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RESUMO

Estudamos as bifurcagoes da cquagio das ondas de spin que descrevem o bombea-
mento paralelo de modos coletivos em meios magnéticos. Sao propo:stos mecanisiros
para descrever os seguintes fendmenos dinamicos: (i) excitagdo consecvtiva de modos
por hifurcacoes de autovalor nulo; (ii) bifurcagbes de Hopf seguidas (ou ndo} por cas-
catas de Feingenbaum de duplicagao de periodos; (iii) fcnémenos homoclinos locais e
globais. Dois novos centros de organizagio para “rotas ao cuos” sdo identificados; na
classificacio dada por Guckenheimer e Holmes [GH], uma delas é wina bifurcagao local
em codimensao dois com um par de autovalores imaginarios e wn autovalor nulo, para
a qual muitas cousequéncias dindwicas sao conhecidas; a outra & wina bifurcagiio homno-
clina global associado & quebra transversal de separatrizes, no limite em que o sistema
pode ser considerado um Hamiltoniano sujeito a dissipagis e bombeamento fracos. In-
dicamos o trabalho numérico e algébrico necessirio para o estudo detalhado seguinto

este programa.

ABSTRACT

We study the bifurcations of the spin-wave cquations that describ~ the parametric
pumping of ccllective modes in magnetic media. Mechanisms descaibing the follow-
ing dynamical phenomena arc proposed: (i) sequential excitation of modes via zcro-
cigenvalue bifurcations; (i) Hopf bifurcations followed (or not) by Feingenbaum cascades
of period doublings; (iii) local and global homoclinic phenomena. Two new organizing
ceniers for rouics to chaos are identificd; in the classification given by Guckenheimer
and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary
eigenvalues and a zero eigenvalue, to which many dynamical consequences are known;
secondly, global homoclinic bifurcations associated to splitting of scparatrices, in the
limit where the system can be considered a Hamiltonian subjected to weak dissipation
and forcing. We outline what further nunicrical and algebraic work (s necessary for the
detailed study ollowing this program.
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1. Introduction.

For over three decades it has been known that in a magnetic material
subjected to a microwave frequency magnetic field, spin-wave instabilities
can be excited as the field exceeds some threshhold value. Since the early
days of spin-wave pumping experiments, it was observed that as the
microwave power increases beyond this threshold, the radiation absorbed by
the sample develops low-frequency coherent oscillations [HPW]. More
complicated behavior, such as intermitency and period doubling routes to
chaos, have been observed recently on physical experiments [AR,BJN).
Recently it has become clear that the origin of all these phenomena resides
in the dynamic nonlinear interaction between few spin-wave modes.
However, the spin-wave ODEs, given by equations first introduced by
Zakharov et. al. [ZLS], have not so far been treated, in detail, by the
mathematical theory of Dynamical Systems (for background on this theory,
see e.g. Guckenheimer and Holmes {GH]).

The few-mode model has recently gained formal support from two
different approaches. Gill and Zachary [GZ] have shown that the Landau-
Lifshitz PDE, with damping and pumping terms added, has a maximal
attracting set with finite-dimensional Hausdorff and fractal dimensions.
This is in accordance with the fact that the dimensionality measured in
physical experiments is low [YMNW,YM,AAR]. Dimensions of aitraciors
calculated numerically in simulations of spin-wave equations with 2-modes
were i1eported in [RA). These two approaches will not be explored here. We
just mention that the recduction of nonlinear PDEs to ODEs with few modes is
becoming a common procedure [Ro]. Several authors have shown that
computer numerical calculations with few spin-wave modes lead to resulls
in good qualitative agreemant with the experiments [RA, RAt1, NOK, ON,
BJN1,BJN2,CRP,GJ,JB,WBY].

For most physical systems it is not possibie to describe the nonlinearities
with theoretical models based on microscopic sysiem parameters [GL]. A nice
feature of spin-wave instabilities, which give them a special interest, is
that they car be modelled by nonlinear equations derived from microscopic
Hamiltonians with well known parameters. This provides a sound theoretical
framework to interpret the experimentaily observed signals. However, since
a large number of spin-wave modes are in principle involved in the dynamics,
it has not been possible, so far, to establish a direct  quantitative
comparison between theary and experiment.

