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R E S U M O 

Estudamos as bifurcaçõcs da equação das ondas de spin que descrevem o bombea-
mento paralelo de modos coletivos em meios magnéticas. São propostos mecanismos 
para descrever os seguintes fenômenos dinâmicos: (i) excitação consecutiva de modos 
por bifurcações de autovalor nulo; (ii) bifurcações de Hopf seguidas (ou não) por cas­
catas de Fcingenbaum de duplicação de períodos; (iii) fenômenos homoclinos locais e 
globais. Dois novos centros de organização para "rotas ao caos" são identificados; na 
classificação dada por Guckenheimer e Holmes [GH], uma delas é uma bifurcação local 
em codimensão dois com um par da autovalores imaginários e um autovalor nulo, para 
a qual muitas conseqüências dinâmicas são conhecida.';; a outra é uma bifurcação homo-
clina global associado à quebra transversal de separatrizes, no limite em que o sistema 
pode ser considerado um Hamiltoniano sujeito à dissipação e bombeamento fracos. In­
dicamos o trabalho numérico e algebrico necessário para o estudo detalhado seguinto 
este programa. 

A B S T R A C T 

We study the bifurcations of the spin-wave equations that describe the parametric 
pumping of collective modes in magnetic media. Mechanisms describing the follow­
ing dynamical phenomena are proposed: (i) sequential excitation of modes via zero-
eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades 
of period doublings; (iii) local and global homoclinic phenomena. Two new organizing 
centers for routes to chaos are identified; in the classification given by Guckenheimer 
and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary 
eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; 
secondly, global homoclinic bifurcations associated to splitting of scparatrices, in the 
limit where the system can be considered a Hamiltonian subjected to weak dissipation 
and forcing. We outline what further numerical and algebraic work is necessary for the 
detailed study following this program. 

^ 
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1. Introduction. 

For over three decades it has been known that in a magnetic material 
subjected to a microwave frequency magnetic field, spin-wave instabilities 
can be excited as the field exceeds some threshhold value. Since the early 
days of spin-wave pumping experiments, it was observed that as the 
microwave power increases beyond this threshold, the radiation absorbed by 
the sample develops low-frequency coherent oscillations [HPW]. More 
complicated behavior, such as intermitency and period doubling routes to 
chaos, have been observed recently on physical experiments [AR.BJN]. 
Recently it has become clear that the origin of all these phenomena resides 
in the dynamic nonlinear interaction between few spin-wave modes. 
However, the spin-wave ODEs, given by equations first introduced by 
Zakharov et. ai. [ZLS], have not so far been treated, in detail, by the 
mathematical theory of Dynamical Systems (for background on this theory, 
see e.g. Guckenheimer and Holmes [GH]). 

The few-mode model has recently gained formal support from two 
different approaches. Gill and Zachary [GZ] have shown that the Landau-
Lifshitz PDE, with damping and pumping terms added, has a maximal 
attracting set with finite-dimensional Hausdorff and fractal dimensions. 
This is in accordance with the fact that the dimensionality measured in 
physical experiments is low [ Y M N W . Y M . A A R ] . Dimensions of aitraciors 
calculated numerically in simulations of spin-wave equations with 2-modes 
were reported in [RAJ. These two approaches will not be explored here. We 
just mention that the reduction of nonlinear PDEs to ODEs with few modes is 
becoming a common procedure [Ro]. Several authors have shown that 
computer numerical calculations with few spin-wave modes lead to results 
in good qualitative agreement with the experiments [RA, RA1, NOK, ON, 
BJN1 ,BJN2,CRP,GJ,JB,WBYJ. 

For most physical systems it is not possible to describe the nonlinearities 
with theoretical models based on microscopic system parameters [GL]. A nice 
feature of spin-wave instabilities, which give them a special interest, is 
that they can be modelled by nonlinear equations derived from microscopic 
Hamiltonians with well known parameters. This provides a sound theoretical 
framework to interpret the experimentally observed signals. However, since 
a large number of spin-wave modes are in principle involved in the dynamics, 
it has not been possible, so far, to establish a direct quantitative 
comparison between theory and experiment. 

It is to be expected that a detailed experimental study of the onset of auto-
oscillations can provide a starting point for such direct comparison 
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[RAA.MW], as the Hopf bifurcation is amenable to mathematical analysis 
(numerical and analytical). Zhang and Suhl [SZ.ZS1] have shown that the 
infinite dimensional manifold of nearly degenerate spin-wave modes 
reorganizes itself into new, collective modes. Their work is based on 
simplified spin-wave equations, involving many approximations, which 
however become tractable by the method of center manifolds and normal 
forms [GH.C.RHA]. 

The main purpose of this paper is to point out that at least two other 
mathematical mechanisms, not previously reported, are present in the spin-
wave equations. Potentially they can be "organizing centers" of observable 
physical behavior. We call attention to homoclinic phenomena associated 
to the Hamiltonian limit and to a codimension-2 bifurcation. According to the 
classification given by Guckenheimer and Homes [GH], the homoclinic 
behavior is "global" in the former and "local" in the latter situation. Near the 
Hamiltonian limit, all dissipation parameters are assumed to be small. In the 
codimension-2 bifurcation, just one of the dissipation parameters is 
supposed to be small. In this case, at a certain pumping power, one has an 
equilibrium with two conjugate purely imaginary and a zero eigenvalue, 
whose unfolding produces a v/ealth of dynamic phenomena. 
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2. Physical background. 

I. Basic facts about spin-wave instabilities. 

Spin waves are the collective elementary excitations of strongly-
interacting spin systems [K,W], such as a ferromagnet. A spin wave with 
wave vector k has the spins precesssinc, with frequency w^ about the 
equilibrium direction with phase planes perpendicular to k. The spin-wave 
dispersion relation tDk(k) depends on the interactions between the spins and 
on the sample shape. Considering that the important spin interactions arise 
from the Zeeman (interaction with the external field H0) , exchange, 
crystalline anisotropy and dipolar energies, the dispersion relation, for k « 
a*1 ( a is the lattice parameter - 107 cm) can be written as [K.W] 

(2.1) wk « -6 (H2+ H'A+ Dk2)i/2 (H2 + H"A + Dk2 + 4K M sin2ek)i'2 

where H2= H0 - An MNZ, Nz is the demagnetization factor in the (z) 
direction of the external dc field H0, X = gu.s^ is the gyromagnetic ratio, 
M is the saturation magnetization, OR is the angle between k and H0 , D 
is the exchange stiffness, and H*A and H"A are effective fields arising from 
the anisotropy interaction. The shape of the dispersion relation is shown in 
Fig. 2.1. At field values H0 typical of laboratory electromagnets the 
frequency wk falls in the microwave range 1-10 GHz. 

Spin waves are quantized, the quantum of which is a magnon with energy n* 
wk and momentum h k . At a finite temperature (T) magnons with energy 77 
«fc are thermally excited with population nk given by the Bose-Einstein 
distribution, which is typically of the order of 103 for k*0. However, the 
population of magnons with selected k and u>̂  can be driven to very large 
levels (*1017) by means of various microwave pumping instability processes. 

In the parallel pumping process a microwave magnetic field h at a 
frequency o> p is applied parallel to the static field H0 [M.SGM]. Because of 
the ellipticity in the spin precession (due to the dipolar interaction), the 
oscillating field couples to spin waves with frequency a>k - a>p/2. As a 
result, a uniform radiation (k=0) photon can drive parametrically two 
magnons with opposite wavevectors k and -k , thus conserving energy and 
momentum as illustrated in Fig. 2.1a. When the driving field h is larger 
than a certain threshold value hc , the rate at which energy is pumped into 
the spin wave system exceeds that iost to the lattice through various 
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relaxation mechanisms. This causes the nk magnon population to increase 
exponentially, until it reaches saturation caused by the nonlinear 
interactions. 

In the perpendicular pumping configuration, the microwave field couples 
linearly to the uniform mode (k=0) and one observes a ferromagnetic 
resonance (FMR) absorption at H0 = Wp/tf . Although spin waves with k*0 do 
not couple directly to the radiation they can be excited via magnon-magnon 
interactions. One can distinguish two main processes [S.WS]. In the first-
order Suhl process, spin waves with w k = u>p/2 in a k,-k pair can be 
driven parameirically by the uniform mode by means of the three-magnon 
interaction as shown in Fig. 2.1b. In this case the uniform mode is driven far 
off-resonance with w 0 = o> p/2 , so when the pumping exceeds a certain 
threshold one observes a "subsidiary resonance" at a field H0 roughly half 
the value for the main resonance. In the second order Suhl process a spin-
wave pair k,-k is driven by two uniform mode magnons with frequency u>0 = 
u> p « u> k pumped by the microwave radiation via the four-magnon 
interaction. 

In this paper we sha!! restrict the analysis to the parallel pumping 
and the subsidiary resonance processes . We will show that, somewhat 
surprisingly, they are described mathematically by identical equations . 

The experimental arrangement to study spin-wave instabilities and 
nonlinear phenomena is quite simple. Microwave power frcm an oscillator is 
directed to a resonator via a precision attenuator and a circulator or a hybrid 
tee to allow observation of the reflected radiation. The resonator contains 
the sample and is located in a uniform dc field H0 whose value determines 
the wave-vector of the mode a>k=u>p/2 with minimum threshold. If the 
microwave power is below the threshold value (h<hc) the reflection from the 
resonator is very small. As the power increases there is a sudden jump in the 
reflection, when h*hc , as a result of the change in the sample susceptibility 
due to spin wave excitation. Further increase in the power usually leads to 
low-frequency (10kHz-1 MHz) amplitude modulations in the microwave 
reflection, the so called auto-oscillation , above a second threshold hc\ The 
auto-oscillation can be observed directly with a diode detector connected to 
an oscilloscope or studied with a spectrum analyser. Further increase in 
power yields different types of complicated behavior, which have been 
observed in a variety of materials and situations. 
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II. Equations of motion for parallel pumping and subsidiary 
resonance. 

The dynamics of spin wave systems can be studied by means of several 
different formalisms. We use here the method of second quantization, based 
on creation and annihilation magnon operators, c^t and ck> obtained from the 
spin operators with the Holstein-Primakoff transformations [WS.K.WJ. The 
expectation value of the magnon operator <ckt> is proportional to the 
transverse value of the precessing magnetization M+ = Mx + i My and thus 
represents a spin-wave amplitude. Using a quantum mechanical formalism or 
a semi-classical approach one can show that the Hamiftonian for a spin-wave 
system pumped by a microwave field can be written as [WS.K.W] 

(2.2) H » H(2) + H<3) + HH) + ... + H'(t) 

where 

(2.3) H(2)« Z k ^ WkCktCk 

is the Hamiltonian for a system of independent harmonic oscillators 
(magnons) with frequency u^ . Summation ranges over positive and negative 
values of k. Terms H(3) and H(4) represent three and íour-rnagnon 
interactions and H'(t) describes the interaction with the microwave field. 

The essential ingredient for the nonlinear dynamics is the coupling 
between two pairs of parametric magnons. This is provided by the four-
magnon interaction [ZLS] 

(2.4) H(4) « fi lKW (1/2 Skk' c k | c k t ck-c.k. + Tkk. ck fck ' t ck c k - ) . 

