carly stages of this work, John Ball established (at our request) that
if pe CHM), any I -minitnum u € WLIM) with u= ¢ on dM isa weak solution
of (1.10%; and »

L\, furthermore, that [Dul 2 e(u) € I1lm(M).

. mag P . .
(4.10) Remark. Our Tesults are vatid for a more general cluss of equanions of the
form div (p(! Dul2)Du) = 0, where ¢: M xR >R "is a positive smooth density. Tha

ts the Euler-Lagrange eguation of the functional

| Du(xy | :
TH{u) = L p(x, EXAE _fdet g (%) dx' .. dx
(u) = 5 y :
- 0

nm

We require at east strict ellipticity, which can be expressed by

2
0<A Sg(ég—(—a—)l

3

for some constant A; however, our prool of Lemma 3.1 reguires the stronger condition of
srICLmonotonicity of p, as well.
By wity of contrast, for the minimal graph equation (G, pA] we have piey = (1 + &}

in this case we have

”

$qE pTED
o =227 < B :
}< € <00

Lo, el tic, but notsiretly so.

16

172
r

For (lat domains M €2 the minimal graph equation tukes the form
(1 + 1 Dou I 2Dy qu - 2140 Dyu Dyga + (1 + 1 Dqu 5550 0,
which i the adjugate of the exponentially harmonic equation

(1 + 1Dl 2Dy g0 + 2Dqu Dou Dypu + (1 +1D5ud 3 Dy5u - 0.

tIncidentally, that tater is cited in [, p. 431] as an example of o non-uniferndy elliptic

vquation which is regularly elliptic (in Serrin’s sense)).
(4.11) Remark. Theorems 1.5 and 1.6 are first steps in the study of exponentially
harmonic maps M - N between Riemar ntan manifolds - a programme underiaken m
collaborition with L. Lemaire. They are valid in case N = R significant extension
becsuse of the highly coupled nature of the detining system: the proof requires a
veneralization of Lemma 3.1 based on induction on n.
5. Representation by Differential Forms

In this section M denotes a compact oriented Riemannian manifold without boundiry.
The following result is in the context of the main theorem of [SS, p. 591 however, om

density p is not admissible in their sense.

¢5.1) Proposition, Ler pE) = exp (£/2). Then every real 1-dimensional

cohomelogy class of M s represented by a unique smooth 1-forme o such that
15.2) dw =0 and d*(p(lwllw) =1
Here d denedes ihe exterior differential operator; and d* its adjoint.

Proof. Firstly, we construct 2 weak solution, As in (1.12) we set




1%

q
1
fig) = = J PEME = et/ - |;
0
then
2 2 2
Ipl™_ . d1(lplH)
lzfs Folpi2y and Epl2g apl—dpj_ Pi Py

Thatconvexity insures that the functional

Flw) :J-M f(la 2y, fdet B dx! .. dx™

is weakly lower semi-continuous on the Hilbert space P of square iniegrable 1-forms
on M.

Let ¥ bewsinooth closed 1-form representing a given cohomology class. Then y 4
dWLZ(M) is a closed - hence weakly closed - affine subspace of P [M. $7 4} therefore
F achieves its minimum @ on ¥ + dWLZ(M). Such minima are just the weak solutions

of the equations (5.2). Indeed, forany u e W12(M)

%F(w +edu}l L = <plloldHu, dud,
e

the brackets denoting the L2-inner product on P, ‘But the left member vanishes forall o
it d*(pe || 2y - O weakly. Uniqueness of @ is elementary.
It remiins to show that @ is smouth, which we do now: Tn any chart U we cin write

o = dv for some funcion v € WLAU); explicitly, we can take
vix) = w
J-Y. \

where v, 35 any smooth pathiin U fromea fixed pointof U 10 x, Bevause # (v - Fwy +
Volume (M) < oo, we see that v € WiU). Smoothness follows upon apphcasion of

Theorem 1.5, 0

15.3) There is a canonical isomorphism of the integral 1-dimensional cohomalngy group

i8

19

of M with the group [M, §T} of howotopy classes of M into the circle ST (That
described and apphied in [ES, $4DL) Say that a smooth map M < SU iy cyprenennatfy

Rarmonic (0t is tocally an exponentially harmonic function. Then Proposition 51 has the

(5.4) Corollary. Every homotopy class in M, S has an caponeniatly harowonn

representaiive.
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