It is to be expected that a detailed experimental study of the onset of auto-
oscillations can provide a starting point for such direct comparison



4

[RAAMW], as the Hopi bifurcation is amcnable to mathematical analysis
(numerical and analytical). Zhang and Suhl [{SZ,Z81) have shown that the
infinite dirmensional manifold of nearly degenerate spin-wave modes
reorganizes itselt into new, coliective modes. Their work is based on
simplified spin-wave equations, involving many approximations, which
however become tractable by the method of center manifolds and normal
forms [GH,C,RHA].

The main purpose of this paper is to point out that at least two other
mathematical mechanizms, not previously reporled, are present in the spin-
wave squations. Potentially they can be “organizing centers” of observable
physical behavior. We call attention to homoclinic phenomena associated
to the Hamiltonian limit and to 2 codimension-2 bifurcation. According to the
classitication given by Guckenheimer and Homes [GH], the homoclinic
behavior is "global® in the former and “local™ in the iatier situation. Near the
Hamiltonian limit, all dissipaiion parameters are assumed to be small. In the
codimension-2 bifurcation, just cne of the dissipation parameters is
supposed to be small. In this case, at a certain pumping power, one has an
equilibrium with twe conjugate purely imaginary and a zero eigenvalue,
whose unfolding produces a wealth of dynamic phenomena.



2. Physical background.
i. Basic facts about spin-wave instabilities.

Spin waves are the collective elementéry excitations of strongly-
interacting spin systems [K,W], such as a ferromagnet. A spin wave with
wave vector k has the spins precesssing with frequency w, about the

equilibrium direction with phase planes perpendicular to k. The spin-wave
dispersion relation wy(k) depends on the interactions between the spins and

on the sample shape. Considering that the important spin interactions arise
from the Zeeman (interaction with the external field H,), exchange,
crystalline anisotropy and dipolar energies, the dispersion relation, for k<«
a! ( a is the lattice parameter = 10-7 ¢cm) can be written as [K,W]

(2.1) wy =¥ (Hp+ Ha+ Dk2)12 (H; + H5 + Dk2 + 48 M sin26,)1/2

where H;= Hy - 4n MN;, N, is the demagnetization factor in the (2)
direction of the external dc field Ho,, ¥ = gup/fi is the gyromagnetic ratio,
M is the saturation magnetization, Oy is the angle between k and Hy, ,D
is the exchange stifiness, and H'p and H"4 are effective fields arising from

the anisotropy interaction. The shape of the dispersion relation is shown in
Fig. 2.1. At field values H, typical of laboratory electromagnets the
frequency wy falls in the microwave range 1-10 GHz.

Spin waves are quantized, the quantum of which is a magnon with energy #
w) and momentum A Kk . At a finite temperature (T) magnons with energy ]

wi are thermally excited with population nx given by the Bose-Einstein
distribution, which is typically of the order of 103 for k=0. However, the
popuiation of magnons with selected k and wy can be driven to very large
fevels (=1017) by means of various microwave pumping instability processes.

in the parallel pumping process a microwave magnetic field h at a
frequency wp is applied parallel to the static field H, [M,SGM]. Because of
the ellipticity in the spin precession {(due to the dipolar interaction), the
oscillating field couples to spin waves with frequency wyg = wp/2. As a
result, a uniform radiation (k=0) photon can drive parametrically two
magnons with opposite wavevectors k and -k , thus conserving energy and
momentum as ilustrated i Fig. 2.1a. When the driving field h s larger
than a certain threshold value hg , the rate at which energy is pumped into

the spin wave system exceeds that iost lo the lattice through various
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relaxaticn mechanisms. This causes the .ng magnon population to increase
exponentially, until it reaches saturation caused by the nonlinear
interactions.

In the perpendicular pumping configuration, the microwave field couples
lineariy to the uniform mode (k=0} and one observes a ferromagnetic
resonance (FMR) absorption at H, = wp/¥ . Although spin waves with k20 do
not couple directly to the radiation they can be exciled via magnhon-magnon
interactions. One can dislinguish two main processes [S,WS]. In the first-
order Suhl process, spin waves with wy =wp/2 ina k,-k pair can be
driven parameirically by the uniform mode by means of the three-magnon
interaction as chown in  Fig. 2.1b. In this case the uniform mode is driven far
off-resonance with w, =wp/2 , so when the pumping exceeds a cerfain
threshold one observes a ‘“subsidiary resonance” ata field H, roughly haif
the value for the main resonance. In the second order Suhl process a spin-
wave pair k,-K is driven by two uniform mode magnons with frequency wg, =
wp=Wwy pumped by the microwave radiation via the four-magnon

interaction.