In simple ferromagnets this interaction arises [K] from the dipolar, 
anisotropy and exchange energies, but the latter is negligible for the small 
k-values excited in the microwave experiments. The interaction (2.4) couples 
the equations of motion for different k-modes giving rise to nonlinear 
behavior. The three-magnon interaction H(3) is not important for the 
nonlinear dynamics because it does not conserve energy for the two pair-
modes. However, it is essential to provide the coupling of the microwave 
field to a spin-wave mode [S.WS]. 
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In the case of parallel pumping we consider a uniform microwave field 
hcos(b>pi) applied in the (z) direction of H 0 . in this case, fcr an isotropic 
infinite medium the driving term of the Hamiltonian becomes [K] 

(2.5) H'„ (t) = 1/2 h I K fi pk exp(-i wpt) Ckf c.kf + h.c. 

where p k = "6 u>M sin2ek exp(-i2fk)/4u>k represents the coupling of the 
driving field with the k, -k magnon pair, o>M = tf 4 itM and 9 k is the 
azymuthal angle of k. Notice that the coupling is strongest for spin waves 
propagating perpendicularly to H 0 (0k=n/2) . 

In the case of perpendicular pumping the microwave field h cos(u>pt) 
couples directly only to the k=0 mode, and the driving term in the 
Hamiltonian (2.2) can be written as [K] 

(2.6) H ± (t) - ~h -6 (SN/2)i/2 n [ ^ exp(-iwpt) + h.c.) 

where N is the number of spins S in the sample. In the first-order Suhl 
process, or subsidiary resonance, the k=0 mode drives a k,-k magnon pair 
via the three-magnon interaction 

(2.7) HO) » ft/2 ZR^O h Co Cktc k t + h.c. 

arising from the dipolar interaction. The interaction coefficient is given 
approximately by [WS] 

(2.8) Fk = (2SN)i/2 u>M sin?ek exp(-i f k) 

and is largest for spin waves propagating at an angle 9 k = n/4. Since it is 
driven far off-resonance, the uniform mode behaves essentially like a virtual 
mode intermediary between the driving fielu and the spin wave pairs. Its 
amplitude acts like a classical variable [BJN] which can be obtained from the 
Heisenberg equation with (2.3) and (2.6), 

(2.9) c0 - tf (SN/2)i/2 h exp (-iü>pt) / [ (u>p - u>0) - i tf0 ] 

With this approximation, interaction (2.6) becomes identical to the 
parallel pumping driving Hamiltonian (2.5) with the coupling coefficient 
given by (where u p - 2u>0 « 2wk , u>0 - <»> » *0 ) 

(2.10) pk - tf u>M sin29k exp (-H>k) / 4u>k . 
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This results shows, as we asserted previously: 

Proposition 2.1 ([RA]). The first-order Suhl instability is described by 
the same equations as in the parallel-pumping process. In parallel 
pumping the modes with strongest coupling to the drive have 8 k = n/2, 
whereas in the subsidiary resonance they have e k - n/4. 

Remark. It is worth recalling a statement found in the conclusion section of 
the seminal paper [ZLS]: "well away from resonance the phenomena which 
occur during transverse excitation are essentialy similar to those found for 
parallel excitation". 

Using the Hamiltonian H « H(2) + H(4) + H'(t) given by Eqs. (2.3-2.5) one 
obtains the equation of motion for the magnon operator ck by means of the 
Heisenberg equation dck/dt • [ck,H]/F?7 . Since spin-wave modes are excited 
in pairs forming standing waves, one can assume c.k « exp(iq;<) ck, where 
q k is a real phase [BJN] . Taking the expectation value of the magnon 
operator and introducing the slowly varying amplitude 

(2.11) Ck = <ck> exp(iqk) exp [ i (cop t)/2 ] 

one obtains the equations of motion, which we call the C-equations : 

Proposition 2.2 ([BJN]). Let Ao>k » u>k - o;p/2 be the detuning of mode k. 
Then 

(2.12) dck/dt = - (tfk + i Awk) ck - i h pk
 ck* 

- i I k . ( Skk. ck.2 ck* + 2 Tkk. |ck.|2 ck ) 

Note that the sample only supports modes that satisfy the boundary 
conditions, so that <i>k is discrete and Au>k is usually nonzero. The 
nonlinearly coupled equations (2.12) describe the dynamics of the interacting 
parametric (pair) modes. These equations have been used by Jeffries and 
coworkers [BJN] in numerical studies of perpendicular pumping. 

For most part of this paper, instead of using (2.12), we shall prefer to 
work with the Cooper - pair variables <?k [ZLS], 
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(2.13) crk c. ckc.k = nk exp(i*k) 

where nk is the number of magnons in the spin wave and ^ k represents a 
phase. These variables have a simple physical interpretation [Wa]. li one 
strobes the processing spins with a frequency a>p/2 , nk is proportional to 
the deviation in the z-component of the spin AS2 = S - S2 and ^ K is the 
phase of the transverse spin component. Multiplying both sides of (2.12) by 
C-k = Ck (this follows from tík « tf .k, Au>k = Au>.k and pk=p.k) and adding 
the paired-equation we obtain the equations of the "S-theory" of Zhakarov, 
LVov and Starobinets : 

Proposition 2.3 ([ZLS]) ( S equations ) : 

(2.14) (1/2) <?k/dt » - (^k+ < A w k ) <*k - in pk nk 

- i Ek' (Skk> ok- nk + 2Tkk. nk<ak) 

Using (2.13) and (2.14) one obtains the S-equations in polar form: 

(1/2) dnk/dt - -tfk nk + nk Xk. Skk- nk. sm(* k - * k ) - h pk nk sin<J'k 

(2.15) 

(1/2) d^k/dt = -Ao>k - I k . Skk. nk- C C S ^ - ^ K ) - I k > 2Tkk. nk- - hp kcos* k 

Note that Sjj= Sjj and Tjj= TjS due to the symmetry of the physical 
interactions. Nevertheless, from the mathematician point of view, one can 
consider (2.14-15) as a more general set of equations, where these 
parameters can be taken asymmetric. 

In this paper we will maily restrict the analysis to two modes. Since in 
yittrium garnet the nonlinear parameters S and T are of order 10 1 2 sec-1 

and tfk * 10s sec1 , for numerical experiments [RA] equations (2.14) were 
divided by tf-j. Introducing normalized variables and parameters 't'= tf 1 t, 
•n'^Fn, '<T - F a , T = M T and 'S'- M S , where F- S/tf - l O ^ , then 'n\ 
T / t f and 'S'/tf are of order unity. Omitting ior clarity the quotation marks 
in the normalized variables and parameters (e.g., 'Au^'* Au> i / t f i , e t c ) , 
equations (2.14) can be rewritten as [RA1J 
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(1/2)dcJi/dt = -[1+iA l+i2(S1+2T1)n l+4T12 n2)0\ - i2S12 0 2n i -« R " i 

(2.16) 

(1/2)0^2^ - -[g+iA2+i2(S2+2T2)n2+4T12 n^c'2 - i2S12 cíjnjj -i cc Rn2 

where 'R' = h pi/?fi is the control parameter, g • tf2/tfj, cc = p2 /p j and 
where for short we write Ak=Au>k. 

Caveat: the appearance of extra factors of two in (S-i+27^) and T12, S12 is 
due to 'he fact that we have a double contribution of the Cooper pairs. 
Parameter a represents the coupling stiength between mode k2 and the 
driving field, relative to that of mode k j . 

In the next section we discuss the basic aspects of the S-equations. In 
section 4 we will assume that only one mode is excited, not necessarily that 
one with minimum threshold. 
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3. General aspects of the spin-wave equations and overview. 

In order to perform numerical experiments with a large number of modes, 
It is convenient to work with the cartesian version of the spin-wave 
equations (2.14) in a vectorialized form, which also shows that we have a 
hierarchy of equations as the number N of modes is increased. No harm is 
done by dropping the 1/2 factors in the left hand sides, which amounts to 
doubling the time scale: t <- 2 t . Thus we get 

*k* *k Yk yk- 0 
(3.1) = -tf k + (Ak +Xk- nk- 2Tkk.) + nk I k . Skk> - nk 

yk' yk -xk -% Rk 

d) (ii) ("I) (iv) 

Here k and k' are taken both positive and negative, Rk = h pk and Ak=Ao>k for 
short. 

This vectorialized form can. also be helpful to understand the relative 
influence of its terms. (I) are the dissipative and (IV) the pumping terms. 
Terms (II) may be called 'gyroscopic", since are tangent to the circles 
nj=const. The passage to polar coordinates form below shows that the terms 
(III) couple the relative phases. 

At first sight, the presence of the factors nk« (xk
2+yk

2)1 / 2 in the S-
equaíions implies that one cannot linearize at the origin. This difficulty can 
be avoided using the C-equations (2.12), which are indeed more convenient to 
study the behavior at the origin (see section 7). Notice, nonetheless, that by 
formally adding N more equations 

(3.2) dnk/dt = -tf k nk - Rk yk + I k - Skk< (yk- xk - xk. yk ) 

(3.1) becomes a system of 3N ODEs in the variables (xk ,yk ,nk) with quadratic 
nonlinearities (the C-equations are only 2N but have cubic nonlinearities). 
The augmented phase space possesses a 2N dimensional invariant manifold. 
One finds without difficulty that the linearization of the augmented system 
at the origin has eigenvalues -tfk (spurious) and 

(3.3) - t f k ± ( R k 2 . A k 2 ) i / 2 
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which, as expected, are the same as obtained directly from the C-equations. 
These are the relevant eigenvalues for the projected system. Thus one gets: 

Proposition 3.1. The j-th mode unstabilizes at its Suhl threshhold 

(3.4) R*suhl - ( V + *k2 )1/2 • 

We point out that it is not necessarily true that the origin is a global 
attractor before the lowest threshold. Indeed, if the system has initial 
conditions far from the origin (physically this may happen due to "thermal 
excitation"), already for the 1-mode mode system it is possible to exist a 
competing attractor (see section 4). We antecipate from section 8 that 
chaotic behavior may occur immediately after the smallest threshold ! This 
phenomenon was called "hysteretic onset of chaos" in [BJN2]. 

The singularity at the origin of the S-equations can also be lifted by 
considering the spin-wave equations in its polar form (Takens' "blow-up", 
[GH, §7.2]). 

dnk/dt . nk [- tf k - Rk sin(*k) + Iw nv Sww sin(+k-*k) ] 
(3.5) 

d * k /dt - -(Ak + I k . nk. 2Tkk.) - Rk cos * k - [ £k. nk- Skk. cos(*k~*k) ] . 

Using this formulation we will identify the mechanisms for sequential 
excitation of modes, Hopf bifurcations (section 6), a codimension 2 
organizing-center (section 9), and homoclinic phenomena in the Hamiltonian 
limit (section 10). A simple calculation from (3.5) yields 

Proposition 3.2. The divergence of the spin-wave system in the polar form 
is constant and negative , 

(3.6) div = - I k t f k 

so that, for the measure dnj...driN cWj ...d^N * dx^dyi ... dxN dy^/ (n^-.n^), 
volumes are shrunk at that constant rate. In particular, no sources or totally 
unstable periodic orbits can exist. 

As we have seen in section 2, the physical considerations yielding the 
quantal Hamiltonian impose that for the spin-wave systems (3.5) the 
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coefficients Sy and Ty must be symmetric. Dropping the dissipation terms 
in (3.5), there is a Hamiltonian structure [A.AM]. An interesting feature is 
that the pumping terms can be incorporated into the Hamiltonian 
(this idea is also used in other physical systems; see section 12). 

