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ABSTRACT

The vacuua snergy of QED, as a function of the coupdling
constant a, is shown to have an absolute minimum at the <criiical
couprling a = n/3, Ilhe effect of chiral symmeltry breaking

=diminishes as the co.pling is increased. We argue that these
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aspects of the vacuum energy shall remain unaltered beyond the

ladder approximatiosn,
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‘ABSTRACT

The vacuum energy of GED, as a function of the <coupling
constant @, is shown to have an absolute minioum at the <critical
coupling a = n/3, The sffect of chiral symmetry breaking

diminishes as the couplir 16 increased. We argue that these

aspects of the vacuum en:r 3 shall remain unaltered bevond the

ladder approwmimation.
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Based on analysis of the Schwinger-Dyson equation {or the
fermion propagator, it has been conjectured that quantum
electrodyramics (QED) ha; an ultraviclet-stable fixed point at
strong couvling‘. This hypothesis is also supported by numerical
simulations . These results are quite irwportant, because they may
change the old argument based on perturbation theory, that
renormalized QED is a trivial theory', providing to us an entirely
new view of this theory at short distances. In another hand the
existence of such behavior, shall allow us to bhuild models of
dynamical mass generation with U(1) technicolor theories®.

1f the theory has one fixed pointy; or a phenomenon of
collapse of the wave functionhf one should be able to verify that
this point corresponds to an extremum of energy. To look for an
absolute minimum of the wvacuum energy as a function of the
coupling constant is ancther way to find a fixed point. This idea
goes back to the seminal work of UWilson on renormalization
group”, where the existence of a critical point is directly
related to the extrema of a potential. One ;hould note that the
Miransky’'s hypothesis about the existence of a non-trivial fixed
point in QED', is a necessary condition for the existence of a
non-trivial so}ution of the Schwinger-Dyson equation for the
fermionic propagator, and a verification that this point is also
energetically prefered is complementary to his work. Actually,
the theory makes sense only at the critical point a =a_ & n/3,
where the dynamical mass remains finite in the limit we set an

ultraviolet cutoft N to infinitshz- Furthermore, at this point



the fermionic self-energy has not an oscilatory character, but
behaves asymptotically as (mllp) in tp/a), which gives maxingl
suppression of flavor-changing neutral currents jin U(]l) techni-~-
color theories. In this Letter, starting with the solutiin of the
Schwinger-Dyson equationy we will compute the effective potential
of Cornwall, Jackiw and Tombuulisd at stationary points as 3
function of the coupling constant, and show that the vacuum energy
has an si:solute minimum when the coupling is equal to the critical
value a . what corroborates the hypothesis of existence of this
fixed point.

It has been shown that the Schwinger-Dyson equation of the

fermionic self-energy i massless QED, in the ladder approximation

ip) = 224 Jd“k 2“’;) > (1)

an (p-k)“[x“-L¢(x)]
has only the trivial solution when a ( ae-'nla m.. For a 2 ns3
the self-energy has also a non-trivial solution, given by »
hipergeometric function whose asymptotic behaviqr it large

momenta §s

2 1/2
IL(p)- 'g' [-%$%$7fT§ET] sin(211n-£ +E(y) ~ arctg 2y) , (&)

where m is the dynamical mass, and

_L & _ (3a)
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Uhen Yy = @ (ora-=s at ) instead of equation (2) we obtain

2

I(p)- -ﬁ- In{p/w) (4)

At low momenta ZX(p) behaves as a constant, and does not depend on

a at leading ordcr”'.

To compute the vacuums energy we start with the effective

action for compasite operators as obtained by Cornwall, Jackiw and

Tosboulis®

I(s) » - T (In S 3) + Tr [(s™}- 2)s] - (2p1 diagrams) (5)
where S(p) is the full fermion propagator

s3(p) = s:2p) - Lip) (&)

S.(p) the bare ones and the 2P (in eq. (5)) wmeans all the

two-particle irreducible diasrins‘. It is important to resember

that the stationary condition for F(S), i.e.. 6F(5)/65¢(p) = @,
lJeads exactly to the Schwinger-Dyson equation (eg.(1)).

Considering translation invariant propagator configurations,

equation (S) is reduced to the effective’ potential (Vi(S)), ¢rom

which we define the vacuum energs density as

Qs V¥(S) - VlSn) (2
where we are subtracting from the asymmetric potential the

symmetric one, denoted by U(Sn). With oaone given expression for

L(p) we are ready to compute 0. However, as pointed out by

Castorina and Pi’.a such better approximation to study the wvacuum

energy results when we plug the stationary condition (given by

gqualtion (1)) into O, obtaining an exprasesion for the values of O

at its minimunm
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Once we assume 0 satisfuing the complete Schwinger-Dyson equation,
and reduce it to the "one-loop” expression (), we expect it to be
much less sensible to possible deviations of our approximations to
L(p) from the exact solution of equation (1),

As our ®ain intenticn is to deteramine (Q) as a function of &,
we see that only the wultraviolet part of equation (8) s
important. The anfrared part, at least in this approximation.gives
the same contribution to (Q) for any value of @, If we slso
consider that £(p) naturally dasmps the integprals in (8),we come to
the conclusion that we may expand the ultr2violet epart of () in
powers of £(p)/p. Introducing the variable x = Ptll’ and defining

£ ¢« £/m, we obtain the leading ters of ()

T “ £ 76
<N >m = o dX == ¢ O
2 . X or 4
n

Notice that we are taking into account only the contribution of

E£(p) for p 2 m. The substitution of equation (2) into (9) yields

2 2
gs_ o =L | coth(ny)
ale) -5 [n(ykh)] "
) , ) (19)
[3_ Lmuamnu;wamm_mnwﬁuwu]
(4ydesy?
Yy +5y°+1)

where
B = 2(y) - arctg(2y)

In tadble 1 we g9ive the value of (0).¢or 3 series of wvalues of




a/a . Cquation (10) 1s peaked at ¥ = 0, and the nusbers of tabdle
1 shoas that we spproach the deerer minisum as @+ a . UWe should
not expect any qualitative sodification i1n the overall behavior of
(Q), 1f we had used a more complete approximation to X(p) as, for
exnaaple, the hypergeosetric tunction'. The vacuua energy, as 2
function of the coupling constant, 1is bDetter sceen in Fig. 1,
where the ®@inisum up to ae=a is zero and we do not have
dynasical) syuaetry breaking. At a s a the symmetry is broken and
the deeser miniaum of energy happens at that point. Ghen a (Ja)
18 increased the effect of condensation is diminishedy, therefore
any change of the coupling constant towards the critical point
wil] be energetically preferred. Our resull is valid in the ladder
approximation, however 3s it relies on the form of T(p) (with the
adbsolute minimum occurring when I(p) is reduced to eq. (4)), and
since this fors has been shown to hold at higher orders , we also
expect the result to remain unaltered besond the ladder
approxination.

In conclusion, we have shown that the vacuum energy of 0QED
has an absolute sinimum at the critica) coupling a= A/3, this
1s in agreesent with Miransky's conjecture‘ that this 1% an
uitraviolet stable {fixed point. For a ( a, since we do not
have any non-trivial self-energy solution". the vacuum energy 1is
Zero and the chiral syametry is unbroken, For a ) a the chirsl
syasetry 16 allways broken , but its effect is diminished as we

increase the caupling constant,
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a/o _ BT (M

1.001 9.28c
1.1 8.245
1.5 9.148
2.0 e.089
5.0 .01}

Table 1. Values of the vacuum energy as a function of a/o
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Fig. 1 Behavior of (0) as a function of asa