In this paper we shall restrict the analysis to the parallel pumping

and the subsidiary resonance processes . We will show thal, somewhat
suiprisingly, they are described mathematically by identical equations .

The experimental arrangement to siudy spin-wave instabilities and
nonlinear phenomena is quite simple. Microwave power frem an oscillator is
directed to a resonator via a precision atlenuator and a circulater or a hybrid
fee to allow observation of the reflected radiation. The resonator contains
the sample and is located in a unilorm dc field H, whose value determines
the wave-vecior of the mode wg=wp/2 with minimum threshold. If the
microwave power is below the threshold value (h<h.) the reflection from the
resonator is very small. As the power increases there is a sudden jump in the
reflection, when h=h; , as a result of the change in the sample susceptibility
due to spin wave excitation. Further increase in the power usually leads to
low-frequency (10kHz-1 MHz) amplitude modulations in the microwave
reflection, the so called auto-oscillation , above a second threshold h.'. The
auto-oscillation can be observed directly with a diode detector corinected to
an oscilloscope or studied with a spectrum analyser. Further increase in
power vyields different types of complicated bebhavior, which have been
observed in a variety of maierials and situations.
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Il. Equations of motion for paralle!l pumping and subsidiary
resonance.

The dynamics of spin wave systiems can be studied by means of several
different formalisms. We use here the method of second quantization, based
on creation and annihilation magnon operators, ¢ and ¢, obtained from the
spin operators with the Holstein-Primakoff transformations [WS.KW]. The
expectation value of the magnon operator <cxi> is proportional to the
transverse value of the precessing magnetization M* = M, +i M, and thus
represents a spin-wave amphtude. Using a quantum mechanical formaiism or
a semi-classical approach one can show that the Hamiltonian for a spin-wave
system pumped by a microwave field can be written as [WS,K,W}

(2.2) H= H2 4+ H3) 4 HE4 4 .+ H)
where
(2.3) H?) = 3 h wy ot o

is the Hamiltonian for a system of independent harmonic oscillators
(magnons) with frequency wy . Summation ranges over positive and negative
values of k. Torms HI(3) and H(4)  represent three and four-magnon
interactions and H'{t} describes the interaction with the microwave field.

The essential ingredient for the nonlinear dynamics is the coupling
between two pairs of parametric magnons. This is provided by the four-
magnon interaction [ZLS]

- (24) H4) = Tk (12 Sy cxtekt oy + T exteet ok o )

In simple ferromagnets this interaction arises [K] from the dipolar,
anisotropy and exchange energies, but the latter is negligible for the small
k-values excited in the microwave experiments. The interaction (2.4} couples
the equations of motion for different k-modes giving rise to nonlinear
behavior. The three-magnon interaction H3) is not important for the
nonlinear dynamics because it does not conserve energy for the two pair-
modes. However, it is essential 10 provide the coupling of the microwave
field to a spin-wave mode [S,WS].
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In the case of parallel pumping we consider a uniform microwave field
hcos{w i) applied in the (z) direction of Hgy . In this case, for an isotropic
infinite medium the driving term of the iHamiltonian becomes [K)

25  Hy) = 12h 5B py expl-i wpt) ot €4t + he.

where py = ¥ wy sin26; exp(-i2Pi)/dwy represents the coupling of ihe
driving field with the k, -k magnon pair, w)y =8 4 1M _and ¢, is the
azymuthal angle of k. Notice that the coupling is strongest for spin waves
propagating perpendicularly to  Hg (6,=n/2) .

In the case of perpendicular pumping the microwave field h cos{w pt)
couples directly only to the k=0 mode, and the driving term in the
Hamiltonian (2.2} can be written as [K]

(2.6) Hy @) =h 8 (SN2 h (ot expl-iwpl) + h.c.)
where N is the number of spins S in the sample. In the first-order Suh)

process, or subsidiary resonance, the k=0 mode drives a k,-k magnon pair
via the three-magnon interaction

@n HB) « 572 Z,.0 Fx € cxickt + he.

arising from the dipolar interaction. The interaction coefficiant is given
approximately by [WS])