Proposition 3.3. The symplectic form is given by 

(3.7) il m I dxk A dyk/ nk = I dnk A d * k 

and the Hamiltonian is ([ZLS, eqs. (3.9), (3.10)]) 

(3.8) -H = I k i k . 1(1/2) Skk. (xkxk.+ykyk.) + nknk. Tkk. ] + I k (Ak nk + Rk xk ) , 

where xkxk+ykyk. = nknk. cos(*k-*k'), Rk= PR h . 

In the case of equal damping or all modes, i.e., tf j = % (lsi<N) the 
equations can be written as z = J gradz W{n</) - tf (n,^), J = °-' , z=(n,^). 

I 0 

These dissipative Hamiltonian systems [Dr.VDG, OV], maintain some of the 
features of usual Hamiltonian systems. For instance, eigenvalues of the ODE 
ai fixed puinis come in pairs, symmetric wiih respect io the line Rez= - tf/2 
(plus the conjugates when complex), and Krein's classification [A] of 
eigenvalue types applies. An implication is that, in many cases, Hopf 
bifurcations must be preceded by Krein collisions. Such features do not hold 
when the dissipation coefficients are different. 

When there is no pumping (h=0) nor dissipation, the Hamiltonian is clearly 
invariant under the rotational symmetry ^ k -» t^*^ , yielding the conserved 
momentum 

(3.9) l -£knk • 

Equilibria of the reduced systems (with h=0) are called relative equilibria 
for the total system [A,AMJ. They correspond to periodic orbits in which the 
nj are constant and the phases evolve with the same rate, thus with constant 
phase differences. The search for these periodic solutions, and more 
interestingly, their perturbations as the pumping parameter h is turned on 
and the dissipation is considered, will be left for future work. We just 
observe that if only the dissipation is added,the relative equilibria in this 
case are destroyed. Setting nj'=0 in (3.5) then A(ni n^) - (tf 1( .. , # N ) . 
where A is an antisymmetric matrix: an» Sy sin(•£ ,-•£,). It is impossible to 
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find a solution with all nj>0 (with at least one >0), because then 0= 'nAn= 
^ . ( ^ i , . . , ^ N ) > 0, a contradiction. However, if one allows asymmetric Sjj , it 
is possible to construct families of relative equilibria for the spin wave 
equations with dissipation. 

The two-mode system with h=0 and no dissipation is completely integrable 
in Liouville's sense. For small h, KAM theory applies, so the motion is 
trapped between invariant tori. The nonintegrable 0(h) perturbation produces 
transversal homoclinic phenomena, associated to separatrix splitting. 
Transversality persists for small enough dissipation. For small values of h 
and tff we provide in section 9 a quantitative description, using "Melnikov's 
method" [GH.Li.Wi.WiH]. 
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4. Excitation of one mode. Phase portraits. 

In this section we study the simplest possible situation, where just one 
of the modes, say nk, is excited: n^O, k'* k,-k (mode -k is the Cooper pair). 
The phase space is the half-cylinder n>0, <p € [-it.it]. The equations of 
motion are 

dn^/dt • • ^k nk * nk ^k sin^k 
(4.1) 

d'i'k/dt « -Ak - Sk nk - Rk cos'i'k . 

where for short we denote Sk= 2Skk + 4Tkk . The factors of two come from 
collecting the Cooper-pair contributions ( S ^ = S.k.-k , T^ * T.̂ .-k )• 

For the remaining of this section we will drop the subscripts k. We 
rescale time, t <- tft , so now #«1. The equations depend on three 
parameters R.A.S (to undo, just replace R,A,S by R/tf ,A/íí ,S/tf in all 
formulas below). 

The foliowing heuristic argument shows that if S#0, then aii trajectories 
eventually enter a bounded region: if n is very large, the term Sn dominates in 
• \ so one can average over the angle * in the equation for n'. The averaged 
equation is just -n. On the other hand, "escapes" are possible if S is set 
equal to zero. This can be shown explicitly, since for S-0 the analytical 
solution can be obtained by separation of variables: 

(4.2) dn/n - [(1 + R sin*) /(A+Rcos*)]d* (S-0). 

We will assume S*0. Proposition 4.1 describe the relevant facts about 
equilibrium points. Their stability character depend on the eigenvalues 
JJ<I ,U2 of the Jacobian 

-1-Rsin* -nRcos* 
(4.3) J -

-S Rsin* 

calculated at the points where dn/dt «0, d^/dt =0. 

http://-it.it
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Proposition 4.1. One mode system: Equilibrium points. 

A) With n«0. Equilibrium points do not exist if R<|A|. If R£|A| : cos^=-A/R. 

Let p=(R2-A2)i/2 £ o . 

A1. sin*= -(1-(A/R)2)i/2 : | i 1 + | i 2 - - 1 , M1H2 = PO'P) • 
i) p>1 : Saddle, ii) 0<p<1 : Node attractor. 

A2. sin*= +(1-(A/R)2)i/2 : u,1+n2 =-1 , u.^2 =-p(1+p) • Saddle 

B) With n*0. Equilibrium points do not exist if 0<R<1. If R>1: sin^s-1/R . 

B l .cos*» (1-(1/R)2)l/2 . n=(1/S){-A-(R2-l)i/2}. 
B2. cos* = -(1-(1/R)2)l/2 . n=(1/S){-A+(R2-l)i/2}. 

In both cases, u^+u.2 * -1 . UiH2 - -SnRcos^ 
One has saddle point or attractor. See Fig.4.1. 

The attractor with n*0 is a focus for all points sufficiently far in the 
stable branch Ls (Fig.4.1). We will be particularly interested in Hopf 
bifurcations; however, this type of bifurcation can never occur if only one 
mode is present, because the real part of the eigenvalue is always - 1/2 , 
that is, negative (in general, - "6^12 ). Nonetheless, through nonlinear 
interaction with a second, weakly excited mode, this focus on the Ls branch 
is the "seed" for a Hopf bifurcation, as we will show in section 6. 

Proposition 4.2. ( Nature of the attractor with n*0.) Let q=(R2-i)i/2 . The 
condition for a focus attractor is q|A+q|>1/4 if S<0, and q|A-q|>1/4 if S>0. 
This is the case for R sufficiently large in branch Ls . 

It is instructive to sketch all possible different portraits in the two-
dimensional phase plane. One will be surprised by the number of bifurcations 
already present in this elementary setting (where just one mode is present). 
Fig.4.2 depicts the phase portrait with A=1, S—1, R=1.2. There are here two 
competing attractors, one with n»0, and the other with n*0. Eventually, for 
R greater than (1+A2)1/2 (Suhl threshold) only one attractor survives, that 
with n*0. Notice that hysteresis occurs: mode n̂ O excites directly to a 
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finite value when the Suhl threshold is exceeded (jump bifurcation); when the 
control parameter is slowly decreased, the steady state follows the solid 
line in Fig.4.1. 

Considering the augmented 3-dimensional system with the "dummy" 
equation R*=0 added, we note the elementary appearance of two dimensional 
(inside the three dimensional phase x R-space) center manifolds , born when 
a real eigenvalue changes sign, in fact, J has a zero eigenvalue (the other 
being equal to -1) at (n=0, cos^-A/R) when (i) R=|A| or when (ii) 
R2«1+A2, sin^» -1/R. Case (i) corresponds to the coalescence of the saddle 
A2 and the node attractor A1 . Case (ii) corresponds to the coalescence of 
the equilibrium point B) in branch L with A1. Here A1 changes from attractor 
to saddle as R2 exceeds 1+A2, and this is consistent with B) being an 
attractor in Fig.4.1 , (a),(c) and a saddle in Fig.4.1, (b),(d). Here either the 
axis n=0 or the branch L (with a stable part Ls and an unstable Lu) contain 
the equilibria in the center manifold. 

As we mentioned, in cases b) and d) of Fig.4.1 there is a stable nonzero 
steady state above R-1, prior to the Suhl threshold (ST). Suppose mode 1 
has the smallest ST, and assume that it is greater than #2^2- Then it is a 
mathematical possibility that mode 2 attains a nonzero steady state before 
mode 1, provided the system is given suitable initial conditions. See section 
8 for numerical examples. On the other hand, excitation begins at the 
smallest Suhl threshold when the microwave power is applied to samples in 
thermal equilibrium (all n|<=0). 
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5. Excitation of a second (weak) mode: a transcriticai bifurcation. 

Physically there are infinitely many spin-v/ave modes involved in the 
instability process. Suhl and Zhang [SZ.ZS] point out that, "as the signal 
increases beyond threshhold, an entire manifold of pairs enters the picture. 
In fact for parallel pumping as well as for the subsidiary resonance, this is 
already the case at threshhold". Using a simplified set of equations, those 
authors have used center manifold theory to explain that the dynamics is 
dominated by essentially two collective normal modes. 

Hence we consider the S-system described by (3.5) with two modes. To 
avoid unecessary numerical factors present in (3.5) when the Cooper-pair 
contribution is added, we redefine its coefficients by T12 <- 4T-|2 and 
S12 «- 2S12, Sk <- 2(Skk+2Tkk). So we have 

dn^dt » n̂  [-Hy + n2 S12 sin(«p2-f 1) - Ri s i n ^ ) ] 

d^ /d t - -&i - T12 n2 - Si nj - n2 S^2 cos f ^ ' ^ i ) - R-, cos ^ 
(5.1) 

dn2/dt • n2 [- tf2 + n i S21 sin(^1-<í'2) - R2 sin(^2) ] 

d^2/dt • -A2 - T21 n! - S2 n2- nj S2i cos(^2~^i) - R2 cos f 2 • 

We take the equilibrium points corresponding to Ls (Fig.4.1), maintaining 
n2»0. This is the more relevant situation, but the analysis below can be 
replicated to the branch Lu, if one is interested in following the bifurcations 
of unstable equilibrium points as well. Thus 

n ^ - ( -VS i ) + (Ri2-*i2)1 /2 / |Sil 
(5.2) 

sin «f^e. -íí1/R1 

and the signs of c o s ^ 6 are given in Fig.4.1, depending on those of S^ . 
Although n2«0, we nevertheless search for values * 2

e such that ^ 2 ' * 0. 
We must solve: 

A2 + T2i n ^ + R2 cos»^6 + n ^ S2i cos(<f i M ^ * ) « o 

Substituting (5.1) this equation becomes 
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Case A2+B2< C 2 . Since mode n2=0, ^2 i s Just a 'mathematical entitity" 
following the "nonphysical" T-periodic orbit (^2' never vanishes) 

(5.6) n! « n^ , * , = * , , n2 « 0 , * 2 - "M*). Oâ*T . 

where 

cW>2'dt « -A2 - n^ S2 i cost* ̂ -p 2) - T21 n i e - R2 cos4'2 

(5.7) 

T - J cHV [-̂ 2 - nt«S2i c o s ^ » - ^ ) - T21 n^ - R2 cos*2] 
0 

The following is a natural question: is it possible that the onset of the 
second mode has its origin on the Floquet unstabilization of this periodic 
orbit? We show in Appendix 1 that the answer is negative : the periodic 
orbit remains stable as long as A2+B2 < C2. A residue calculation yields 

(5.8) T = 27i/(C2-(A2+B2))i/2 . 

Thus the period becomes infinite at a parameter value h# where E(h) « 
A2+B2 - C2 changes sign from negative to positive. At this value equations 
(5.4) have a double solution, corresponding to a degenerate equilibrium point 
(saddle-node bifurcation) for the restricted dynamics in ^2 . Subsequently, 
this equilibrium point separates into two, of different stability types, as we 
now proceed to discuss. 