(2.8) Fi = (25N)1/2 Wy, sin?8y exp(-i ¥1)

and is largest for spin waves propagating at an angle 6y = x/4. Since it is
driven far off-resonance, the uniform mode behaves essentially like a virtual
mode intermediary beilween the driving fiel and the spin wave pairs. lis
~ amplitude acts fike a classical variable [BJN] which can be obtained from the
Heisenberg equatien with (2.3) and (2.6),

(2.9) Co= ¥ (SN/2)1/2 h exp (iwpt) / [(wp - wo)-i T, ]

With this approximation, interaction (2.6) becomes identical to the
parallel pumping driving Hamiltonian (2.5) with the coupling coefficient
given by (where wp=2wg =2WK, Wo-w >> ¥ )

(2.10) pi =T wyy sin20y exp (-iPy) / 4wy .



This results shows, as we asseried previously:

Proposition 2.1 /[RA]). The first-order Suhl instability is described by
the same equations as in the parallel-pumping  process. In parallel
pumping the modes with strongest coupling to the drive have 6y = =/2,

whereas in the subsidiary resonance they have 6y = w/4.

Remark. It is worth recalling a statement found in the conclusion section o
the seminal naper [ZLS]). "well away from resonance the phenomena which
occur during transverse excitation are essentialy similar to those found for
parallel excitation”.

Using the Hamiltonian H = H(2) + H{4) 4+ H'(t) given by Egs. (2.3-2.5) one
obtains the equation of motion for the magnon operator ¢ by means of the
Heisenberg equation  dcy/dt = [ck,H]li?x . Since spin-wave modes are excited
in pairs forming standing waves, ong can assume  ¢C.x = exp(iq;) ¢, where
qx s a real phase [BJN] . Taking the expectation value of the magnon
operator and introducing the slowly varying amplitude

(2.11) Ck = <C> exp(igy) exp|[1i (wp /2 ]
one obtains the equations of motion, which we call the C-equations .

Proposition 2.2 ([BJN]). Let Awg =wy-wp/2 be the detuning of mode k.
Then

©(212)  Cofdts - (B +idwy) ¢ -ihpy ok’

-1 T (S o€ C" + 2 Ty el o)

Noie that the sample only supports modes that satisfy the boundary
conditions, so that wyg s discrete and Awy is wusually nonzero. The
nonlinearly coupled equations (2.12) describe the dynamics of the interacting
parametric (pair) modes. These equations have been used by Jeffries and
coworkers [BJN] in numerical studies of porpendicular pumping.

For most part of this paper, instead of using (2.12), we shall prefer to
work with the Cooper - pair variables o [ZLS),
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(2.13) Cp = CCk = Nk explivy)

where ng is the number of magnens in the spin wave and Yy represents a

phase. These variables have a simpie physical interpretation [Wa]. i ene
stiobes the precessing spins with a frequency wgpf2, ng is proportional to
the deviation in the z-component of the spin  AS, = § -8, and ¢k is the
phase of the transverse spin component., Mulliplying both sides of (2.12} by
Cx =0k (this follows from Ty = T, Awy = Aw ¢ and py=p.) and adding
the paired-equation we cbtain the equations of the "S-theory” of Zhakarov,
L'vov and Starobinets :

Proposition 2.3 ([ZLS}) ( S equations )
(2.14)  (1/2) o fdt = - (B +iAwy ) O - ih py ng

-1 2k (S Ok M+ 2Tk Nk O )
Using (2.13) and (2.14) one obtains the S-equationg in polar form:

(1/2) dni/dt = -8y mg + Nk Tpe Siwe Pie SIN(P-¥i) - h pi Ny siny
(2.15)

(1/2) gy /dt = -Awy - Tk Sk e CCS(P-Yi) - Ty 2Ty Ny - hpgcosyy

Note that Sy= 8§ and Ty= Tj; due to the symmetry of the physical
interactions. Nevertheless, from the mathematician point of view, one can
consider (2.14-15) as a more general set of equations, where these

paramelers can be taken asymmetric.