Case A2+B2 > C2 . The two equilibrium points are 

cos $2* * [AC - B sqrt(A2 + B2 - C2)]/(A2 + B2 ) 
(5.9) 

sin*2e - [BC + A sqrt(A2 + B2 - C2)]/(A2 + B2 ) . 

cos * 2
e - [AC + B sqrt(A2 + B2 - C2)]/(A2 + B2 ) 

(5.10) 
sin * 2

e - [BC - A sqrt(A2 + B2 - C2)]/(A2 r B2 ) 
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For the restricted 1-dimensional dynamics of $2 (5-9) »s a stable 
equilibrium, while (5.10) is unstable. Thus (5.10) has no interest and can be 
discarded. Proposition 5.1 below gives the behavior of ( n ie , n2=0 , ^ i e , 4»2e) 
with ^2 e given by (5.9). The Jacobian matrix has the following structure: 

0 J1 2 J13 0 

•Si -#i J23 0 

(5.11) J« 
0 0 X3 0 

J4I J42 "S2 X4 

where the nonzero coefficients are given in Table 1 below. The eigenvalues of 
J can be read off directly as X j , X2 . X3 , X4 , where X 1 t X2 are the 
eigenvalues of the left-upper 2x2 block corresponding to the 1-mode system 
(4.3) at (n1( «i^). Loosely speaking, X3, X4, determine the stability of n2,f 2. 
respectively. 

Table 1. Coefficients of the Jacohian matrix. 

X3 . -TS2 - R2 sin^2e + " i e S2isin('p1
e-'i'2e) 

X4 • -tf 2 ' x 3 

Jl2 - " ^ 6 ( ^ 2 - ^ , 2 ) 1 / 2 

J1 3 - S12 n ^ s i n ^ 8 - ^ * ) 

j 2 3 „ -T 1 2 -S 1 2 cos^a 6 - * ! 6 ) 

J41 - -T21 -S 2 i cos(*2
e -* ie ) 

J 4 2 m - S21 n ^ sin(^2e -^ ie) 

Remark 1: only parameter S2 is not present. 
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Remark 2: Since X3 «-tf 2 + Ay-Bx , Ax+By-C and x2+y2«1, elementary 
algebra yields the following useful formula: 

(5.12) X3 - -tf 2 ± (A2+B2-C2)1/2 . 

The • branch corresponding to (5.10) has no interest for us since X3 is 
always negative, while X4 is always positive. In a sense the - branch is just 
an artifact of the polar coordinates: it would not appear if we work with the 
C-equations. For the + branch, corresponding to (5.9) we may have a zero 
eigenvalue bifurcation exciting mode n2. 

Proposition 5.1. For the equilibrium solutions (5.9), corresponding to the + 
branch of (5.12), X3 changes sign at values h* such that E(h*)«tf2

2- Note 
that X4 is always negative. 

The spectral analysis of (5.11) can be readily done. It suffices to do it at 
h-h* where X 3 (h>0. Notice that X4(h*)« -tf2 < 0. 

Proposition 5.2. At h=h* a suitable basis for center manifold calculations 
is given by the colums of P, ordered as {v3,v4,v1,V2} 

a 0 1 0 0 0 1 0 

b 0 0 1 -d -e -c+ad+be 1 
p-i « 

1 0 0 0 1 0 -a 0 

c 1 d e 0 1 -b 0 

P-i J P - 0 X4 

J12 

0 0 -Si -*2 
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Table 2. Coefficients for eioendecomposition of J at h-h* 

X4 «— #2 

b - S 1 2 sin(^2
e-^ie>/ (Ri2-^12) 

a » {-*i b +Ü23J/S! 

C • (S2"J4ia-J42b)/X4 

d - U4 i (^ i+X4) -S iJ 4 2J^4Kr X4H12S1] 

e » [X4 J4 2 +J4iJi2]/lx4(-tf r ^ 4 H i 2 s i l 

Proposition 5.3. Suppose that at the point P where Ls starts (Fig.4.1) one 
has X3 (P) < 0. This is the case if tf2

2 > E(P) > 0 . The values of h* at 
which X3=0 are roots of the biquadratic polynomial (top signs correspond 
to cases b)ti) oi Fig.4.1) : 

(5.14) P12 h< + 2 (p0 p1 - 2 p,2 q02) h2 + p02 + 4 tf,2 (fo2 - 0 . 

Pi - P12T21
2/Si2 + [j>2 ±S 2 1 p 1 / |S 1 | ] 2 

p0 - *22 ±2 (tf 12 S2t/|Stl) [p2 /pi t 821 /|Si| ] 
(5.15) 

- tf,2 T21
2/S12 - S212 (^2 + Í?12)/S12 

+ (A2 - T2i At I Sy )2 

-A2 Tsi/IStJ •T2 i2A1 /(81 |31 | ) 

As stressed before, care must be taken since we may have introduced 
spurious roots. Examples will be given in the next two sections. As one 
moves along branch Ls (n jM) , n2=0) , varying the control parameter h, there 
may exist h* at which X3 changes from negative to positive. 



25 

It is well known from the theory of dynamical systems that at this 
moment a one dimensional center manifold with n2*0 is born [C.RHA] . In 
the cases of physical interest, we have 

Proposition 5.4. In this center manifold, for 0< h-h*«1 there is a new 
stable equilibrium point with n^ - n^h*) + 0(h-h*) and 0 < n2

e = 0(h-h*), 
for h > h*. arising from a transcritical bifurcation. 

Appendix 2 gives the main features of a center manifold algebraic 
calculation, kindly emailed to us by Prof. Richard H.Rand. 
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6. Hopf bifurcation. 

The onset of a steady state containing both a strong and a weak mode 
paves the way for further bifurcations. One one hand, one may consider the 
imbedded hierarchy of ODEs with more modes and investigate the appearance 
of equilibria with three or more nonzero modes. Each new mode arises at a 
zero-eigenvalue bifurcation; after the excitation of a finite number of 
modes, a Hopf bifurcation may eventually take place. On the other hand, we 
may at the outset restrict the study to the two-mode system. 

Let's discuss the latter possibility. Consider parameter choices such that 
Xi .Xg are complex conjugate with negative real parts -tf-j/2 for the 1 mode 
system (Proposition 4.2). Mode 2 is excited as soon as h surpasses h*. and the 
behavior of X1t X2 changes. Numerical experiments indicate indeed that there 
is a domain of parameters such that the strong mode-weak mode steady state 
suffers a Hopf bifurcation at a higher value hn0pf > h* • Furthermore, there is 
a (possibly reduced) parameter range such that the resulting limit cycle will 
suffer a cascade of period doublings to chaos. 

In the example of Fig.6.1 we describe numerically the onset of the auto-
osciilations, using parameter values as in [RA1,Fig.8], namely (using 
equation (2.16)): « = 0.7, g -5.0, A^A2 - 0. Si 1+2^ 1 - -1 , S22+2T22 - 0.5, 
S52 • 2.5 and T12 - 1.125. Caveat: changing the notations to those of (5.1), 
#1 -2 , %2^^ < Si=-4 , S2=2, Si2»10,T12a9 . In the experiments, n2 was 
excited at h*»2.4. This agrees very well with the theoretical prediction 
h* - 2.394566, using (5.14) with the top signs. 

Notice that in Fig.6.1 the strong-weak steady state for 2.4 < h < 3.1 appears 
to be moving uniformly on a straight line. The onset of auto-oscillations 
occurs at h#-3.1. Fig. 6.2 depicts the behavior of the four eigenvalues. The 
pair of conjugate eigenvalues X i , X 2 corresponding to the n-| mode when 
n2«0, initially moves on the line ReX = -1 . When h*«2.4 mode n2 is excited 
to a non-zero steady state. At this value the pair X1f X2 sharply turns its 
direction, moving towards the imaginary axis. From Fig.6.2 we see that it is 
reasonable to approximate this motion by a straight line. Thus we used the 
change on the eigenvalues immediately after h*«2.4 to predict, by linear 
extrapolation, the value h#*3.15 for the crossing, which is in good agreement 
with the results. The absolute value of the eigenvalues when they cross the 
imaginary axis is » 5.4. Correspondingly, the numerically observed frequency 
of auto-oscillations at h»3.2 is about 5.46. Moreover, the amplitude of the 
oscillation n-f(t) was observed to vary, as expected, like (h-h#)1/2. 
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For other numerical examples, see [RA1, Figs.3,4,5] . The Hopf bifurcation 
was observed on physical experiments [RAA]. See Fig.6.3, taken from [RACK] . 

Proposition 6.1. The mathematical mechanism for the Hopf bifurcation of 
the strong-weak equilibrium consists on the deviation of X i , X 2 (eigenvalues 
of the strong-mode) from the line Re X = -tf j /2 , due to the coupling with 
the weak mode. 

At the moment we do not have a formal proof, but we present a few 
remarks in support of Proposition 6.1. First, the behavior of the eigenvalues 
in Fig.6.2 resembles qualitatively to what one knows rigorously in the case 
of equal dissipations [DL], The movement of the eigenvalue pair 
corresponding to the weak mode, in the direction of negative real values, is 
compensated by the movement of the Hopf-bifurcating pair in the other 
direction. Observe that practically linear motions of (n1,n2)and (Xi,X2) are 
occurring even though t^i« 2 is not very small. 

Following this linear scheme, in Appendix 3 we outline an approximate 
method to predict the control parameter value corresponding to a Hopf 
bifurcation, using computer algebra. We plan to pursue- the details in future 
work. As far as we know, this type of study was pioneered by J.P.Keener 
[Ke.Kel] which followed, using computer algebraic methods, the locus both on 
phase and parameter spaces, of Hopf bifurcations for a chemostat model and 
for a predator-prey system. 

We point out that the first period doubling is generically associated to the 
dissolution of the 2-dimensional center manifold containing the Hopf limit 
cycle. The parameter value associated to this bifurcation can be predicted on 
the basis of Floquet theory, using semianalytical procedures. See [Rd, Kap, 
KM]. In this way it is possible to obtain, approximately, the region of 
parameters where the Feigenbaum route to chaos occurs. 

In section 9 we sketch the unfolding of the degenerate situation when 
#1-0, where the Hopf bifurcation occurs together with the excitation of n2 at 
h*. In some related situations it is now known the existence and uniqueness 
of the limit cycle which arises in such unfolding [CSG], 

We now briefly discuss the possibility of the onset of a third mode, etc. 
prior to the Hopf bifurcation. We take the spin-wave equations with three 
modes in the polar form, and we consider the strong-weak steady state with 
two nonzero modes, and a vanishing third mode n3=0. Looking for a 
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(mathematical) value ^ 3 e such that d ^ / d t s 0 , one obtains a similar 
situation as (5.3-4) (but the algebraic implementation is harder). As before, 
mode n3 unstabilizes at a zero eigenvalue bifurcation. If the corresponding 
control parameter value is less than the value for hn0pt calculated for two 
modes, the third mode will be excited before that 2-mode-Hopf bifurcation 
having a chance. 

In fact, since a great number of modes have nearby thresholds, it is likely 
that several modes will be excited to a steady steate prior to the Hopf 
bifurcation. This is our interpretation of the statement in Suhl and Zhang 
[SZJ that "the first Hopf bifurcation (which results in a limit cycle) sets up a 
collective mode of the entire manifold of spin waves". 
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7. Direct excitation of two modes; new transcritical bifurcations. 