In this paper we will maily restrict the analysis to two modes. Since in
yittrium garnet the nonlinear parameters S and T are of order 10-12 sec?
and ¥y = 100 sce-d, for numerical cxperiments [RA] equations (2.14) were
divided by ¥ 4. Introducing normalized variabies and parameters 't'= ¥4 t,
meFn,'0'=Fo,'T=F1Tand ‘&= F1S, where F= §/8 ~ 1018, then 'n’,
'T'78 and '8Y¥ are of order unity. Omitting fur clarity the quotation marks
in the normalized variables and parameters (e.9., ‘Awq's Aw /¥ ¢,01C.),
equations (2.14) can be rewritten as [RA1]
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(1/2)do ¢ /dt = -[1+i41+i2(S1+2T1)n1+4T 12 n2JO ¢ - 25412 2Ny -i R ny
{2.16)
(1/2)do 2/dt = -[g +iA2+i2(S2+42T2)N2+4T 12 Nny)C o - 2812 O 1Ny i x RNy

where 'R = h p3/¥, is the control parameter, g = $5/ %4, x = po/pgand
where for short we write Ag=Awy. :

Caveat: the appearance of extra factors of two in (S4+274) and Tq5, Sz is

due to the fact that we have a double contribution of the Cooper pairs.
Parameter « represents the coupling stiength between mode ks, and the

driving field, relative to that of mode kj.

In the next section we disvuss the basic aspects of the S-equations. In
section 4 we will assume that only onc mode is excited, rot necessarily that
one with minimum threshoid.



3. General aspects of the spin-wave equaiions and overview.

in order to perform numerical experiments with a large number of modes,
it is convenient to work with the cartesian version of the spin-wave
equations {2.14) in a veclonalized {orm, which also shows that we have a
hierarchy of equations as the number N of modes is increased. No harm is
done by dropping the 1/2 factors in the left hand sides, which amounts to
doubling the tirme scale: t « 2t. Thus we get

X' Xk Yk Yk: 0
(3.1) = -By + (Ag +2x N 2Tk) + Nk e Sy - Ny
YK’ Yk Xk ~X* Rk
)] () (nn (V)

Here k and k' are taken both positive and negalive, Ry =h pix and Ag=Aw for
short.

This vectorialized form can. also be helpful to understand the relative
influence of its terms. () are the dissipative and (V) the pumping terms.
Terms (lI) may be called "gyroscopic”, since are tangent to the circles
nj=const. The passage to polar coordinates form below shows that the terms
(1) couple the relative phases.

At first sight, the presence of the factors ng= (xk2+yk2)1/2 in the S-
equalions implies that one cannot linearize at the origin. This difficulty can
be avoided using the C-equaticns (2.12), which are indeed more convenient to
study the behavior at the origin (see section 7). Notice, nonetheless, that by
formally adding N more equations

(3.2) dng/dt = -¥y ng - Ry vk + Zi Sk (Ve Xk - X Y )

(8.1) becomes a system of 3N ODEs in the variables (xj,yx.nk) with quadratic
nonlinearities (the C-equations are only 2N but have cubic nonlinearities).
The augmented phase space possesses a 2N dimensional invariant manifold.
One finds without difficulty that the linearization of the augmented system
at the origin has eigenvalues -¥k (spurious) and

{3.3) - ¥k £ (Ry? - p2)172
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which, as expected, are the same as obtained directly from the C-equations.
These are the relevant eigenvalues for the projected system. Thus one gets:

Proposition 3.1. The j-th mode unstabilizes at its Suhl threshhold

(3.4) Rkgyny = (A2 + B2 )12 |

We point out that it is not necessarily true that the origin is a global
attractor before the lewest threshold. Indeed, if the system has initial
conditions far from the origin (physically this may happen due to "thermal
excitation”}, already for the 1-mode mode system it is possible to exist a
competing attractor (see section 4). We antecipate from section 8 that
chaotic behavior may occur immediately after the smallest threshold ! This
phenomenon was called “hysterelic onset of chaos” in [BJN2].

The singutarity at the origin of the §-equations can also be lifted by
considering the spin-wave equations in its polar form (Takens' "blow-up®,
[GH, §7.2)).

dngdt = ny [- 8y - R sin(Yy) + e nge S sin(dpe-v) )
(3.5)
dyy /dt = (8 +Zye e 2Tyy) - R cos Py - [ T M Sy cos(Py-Pye} |

Using this formulation we will identify the mechanisms for seguential
excitation of modes, Hopf bifurcations (section 6), a codimension 2
- orgamizing-center (section 9}, and homoclinic phenomena in the Hamiltenian
imit (section 10). A simple calculation from (3.5) yields

Proposition 3.2. The divergence of the spin-wave system in the polar form
is constant and negalive ,

(3.6) div = - 5y 8y

so that, for the measure dny...dnpy d¥y .d¥y = dxydyy .. dxy dyn/ (0g...nN),

volumes are shrunk at that constant rate. In parlicular, no sources or totally
unstable periodic orbits can exist.