Nakamura and coworkers [NOK, ON] showed that in the case where all 
coefficients are symmetric, a family of equilibrium solutions nj = n2=n 
emanates from the origin as soon as the Suhl threshold is surpassed. Let 

(7.1) A1=A2 , tfi«#2 i Pl=f2« Si * S2 , T12 - T21 , S j 2 • S2j • 

Without loss of generality we may assume tfj-1, p i = 1 . The equilibrium 
solutions n1*n2»n , given by 

(7.2) n - - [A t (R2-1)i/2] / (S12 + Si + T12 ) 

may undergo jump bifurcations/hysteresis (analogously to Proposition 4.1). 

The Jacobian matrix is 

O r 0 u 

S -1 T 0 
(7.3) J -

0 u O r 

T O S -1 
with 

u - n2 s12 , T» -S12 - T12 , S = - S) 
(7.4) 

r m - R n cosf - n2 Si 2 

The roots of the characteristic polynomial 

(7-5) pchar - x2(1+x)2 + (rS+uT)(1+x)+(S2-T2)(r2-u2). 

were obtained by computer algebra: 

(7.6) -1/2 ± (1/2)[1 +4(r±u)(S±T)]i'2 

Note that this is in agreement with the symplectic relations for 
dissipative Hamiltonian systems with equal damping [Dr.OV]: the eigenvalues 
are pairwise symmetric with respect to the line Re X = -1/2. 
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Proposition 7.1. Hopf bifurcation does not take place along the n1 = n2 

branch. Two of the eigenvalues are never zero, actually being real negative or 
complex conjugate with negative real parts. One of the other eigenvalues will 
be zero, producing transcritical bifurcations, when (r+u)(T+S) or (r-u)(S-T) 
vanish. 

It is easy to find values of R such that r+u vanishes: either the Suhl 
threshold R - (1 + A2)1'2 at which n=0 or 

(7.7) R=1 , R = [ l +(A/Q)2y1/2 (Q = T + S) 

For the case r-u=0 we obtained, using computer algebra, the biquadratic 
polynomial aR4 + bR2 + c * 0 with 

a = (-02-4 S12
2 + 4 Q S12) 

(7.8) b - A 2 ( 8 S 1 2
2 - 4 S l 2 Q + Q2) + 2Q2-8Qs12+8s12

2 

C - A2 {- 8 S12
2 + 4 S12Q - Q2) - 4 S12

2 A4 - Q2 - 4 S12
2 + 4 Q S 1 2 

whose roots are the Suhl threshhold again and 

[ 4 S12
2(A2 + 1) + (Q2 - 4 Q S12)J 

(7.9) R2 -
Q2 - 4 Q S12 + 4 S12

2 

In general, the values of the roots are different so only one real eigenvalue 
vanishes at a time (codimension 1 bifurcations). There are some exceptions, 
though. At the Suhl threshhold r and u both vanish, so at the origin n-^n^O 
there is a double zero eigenvalue. Here a local unfolding analysis could be 
done using techniques such as in [GH, §7.3]. Special choices also lead to 
double real eigenvalues. For instance, if A=0 or Q=1 then r-s and r+s 
vanish at the same time. This is also the case when the the following 
relation holds: 0(1-48!2

2) . 2 S12 t 4 S12
2 . 

In [ON, Fig.1] regions of parameter space were depicted corresponding to 
values of R at which the equilibrium solution with n 1 *n 2 , ^-«J's changes 
stability. The specific type of unstabilization was not reported, and it has 
been generally thought as Hopf bifurcation. However, we showed here that 
this is not the case. Namely, the unstabilization always corresponds to the 
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passage of a real eigenvalue through zero, producing transcritical 
bifurcations. 

In Fig.7.1 we show the periodic orbits which lead, as h increases, to the 
strange attractor in [NOK]. In the notations of (2.16), tfj=1, Aj= - 1 , Sjj+2Tjj=1 , 
T12« -0.75, S12=-0.4; following (5.1), tfj=2, A«-2, S=4, T12=-6 and St2—1.6. 
The Suhl threshhold, here identical for the two modes, is h s = \'2. Mode 
(n15E0,n2=0) with n!» [lWR2-1]/2 unstabilizes at R#« 3.1113 , obtained by 
(5.14) with the bottom signs. We followed numerically the periodic orbits 
from h=4.4 back to h=3.65, using as initial guess for each R a point in the 
orbit corresponding to the preceeding value of R. Below R=3.65 the solution 
seems to be attracted to a fixed point n2=0, n^O, even though R is still quite 
larger than R\ 

Remark. It is possible to work analytically under slightly more general 
assumptions. We consider systems with asymmetrical coefficients and look 
for phase locked solutions ^ i » ^ (with both ni*0, n2*0 ). Since at the 
equilibrium point we must then have 

(7.10) s in*! - - V R 1 - s in*2 = -tf2/R2 

it follows that we need just to assume the equality # i /p i - tf 2^2 • Under 
this assumption, the equilibrium pair (n1>n2) satisfies the linear system 
(the solution (7.2) is recovered in the case of symmetric coefficients) : 

Si T12+S12 IV| -A r R^OS"^ 
(7.11) 

T2 i+S2 i S2 n2 -A2- R2cos4'2 

Of course, only solutions with n1f n2 > 0 have physical interest. We have 
not been able yet to accomplish the algebraic calculation of eigenvalues in 
this more general case. Nonetheless, we can at least guarantee that, for 
small perturbation of the symmetrical case, there is no Hopf bifurcation. We 
also observe that for small enough values of the difference # i / p i -# 2 /p 2 , 
these equilibrium solutions may be continued into fully general asymmetrical 
solutions (i.e., with slightly different phases ^ 1 * ^ 2 ) . 

In the case of symmetrical coefficients, phase locked solutions were 
computed numerically for up to 100 modes by Lim and Huber [LH]. 
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8. Heterocliníc phenomena at the origin: cycles. 

To study the behavior of the spin-wave system at the origin, it is more 
convenient to consider the C-equations. Dropping the cubic interaction terms 
in (2.12), the complex modes ck uncouple and one gets for any given mode 
the linearized equations dc/dt • -(# + iA)c - i R c* (subscripts ommitted). 
The origin is a spiral focus for 0 < R < |A| . At R=|A| the imaginary parts of 
the conjugate eigenvalues vanish; for |Aj < R < V(A2+b'2) one gets a node. At 
R= V(A2+tf2) one of the real negative eigenvalues vanishes (Suhl threshold) 
and the origin is a saddle for R > V(A2+tf2). 

We denote the critical values by hkfn « |A|J/p|< and hk
ns = V(Ak2+tfk2)/ p^. 

Here fn means "focus to node" and ns "node to saddle". 

The numerical experiments described below indicate that heteroclinic 
recurrence fenomena at the origin is present for certain parameter values. 
Since the recurrent behavior was found as soon as one of the modes becomes 
unstable, we may have here a situation of homoclinic bifurcations with 
nonhyperbolic equilibria [De], yielding "blue sky catastrophes" [AM,CDF]. 

In Fig.8.1-8.3 the same parameter values as in [BJN2, Figs.9,10] are used, 
namely, in the notations of eq. (2.12), tf1=tf2

,=1 , pi-pz5*1. A1= -1.884, A2= 
1.254, SÍ+2T! * S2+2T2 » -0.286, S12 = 4.078, T12=0. For mode 1 we get 
h1

fn« 1.884 , h l n s « 2.133, while for mode 2, h2
fn = 1.254, h2

ns = 1.604 . Thus 
mode 2 unstabilizes at 1.604, value for which the linearization of mode 1 is 
a spiral focus. This at first sight suggests Silnikov's homoclinic 
recurrence [GH, Si,Si1]. Indeed, we found a similar behavior in the numerical 
experiments. Unstabilization was first seen at h=1.64. Initially, the 
oscillations resembled an aperiodic intermittence, frequency beginning low 
but increasing fast, as shown in Fig.8.2. For h=1.685 we observe a "pseudo 
Silnikov" behavior for mode 1, as in Fig.8.3 (why "pseudo"?; see the remark 
below). For h >1.80 one gets periodic oscillations similar to Fig.9 of [BJN2). 

In Fig.8.4-8.6 we use the following parameter values, with notations of 
(2.12): '6^ 1, tf2»2 , p!-1 , P2-0.7, A1= 0.8, A2 « -0.5, S i+2^ « -0.5, S2+2T2 

- 0.5, S12 - 2.5, T12«0.125. For mode 1 we get h1
fn= 0.8, h1

ns = 1.2806, while 
for mode 2, h2fn - 0.35, h2

ns - 2.95 . Thus mode 1 unstabilizes at 1.28 where 
mode 2 is a node attractor. Homoclinic recurrence here could be a> ilogous 
(but not exactly; see remark below) of a type discussed by Holmes [H]. In the 
numerical experiments we found that the origin in njxn2 space becomes 
unstable at h-1.27. For h-1.30 Fig.8.5 suggests that there may be a 
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heteroclinic cycle between the origin and (nj-1.6, n2-0). Fig.8.6 shows the 
dependence f2 •> (h/hc)

2 -1 between pumping and frequency. Extrapolation to 
h«0 yields hc«1.274. 

Remark . The chaotic behavior observed in Fig.8.3 was classified by Bryant, 
Jeffries and Nakamura [BJN2, §IIIC] as of "Silnikov's type". We wish to point 
out that although the numerical observations may be similar to those one 
sees in Silnikov's case, the dynamical explanation must be different . The 
designation of "relaxation vs. spiking behavior" actually introduced by those 
authors seems more appropriate. 

Silnikov's phenomenon arises on systems which can be reduced to a 3-
dimensional phase space; one assumes that an equilibrium point has two 
complex conjugate eigenvalues with negative real parts, and one real 
positive eigenvalue. The one dimensional unstable manifold emanating from 
the equilibrium is a homoclinic orbit, returning to the equilibrium as an 
spiralling orbit in the local stable manifold. 

What seems to be happening here, on the other hand, is a bona fide four 
dimensional phenomenon, which, as far as we know, has not yet been studied 
in detail by the methods of Dynamical Systems. Consider a (01,02) phase 
space such that the Ci and c2 complex planes are invariant manifolds for 
the dynamics. Suppose that the origin is a global attractor, of spiral-focus 
type, for the restricted dynamics in the ci-plane, and a saddle for the 
restricted dynamics in the c2-plane. Since the unstable manifold for the full 
(ci,C2) system is contained in the c2 plane, there is no chance that this 
unstable 1 dimensional manifold returns directly to the origin in Silnikov's 
fashion. Nevertheless, the unstable manifold can return to the origin, 
either directly as a homoclinic loop in the c2 plane, or through a cycle 
connecting critical elements in full (Ci,C2) phase space [PBMB], One scenario 
is as follows: there is a orbit connecting the origin and a stable equilibrium 
C2e*0 viewed in the restricted C2*dynamics. However, suppose (c^O, C2e) is 
an unstable equilibrium viewed in the full dynamics; the unstable 1-
dimensional manifold emanating from this point may also be contained in the 
three dimensional stable manifold of the origin. Actually this 1-dimensional 
unstable manifold may connect to other critical elements until a cycle to the 
origin is formed. 
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A detailed study of this situation is in order, both from the numerical and 
the theoretical viewpoint. One possible direction of research is to find an 
algebraic approximation for the dynamics, continuing the Hartman-Grobman 
linearizing scheme outside the invertible region [OCR, ROD]. 

On the experimental side, we remark that recent measurements produced 
results similar to the type of numerical solutions [RACK]. 
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9. A codimension-2 bifurcation: one zero, two imaginary 
eigenvalues. 

We go back to the S-equations in the form (5.1) and consider the Jacobian 
matrix (5.11) at ( n ^ , «p,e, n2=0, ^2e)- •* we set í 1 = 0 then at the control 
parameter value h* we get one zero eigenvalue X3=0 and two imaginary 

(9.1) X1>2 = ±io> , w = ( J i 2 S i ) 1 / 2 • 

This is is a codimension-2 bifurcation, discussed in Guckenheimer and 
Holmes [GH,§7.4]. Two small parameters are needed to unfold it: here these 
parameters are precisely "6^ and h-h*. The assumption of very small "6^ is 
physically reasonable, since spin-wave systems have large relaxation times. 

The nature of the bifurcations taking place for one real zero, two purely 
imaginary eigenvalues is not yet completely understood (IGH,§7.4,7.5], 
[CSG]). Here we will just outline the computational-algebraic steps 
necessary to characterize this bifurcation, for the spin-wave system, in 
terms of the presently available mathematical theory. 

Step 1 . Let P be the matrix of Proposition 5.2 with column vectors 
reordered as (J12 S^)1/2 v-j, v2 , v3 , V4 . Then 

0 - o > 0 0 

u> 0 0 0 
(9.2) P-1JP = 

0 0 0 0 

0 0 0 X4 

We set u - h - h*, and regard u.tf j as new dynamical variables. We are 
in the standard form used for a center manifold calculation with additional 
dummy equations u'=0, tfj'-O. Products of u. or tfj with themselves or with 
the other variables are considered as quadratic terms in the Taylor 
Expansions. See [C.RHA] for background and computer codes. 
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Step 2 . Call x.y.z the center manifold coordinates (besides the two 
additional dummy coordinates u..# i). The linear part is of the form 

0 -w 0 

(8.3) d) O 0 

0 0 0 

and the quadratic and higher order terms contain the five coordinates. 
Transform to cylindrical polar coordinates (r,8,z). 

Step 3 . Find the truncated, e-averaged-out, planar system in (r.z)-phase 
space. The main computational problem is finding this k-determined jet . 
Guckenheimer and Holmes consider in some detail the case of the 2-jet 
dr/dt=ni r+arz, dz/dt=U2+br2-z2 [GH, eq. (7.4.9)] , but this seems not to be 
the correct guess here, since our system has fixed points at z*0 for all 
u,1t}i2 • A more plausible form is dr/dt = nnr + arz, dz/dt = \i2± t2 - z2 

[GH.eq.(7.4.42)] , which now has a transcritical bifurcation of the fixed point 
at z=0. Another possibility is the Zi-symmetric pitchfork bifurcation [GH, 
eq.(7.5.10)J. 

Step 4 Restore the sufficient higher order terms to the planar system, 
study the corresponding phase portraits. Finally, consider the implications 
for the full three-dimensional flow, when the 6-dependent terms are 
restored. Identify the distinct phase portraits and dynamical phenomena to 
regions of the original parameters. 

Among the delicate dynamical phenomena known to exist (GH] for the "one 
real zero, two purely imaginary eigenvalues" bifurcation: (i) invariant tori 
with two frequencies, one fast and one slow; (ii) transverse homoclinic 
orbits with Silnikov behavior. It seems important to find numerically 
trajectories of these types for the spin-wave system. 
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10. The near Hamiltonian limit for 2 modes: homoclinic phenomena 

Although the Hamiltonian structure was introduced in section 3 under the 
hypothesis of symmetric Tjj and Sjj, in the case of two modes we are able to 
allow S12 * S21 . T12 * T21. Setting tf t « Z2 - h « 0, we get the constant of 
motion 

(10.1) z - n j / S ^ -i- n2/S2i . 

The following reduced system is obtained, where * = ^ r * 2 is the phase 
difference, and A12 « Aj - A2: 

dnj/dt - -S21(S12 z - nj) n t sin* 
(10.2) 

d * / d t « -A12 - S21 (S12 z - an^cosf + (S2-T12)S2i z -

- i(S rT21)+(S2-T12)S21 /S12 ] n, 

This system is Hamiltonian, with conjugate variables p = n j , q - <K and 
Hamiltonian function H « pF , where F is given by 

(10.3) F(p,q) - -A12 + (S2-T12)S21 z - (p/2)[(SrT21)+(S2-T12)S21/S12] + 

+ S ^ cosq (p-S12 z) . 

Depending on the choice of parameters, there are several different types 
of phase portraits for H, with a rich structure of separatrices. The full 
system, written in terms of the variables p,q, z , 9 = ^ 2 , is of the form 

d/dt (p,q) - (-Hq(p.q,z) , Hp(p,q,z)) + c ( P^p.q.z.e), P2(p.q.z,e)) 

(10.4) dz/dt» € R(p,q,z,e) 

de/dt = S(p,q,z) + 0(€) . 

Here t^, tf2, R1t R2 are assumed to be 0(E) and 

ÉPJ =-p[?í1+ Rj sin (6-^)] 

cP2 - -Ri cos(8+q)+ R2 cos 0 
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(10.5) 
cR » - (#2 + R2 sin9)z - (p/S12) [ # r # 2 + R1 sin(e+q) - R2 sine ] 

S «-Ò2 + P [*S2iCO?q + S21 S2/Sf2 • T21] - S2S21 2 . 

Wiggins, Holmes and Shaw [WiH.WiSh] studied systems of type (10.4), 
with S=1, using Melnikov's method. Their model is an "oscillator" (p,q) 
with a slowly varying parameter z and time periodic forcing de/dt * 1. The 
fact that here S is not constant brings some technical difficulties only in 
case it changes sign, but the method of Melnikov can still be applied. Then 
some extra work is needed to insure the desired homoclinic behavior 
(S.Wiggins, personal communication) . 

The calculations become remarkably simple for the symmetrical model 
(NOK], for which A1= A2 (= à), S i * S2 (= S), T12 - T2 i , S12 = S2 i- Denoting 
« « S2 - T-|2 - Si - T21 and taking units so that S12 - S21* 1, 

(10.6) H - p (p-z) ( - « + cos q ) 

Phase portraits of (10.6) bifurcate at « • ±1. See Fig.10.1a for the case 
oc > 1. The separatrices, energy Jevel curves H = h « z2 (« - 1)/4 , are given 
by elementary functions, solving 

dp/dt = ± («2-1)1/2 |p. (z/2)| [ (p+-p)(p-p.)]i* 
(10.7) 

p± - (z/2) {1± [(2/(«+1)]l'2) 

and extracting q(t) from (10.6). 

The case ««0 is specially simple (Fig.10.1b). Here 

C1: p# - 0 , q# • -arcsin(tgh zt) 
C3: p# - z , q# = arcsin(tgh zt) 

(10.8) 
C2: q# - n/2 , p# - z/(1+ exp( zt)) 
C4: qU - -TI/2 , p# - z/(1+ exp(-zt)) 

The Melnikov function M measures th~ distance, between stable and 
unstable invariant manifolds, for the perturbed system in the full phase 
space (p,q,z,8). It is described geometrically as follows. For € » 0, the (p,q) 
dynamics decouple, z is constant, and 
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t 
(10.9) 6 * (t) - e 0 + / S ( p#(t), q#(t) , z0 ) dt 

where x#(t) = ( p#(t), q#(t); z0 ) is a separatrix of (10.2). Denote an 
unstable equilibrium of H(p,q;z) by xM = (pw(z), qM(z)) and by 

M0 - U x„.(z) x {(z,0)} 
z 

the unperturbed normal manifold. For the sake of notation simplicity we are 
considering an homoclinic saddle point x^ « lim (p#(t), q#(t)) but 
everything holds true for heteroclinic connections. t -* * ~ 

For € sufficiently small there is an invariant manifold M( , e-close and a 
graph over M0. M ; has stable and unstable manifolds W€

 s>u . Their 0(e) 
distance can be measured (as depicted in Fig.10.2) by 

(10.10) M(a,z0,e0; €) - ( grad x#(a; 20) H(x,z) | x€ u - x€ s) „ 

- É M^a.Zo.Oo) +0(<E2) 

where a € (-~,°°) parametrizes the unperturbed separatrices and x(
 s-u 

are the intersections of W€
 s." n {z-z0 , 6 = e0 } with the line La normal 

to the unperturbed separatrix at x#(a,z0). In Appendix 4 we derive, in a 
slightly more general setting, the Melnikov formula 

oo 

(10.11) M^a.Zo.Oo) = / dt ( grad H (x#(t+a),z0) | P( x#(t+a,z0,e*(t)) + 

t 

+ J Hxz(x#(t+a),z0) / du R(u+a,z0,e*(u)) ) 
o 

where JHX - (-Hq , Hp ). Here 6 * is given by (10.9) with x# * x#(t+a). 

It follows from (10.10) that the sign of Mj determines in which way We
 u 

and W£
 s split apart. M1 vanishes along trajectories of the unperturbed 
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system which "shadow" the doubly assymptotic solutions of the perturbed 
system as c -» 0 . The union of these double asymptotic, or homoclinic 
curves, forms W6

 u n W«s . 

The results of the computations, using the symmetric model with « - 0 as 
In Fig.10.1b . and pi» p2=1. #1=^2 ( • * ) ar© as follows: 

Mi m 0 

M2 •» A(z0) sin [ e0 + (A + S z0)a + n/4] 
(10.12) 

M4 «= A(z0) sin [ e0 + (A + S z0)a - n/4 ] 

M3 = - * (2TC + zo) + (FW2 ){ B(zo) cos B + C(zo) sin 8 } 

where 
(10.13) 6 =-- e0 + ( A+ S Zo )a + 2 arc tg exp(z0a) 

(10.14) A(z0) = j dt {cos (A+S z0)/ cosh2(z0t/2) } 
- 0 0 

CO 

(10.15) B(z0) = J dt{sech2(z0t)tgh(z0t)sin[(A+Sz0)t+2arctg(expz0t-rc/4)]} 
-00 

t 

+ J dtsech(zot)tgh(z0t) J du {cos[arcsintgh(z0u) -u(A+Sz0) 

- 2arctg(expz0u - n/4) } 

(10.16) C(zo) =J dt {sech(zot)tgh(z0t)sin[(A+Szo)t + 2arctg(oxpz0t-n/4)]} 

Although (10.14-16) could be explicitly evaluated by residues, this is not 
necessary for our purposes. Indeed, the necessary recurrence for homoclinic 
behavior follows directly from (10.12): 
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Proposition 10.1. Let Cj, i-1 4 the unperturbed separatrices (10.8) 
(Fig.10.1b). Then under the 0(€) perturbation, Ci does not split, C2 and C4 
always split with transversal intersections. C3 splits with transversal 
intersections provided the ratio tf/R is not too large. Due to the presence 
of Smale horseshoes, there are infinitely many countable periodic motions of 
arbitrary high period and infinitely many uncountable bounded non-periodic 
chaotic motions. 

Remarks . (i) The calculations were done for a=0, value at which the topology 
of the unperturbed phase portraits changes (Fig.10.1). It is physically 
reasonable that for small «*0, a sufficiently large € will create, around the 
two unperturbed separatrices given by cosq • a, a single stochastic layer, 
(ii) Simultaneous zeros of the first and second Melnikov functions yield 
homoclinic tangencies . The formula for M3 in (10.12) shows that this 
happens for a certain value as tf/R increases. Homoclinic tangencies provoke 
interesting dynamical consequences, including infinitely many attracting 
periodic orbits and cascades of period doublings [P.PT]. It would be 
interesting to investigate numerically the ocurrence of these phenomena. The 
tormula for M3 also indicates that when tf/R surpasses a certain cr i t ica l 
value, then it is possible that homoclinic chaos ceases to occur, (iii) For 
larger values of the perturbation parameters R and %, it is expected that the 
"mild chaotic" orbits of Proposition 10.1 will evolve into strange attractors 
with fractional dimensions. 
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11. Further topics for research. 

Besides those already discussed in previous sections, we present the 
following. 

Families of equilibrium solutions . There are only a finite number of 
equilibria for any choice of parameters: since the system can be written as a 
set of quadratic ODEs in R6, Bezout's lemma implies that there are exactly 
2 6 complex solutions, counting multiplicities (certainly much less real 
physical solutions; the same counting for the C-equations gives 34). In 
comparison, Lorenz's system has at most three distinct real solutions among 
the 23 complex. We have shown that several equilibria may coexist for 
certain parameter ranges: besides the origin and the branch described in §7, 
there are two solutions with n2=0, and two with n^O. From each of these, 
strong-weak pairs can bifurcate. 

In the symmetrical case (§7), other equilibrium solutions with n-j*n2 may 
emanate out from the ni-ri2 branch, via the center manifold theorem, at the 
control parameter values where there is a zero eigenvalue. This brings up 
the following conjecture: the emanating branches connect with those which 
arise from the ni=0, n2*0 fa^O, n^O) solutions in §5. We plan to pursue 
this study by path following methods, using codes such as AUTO or PITCON 
[Do, Rh]. 

In the asymmetrical case find, e.g. via Routh-Hurwitz type criteria, values 
of h for which J changes stability. Is it possible that Hopf bifurcations 
take place? More generally, is it possible to give a complete description of 
all equilibrium point branches of the two-mode system, and their stability 
classification? 

Comparisons with Lorenz's equations . While the Lorenz system has only 
three parameters, the number of parameters of the 2-mode spin-wave 
system is 10 (or 12 if one allows asymetric values Si2*S2i and T 1 2 *T 2 i ) . 
Lorenz's system is known to possess Liapunov functions, for any choice of 
the parameters, so all motions tend to bounded regions. It would be 
interesting to find Liapunov functions for the spin-wave system, at least for 
certain ranges of parameters (the Hamiltonian is a natural candidate). We 
showed in section 4 that for special parameter values escapes to infinity 
are possible. 

Lorenz's system has at most three equilibrium points. The origin of Lorenz's 
strange attractor is identified to a "homoclinic explosion", a global 
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bifurcation due to homoclinic and heteroclinic connections between the three 
equilibrium points [Sp], which occur frequently as the parameters are varied 
(usually r is taken as the control parameter). These critical values of the 
parameters have been found numerically through extensive studies done by 
several research groups. For the spin-wave system, can one establish 
recurrent homoclinic connections between the unstable equilibria (the so-
called "cycles" [PBMB]) at certain parameter values? One may exploit the 
symmetry properties of the C-equations to classify, by combinatorial 
arguments, the global structure of the homoclinic bifurcations [Gl]. 

On the nearly hamiltonian limit . For N>3 modes without dissipation, are 
there additional constants of motion for specific choices of parameters, 
yielding "accidental" integrable cases (i.e. without symmetries)? This study 
could be attempted via Kowalevskaya-Painieve's analysis. 

The three mode system with zero dissipations and pumping and can be 
reduced to a two degrees of freedom Hamiltonian. Find the relative 
equilibria with three modes, and their stability. Assuming initial conditions 
where one of the modes is weak (say, n3«1), will it remain weak? Can it 
induce Arnold's diffusion on the other two modes? 

Given a nearly integrable Hamiltonian system with dissipation terms added, 
can one describe the process of transition from the usual KAM situation to 
the appearance of strange attractors with non-vanishing fractal or Hausforff 
dimensions? This question is related to an idea proposed by Smale [Sm]: 
"I would like to develop the idea that by introducing a dissipation/forcing 
term into Hamilton's equations of physics, one might be able to revive the 
ergodic hypothesis of Boltzmann and Birkhoff". 



44 

12. Discussion. 

Summary . We have shown that the spin-wave S-equations of Zakharov and 
collaborators IZLS], using the Cooper-pair variables, are mathematically 
equivalent to the model used by Jeffries and co-workers [BJN] for 
perpendicular pumping (C-equations). The latter are well behaved at the 
origin and have nice symmetry properties; nevertheless, we have chosen to 
use Zakharov's equations, mainly because emphasis in this work is given to 
the bifurcations ocurring "far" from the origin. Moreover, the Cooper-pair 
variables have a nice physical interpretation. 

We have identified the mechanisms leading to nonzero steady states and 
Hopf bifurcations. It would certainly be interesting to make the analysis 
directly on an infinite-dimensional evolution equation, e.g. Landau-Lifshitz 
equation with dissipation included. We have discussed two new organizing 
centers for routes to chaos, namely a codimension-2 bifurcation (with one 
zero real eigenvalue and two imaginary ones) and the Hamiltonian limit with 
nearly zero dissipation. 

Analogies with other physical systems . Kovacic and Wiggins studied a 
two mode truncation of the forced and damped Sine-Gordon equation; an 
intermediate step leads to a nonlinear Schrodinger equation. Their model 
[KW,(1.3)€] is precisely the C-equations with a special choice of parameters. 
except for the forcing, which there is a constant term. Thus we believe that 
the C-equations have a "universal nature". 

Suhl's often quoted observation [S, *i957] that spin-wave instabilities 
"resemble turbulent motion in fluid mechanics", prompt us to inquire if this 
analogy can be carried further. Recall that Lorenz's equations, probably the 
most widely studied dynamical system [Sp.Spl], models a two-dimensional 
fluid cell warmed from below and cooled from above. The resulting PDE is 
truncated into a set of three modes, pruducing a set of three coupled ODEs 
with quadratic nonlinearities, depending on three positive parameters r, b, 
a: x' = <S (y-x) , y' = rx -y - xz, z' « -bz + xy. We saw that the spin-wave 
system can also be written as a dynamical system with quadratic 
nonlinearities, but for N modes it is necessary to extend the phase space to 
3N-dimensions. Like the Lorenz system, the flow is dissipative (volume 
contracting), with constant negative divergence. 

Holmes [H1] found homoclinic bifurcations on a model for weakly nonlinear 
surface waves on a closed basin. Based on earlier work by Miles [Mi], the 
system consists of a two degree of freedom Hamiltonian with dissipation 
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q^ « -(A+3/4 e) pi + m q2 + « - tf qj 
Pi*« (A+3/4 e) qj + m P2 - ^ Pi 
q2*« -(A+3/4 e) P2 - mqj - tf cfe 
P2' « (A+3/4 e) C|2 - mpi - "6 p2 

The Hamiltonian is 

K - -1/2 (A+3/8 e)e + m2 + « p, 
with 

e -q 1 2 + p12 + q22 + P22 t 2 m - p ^ - q j p 2 . 

More recently, Kambe and Umeki [KU] studied the system (also based on 
Miles' theory) (d/dt + tfj) (pj.qj) - (-d/dqit 9/dpj) H , i-1,2, with 

H - 1/2 I,.1t2 [Ao(Pi«-q|2) + WP?+*?) + 1/2 A, (p^+q^jZj + 

+ 1/2 C (Pi2+q12)(p22+q22) + 1 / 2 D (Piq2-p21«)2 

These authors show that here the main bifurcations are not of homoclinic 
type. We observe that both sets of equations are similar to the C-equations 
for spin-waves, namely, with linear and cubic terms. We believe that for the 
spin-wave system, both homoclinic bifurcations near the Hamiltonian limit 
and other, more typically dissipative bifurcations, may describe observable 
physical phenomena. 

In another tack, Mirollo and Strogatz [MS] have studied the gradient system 
d©k/dt - -9H/3ek , 1 i k ^ N , where the potential function H is 

H » - I k cos(0k - 6k) - K/2N Ik>k- cos (0k-6k.). 

Physically, a random pinning field tries to "pin" each ek at a random angle 
6k , counteracted by an attractive interaction between the phases. The Bk 

are uniformly distributed random variables in the unit circle. The equilibria 
undergo jump bifurcations and hysteresis as the parameter K varies. 
Similarly, jump bifurcations and hysteresis are present in spin-waves. 
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Onset of auto-oscillations . In a footnote on [ON,p.L607], a remark is made 
that the asymmetrical solutions n-ĵ O, n2*0. with ni*ri2 . n2<<1 "are not 
analytically tractable". However, these solutions are precisely those 
analytically studied in §6, where we have shown the ocurrence of Hopf 
bifurcations (followed in many cases by cascades of period doublings). These 
strong mode-weak mode equilibrium solutions seem to be the relevant ones 
to describe the onset of auto-osculations in the physical experiments. In 
fact, for the symmetrical case we have shown that no Hopf bifurcations 
occur on the branch n1=n2 . A comparison with the work by Zhang and Suhi 
[ZS] is perhaps in order. Equation (6) of that paper with Bk= Ck , Çk = O 
and Pkk' = - ' Skk> is dck/dl = - T\ ck - i u>s Vk c \ k - I k Skk- ck- c.k. c \ k 

(Ç represents a thermal value; in the numerical solution a initial value *0 
plays the role of thermal fluctuation). Making T\ » tfk and u>s Vk = h pk, 
this equation becomes identical to (2.12) with Awk =Tkk-•-= 0 , and where 
Skk- is pure imaginary. With these constraints Zhang and Suhl obtain auto-
oscillations independently of choice of the other parameters. Notice 
however, that in [ZS] these authors report that in some experiments "the 
auto-oscillation frequency is found to be cf the same order as damping". 
Unless one assumes all coefficients to be proportional to damping, this 
seems not in agreement with a prediction for the frequency based on §6. Our 
result for the frequency is the imaginary part for the eigenvalue pair of the 
strong mode (as an isolated system) plus a correction of the same order as 
the damping. 

Modified spin-wave equations . It was shewn in [RACK] that when the two 
modes participating in the interaction are close, i.e, k r k 2 = %/ti where d is 
the sample width, one must add "d terms" to equations (2.12) and the modes 
become coupled already in the linear approximation: 

dci/dt • - (tf j + iAu^c-i - i Rf ( Cj* • i B-\ c2*) - terms in S and T 
dc2/dt • - (tf 2 + iAd>2)C2 - i R2 ( c2* - i 32 C!*) - terms in S and T 

Numerical experiments, which will be reported elsewhere, indicate that 
substantially difforent dynamic behavior occurs; a theoretical study is 
definitely in order. We predict a sample size dependence on the frequency of 
auto-oscillations, more in accordance with the physical experiments. 



47 

Appendix*!. Stability of equilibrium (n1^0,n2=0) when A2+B2 < C2 

Let's recall some well known facts of Roquet's theory. The stability of a 
periodic orbit is determined by the eigenvalues of the monodromy matrix 
M(T) associated to the linearization along that periodic solution. These 
eigenvalues are here functions of the control parameter h. One multiplier is 
always equal to 1; if some other multiplier crosses the unit circle, the 
periodic orbit becomes unstable. Three cases are possible: first, if the 
crossing is at some non real number then, generically, a Hopf bifurcation on 
the Poincaré map of a transverse section takes place, and an invariant torus 
is born. The other possibilities are real multipliers passing through ±1 . The 
-1 case is generically related to a period doubling bifurcation, while the +1 
case to the collision cf a stable with an unstable family of closed orbits, 
desappearing after surpassing the corresponding control parameter value. 

None of these possibilities occur in (5.6): the periodic orbit remains 
stable as long as A2+B2 < C2. This result can be proven indirectly: since in 
the C-representation the periodic orbit appears as an equilibrium point, it 
would suffice to study its stability. We prefer to give a direct proof. 

The monodromy matrix satisfies the linear T-penodic system dM/dt=JM, 
M(0)=id, where J is as in (5.11) and Table 1. Here f 2

e (which does not 
exist in this case) is replaced by the periodic function "^ ( t ) . solution of 
(5.7). Denote by An! , A ^ , An2 , A^2 *n e linearized variables. It follows 
from the above linear ODE M=J(t)M that the structure of M(T) is as follows: 

m13 0 
exp(J(2)T) 

m23 0 
(A1.1) M(T) = 

0 0 M 0 

m4i m42 m43 1 
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Consequently, the multipliers are 1, \i, and the exponentials of the 
eigenvalues of the constant matrix TJ{2) where J(2) is given by (4.3). The 
latter two multipliers, therefore, have always modulus <1. Now An£/An2 -
X3(t) so that An2 ( T) = u. An2(0) where 

T 
(A1.2) n « exp( J X3( t)dt) > 0 

o 

One observes on Table 2 that X3 (t) • - #2 • X4 (t). Since from general 
principles 

T 

(A1.3) J X4 (t) dt = 0 
0 

(this corresponds to the multiplier 1; if one is skeptic, this can be confirmed 
directly by a long calculation using residues), one concludes that 

(A1.4) 0< u,= exp(-tf2 T) s 1 . 

The periodic orbit is stable as long as it exists, ieM as long as A2+B2 < C2. 
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Appendix 2. A center manifold calculation (by Prof.Richard Rand). 

As one moves along branch Ls of equilibrium points, varying the control 
parameter h, there is a value h* at which X3 changes from negative to 
positive. At this moment a center manifold with n2 * 0 is born. This center 
manifold, and the flow on it, was calculated to second order, using MACSYMA, 
by Professor Richard H. Rand, of Cornell University. 

Let's describe the main steps of the calculation. At an equilibrium point 
we know the eigenvalues and the matrices P,P*1 that change to a suitable 
eigenvector basis (Proposition 5.2). So we get a new system of coordinates 
U1.U2.U3.U4 relative to the eigenbasis, centered at the equilibrium point. The 
coordinate n2 corresponds basically to Uj. 

Following an idea exposed in [C], an additional variable u0 « h - h* is 
introduced. Thus, for instance, what was a linear term like huj becomes now 
huj • u0 ui + h*u1 , that is, a quadratic term plus a linear term. 

Making a Taylor expansion of n l f ^ n2, +2 and a« D- c . d. e 0n e la*ter are 
terms of the matrix P) with respect to u0 , one gets a new system of ODEs 
for Uj , 0£i£4. Note that by construction,the constant terms that appear in 
these equations are zero. The structure is of the form 

(A2.1) Uj - I j , 0
4 (kjj Uj + By uj2 ) + Imm04 (Inssfn+14 Cjmn um un ) 

where the coefficients can be stored in "telescoping" archives, according to 
consecutive levels of complexity in terms of the original parameters. 

Finally, it was applied the algorithm given by Rand and Ambruster [RHA], 
to obtain the center manifold and the flow on it, truncated at quadratic 
terms. The center manifold is given by 

u2». (• B21 Ui2 - C201 u0U! - B20 u0
2)/ k22 

U3-[(B4lk32-B3lk44)u1
2+(C40ik34. 

(A2.2) C30ik44)u0u1+(B4ok34B3ok44)u0
2l/k34k43 

U4- (- B31 Ü!2 - C301 U0U! - B30 U0
2)/ k34 

http://U1.U2.U3.U4


so 

and the flow on it is 

(A2.3) duj/dt = B t1 u^ + C10i u0u^ + 0(3) 

One obtains the nonzero equilibrium 

(A2.4) u t - - C i o i u 0 / B t 1 +0(uo
2) 

which in the case we are interested represents a transcritical bifurcation. 
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Appendix 3. Control parameter value for Hopt bifurcation. 

Although there is no guarantee that hH o p f - h* is small, the numerical 
experiment in section 6 suggests that a good prediction for h H o p i can still be 
obtained truncating to first order. The Jacobian matrix at the equilibrium 
point in the center manifold is expanded about the parameter value h* 
where this manifold is bom: 

(A3.1) J - J* + (h-h*)^ + 0(h-h*)2 • 

Let u* the complex eigenvalue of J* given by 

(A3.2) u* = -tf ,/2 + i { S,J1 2 - (* i/2)2 } "2 

Expanding the perturbed simple eigenvalue and eigenvector as 

u = u* + (h-IOn, + 0(h-h#)2 , v - v* + (h-h'Jv, + 0(h-h*)2 , 

we get J V - u V and (J'-u'idJvt - uj v* - -Jj v* . 

Taking the real inner product of this equation with the row-eigenvector 
w* of J* (also asssociated to u*), then uj * (Jiv#, w*) / (v#,w*). 

i: follows that taking first order truncations, 

(A3.3) hH o p f - h# - RenVReu, - h* + tf j / f^Reu,) . 

This seems reasonable: we have assumed "6 j to be small. Now, in order to 
compute Rem we need v*,w* and J j . We find readily 

v* = (1, uVJ12, 0 , (J41 + J 4 2 U V J 1 2 ) / ( M * - X 4 ) ) 
(A3.4) 

w*« (1,-u.VT,, J13/u*- J23/T1( 0 ) . 

The matrix Ji is the directional derivative of the general Jacobian J, 
computed at h*, in the direction of the center manifold equilibrium point 
(which is a linear function of h-h* in the first order theory). For this 
calculation the telescoping archives alluded to in Appendix 2 are :.jeded. 
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Appendix 4. A Melnikov formula. 

A general tratment can be found in Wiggins [Wi], but since the derivation is 
short we present it here for completeness. Write the curves x£ u.s (t) with 

initial conditions (xe «.s (a;z0),z0, e0) as 

x".s(t) = x#(t+a; zo) + e £*>>* (t ;a,z0,90) + 0(€2) 

(A4.1J z".s(t) = Zo + € X".s (t ;a,z0,e0) + 0(<s2) 

eu.s(t)= e*ii;a,z0 ,e0)+ 0(0 

where ô*(t) satisfies the initial value problem 

(A4.2) de/dt - S( x#(t+a); z 0 , e 0 ) , 6(0) - 0 0 . 

We take X u>s(0) = 0 so ihat initial conditions are in the z 0 level. 
Substituting (A4.1) into (10.4) one gets the equations of variation 

(A4.3) dX/dt - R( x#, z0, e * ) , X (0) « 0 

(A4.4) d* s.u/dt - J Hxx ( x#,Zo) K s-u + J Hxz(x#,z0) X + P( r*,z0,Q"). 

Here we have omitted the s,u superscripts in X since it turns out that the 
same equation (A4.3) is satisfied for both. The initial values £s>u(0) are 
uniquely determined by the dichotomy condition Xs(t) -> M€ as t -» <» and 
Xu(t) - * Mt as t-> -». Moreover, the solutions £ s (£u) remain bounded as 
t -> eo (t -» -») respectively. Substituting (A4.1) in the definition (10.10) 
we get M<\{a,z0,e0) - Au(0) - As(0) where 

(A4.5) As.u(t) - ( grad H( x#(t+a);z0) | « M ( t ; a,zo ,0o)) . 
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Furthermore 
Ti 

(A4.6) AS(0) - - / d/dt AS(t) dt + AS(T1) 
0 

0 
(A4.7) A"(0) - Í d/dt A"(t) dt + A"(-T2) 

-T2 

where 

(A4.8) d/dt AS." - (d2
x H x | £s.u ) + (grad H | JHXX £s.u) 

+ (grad H | J HX2 X + P). 

The first two terms cancel out and AS(T1),A
U(T2) -» 0 as Ti,T2 

The Melnikov formula (10.11) is therefore obtained. 
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Figure captions 

Fig.2.1. Dispersion relation: a.parallel pumping; b. perpendicular pumping. 

Fig. 4.1. Nonzero equilibria for 1-mode system. Hysteresis occurs in cases 
b) and d). 

Fig. 4.2. Phase portrait for a 1-mode system. A-1. , T=-1. , R=1.2 
(D = spiral sink; a = node sink ; © = saddle ). 

Fig. 6.1. Hopf bifurcation: projections to (n1fn2) plane. 
For 1.0<R<2.4, the "strong mode" n^ is alone. When R exceeds 2.4, 
a center manifold with n2*0 ("weak mode") is born. At R=3.15, 

a Hopf bifurcation into a limit cycle occurs. The parameters are 
the following, using equation (2.16): « = 0.7, g =5.0, A1=A2 = 0, 

SH+2TH—1, S22+2T22 = 0.5, S12 = 2.5 and T12 « 1.125. 

Fig. 6.2. Hopf bifurcation: trajectories of the eigenvalues of the Jacobian 
matrix in the complex plane for the parameters as in Fig.6.1. 

Fig. 6.3. Amplitude of oscillations on a physical experiment, 
corresponding to a Hcpf bifurcation (taken from [RACK]). 

Fig. 7.1. Symmetrical case: family of periodic solutions. In the notations 
of (2.16), tf j=1, Aj= - 1 , SÜ+2TÜ-1 , T12= -0.75, S12—0.4. 

Fig. 8.1. Heteroclinic phenomena at the origin: "pseudo" Silnikov's case. 
In the notations of eq. (2.12), ^ 1 = if2

:=1 - Pi=p2=1- A1= -1.384, 
A2= 1.254, S1+2T1 = S2+2T2 = -0.286, S12 - 4.078, T12-0. 

For mode 1 we get h1fn= 1.884 , h1
ns = 2.133, while for mode 2, 

h2
(n = 1.254, h2

n s - 1.604 . Thus mode 2 unstabilizes at 1.604, 
value for which the linearization of mode 1 is a spiral focus. 

Fig.8.2. Aperiodic intermittency for mode 1. Parameters as in Fig.8.1. 
Five trajectories with different pumping values are displayed. 

Fig.8.3. Behavior of mode 1 for R-1.685. Parameters as in Fig.8.1. Note 
the resemblance with Silnikov's phenomenon. 



Fig. 8.4. Heteroclinic phenomena at the origin: node attractor for 
weak mode. In the notations of eq. (2.12), tf i=1, tf2=

 2 . 
p 1 = 1 , p2=0.7, A1= 0.8, A2= -0.5, S i + 2 1 ^ -0.5, S2+2T2 = 0.5, 
S12 = 2.5, T12=0.125. For mode 1 we get h1

fn= 0.8 , 
h i n s = 1.2806, while for mode 2, h2fn = 0.35, h2ns = 2.95. 

Thus mode 1 unstabilizes at 1.2806, value for which the 
linearization of mode 2 is a node attractor. 

Fig.8.5. A possible cycle joining critical elements. For n2=0, the 
trajectory stays a long time near n^-O and near n-|«1,58. 

Parameters as in Fig. 8.4, R = 1.30. 

Fig.8.6. Linear dependence between the square of the frequency 
and the square of pumping power. Extrapolation to h=0 

yields critical pumping - 1.274. From numerical simutations 
using the same parameters as in Fig.8.4. 

Fig. 10.1. Symmetrical case: unperturbed phase portraits. 

Fig. 10.2. Geometry of the Melnikov function. 
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