As we have seen in section 2, the physical considerations yielding the
quantal Hamiitonian impose that for the spin-wave systems (3.5) the
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coefficients S;; and Tj; must be symmetric. Dropping the dissipation terms
in (3.5), there is a Hamiltoman structure [A,AM]. An interesting feature is
that the pumping terms can be incorporaled into the Hamiltonian
{this idea is also used in other physical systems; see section 12).

Proposition 3.3. The symplectic form is given by

{3.7) Q=3 dxxady/ Ny = Tdngadyy

and the Hamiltonian is  ([ZLS, eqs. (3.9), (3.10)))

(3.8) -H =2 K1/2) Sk (xxxie+yiyi) + My Tk ] + 2y (B my + Ry x ) ,
where  Xexp+ykYie = Nefiie COS(¥y-¥i), Rg= p h.

In the case of equal damping or all modes, i.e., ¥, =¥ (1<i<N) the

equations can be written as z = J grad, H(n,¥)-¥% (n¥),J= ©4 | z=(n¢).
10

These dissipative Hamiltonian systems [Dr,VDG, OV], maintain some of the
features of usual Hamiltonian systems. For instance, eigenvalues of the ODE
at fixed poinis vome in pairs, symmetric wiin respect o the line Rez= - §/2
{plus the conjugztes when complex), and Krein's classification [A] of
eigenvalue types applies. An implication is that, in many cases, Hopf
bifurcations must be preceded by Krein collisions. Such features do not hold
when the dissipation coefficienis are different.

When there is no pumping (h=0)} nor dissipation, the Hamiltonian is clearly
invariant under the rotational symmetry ¢ — ¥, +¥ , yielding the conserved

momentum
.(3.9) b= Yy g

- Equilibria of the reduced systems (with h=0) are called relative equilibria

for the total system [A,AM]. They correspond o periodic orbits in which the
nj are constant and the phases evolve with the same rate, thus with constant
phase dilferences. The search for these periodic solutions, and more
interestingly, their perturbations as the pumping parameter h is turned on
and the dissipation is considered, will be left for future work. We just
observe that if only the dissipation is added,the relative equilibria in this
case are destroyed. Selting nj'=0 in (3.5) then A(ny,....nN) = (¥4, .. ,Bpn),
where A is an antisymmetric matrix: aj= Sy sin(¥-¥;). It is impossible to
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find a solution with ail n;20 (with at least one >0), because then 0= nAn=
n.(¥y, . .¥N) > 0, a contradiction. However, if one allows asymmetric Sj; , it

is possible to construct tamilies of relative equilibria for the spin wave
eguations with dissipation.

The two-mode system with h=0 and no dissipation is completely integrable
in Liouville’'s sense. For small h, KAM theory applies, so the motion is
trapped between invariant tori. The nonintegrable O(h) perturbation produces
transversal homoclinic phenomena, associated to separatrix splitting.
Transversality persists for small enough dissipation. For small values of h
and ¥; we provide in section 9 a quantitative descripticn, using "Melnikov's

method” [GH,Li,Wi,WiH].
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4. Excitation of one mode. Phase portraits.

In this section we study the simplest possible situation, where just one
of the modes, say ny, is excited: n=0, k's k-k (mode -k is the Cooper pair).
The phase space is the half-cylinder n20, ¢ ¢ [-x,x). The equations of
motion are -

' dng/dt = - ¥y ng - ng By singy
(4.1)
dyi/dt = -Ay - Sk ny - Ry cosyy .

where for short we denote Sy= 25y, + 4Tkx . The factors of two come from
collecting the Cooper-pair contributions { Sy = Sk, Tk = T.kok }-

For the remaining of this section we will drop the subscripts k. We
rescale time, t « ¥t , so now ¥ =1. The equations depend on three
paramefers R,A,S (to undo, just replace R,A,S by R/¥ ,A/¥,5/% in all
formutas below).

The foliowing heurisiic argurment shows that if Sz0, then aii trajectories
eventually enter a bounded region: if n is very iarge, the term Sn dominates in
¥', so one can average over the angle ¥ in the equation for n’. The averaged
eguation is just -n.  On the other hand, "escapes” are possible if S is set
equa! to zero. This can be shown explicitly, since for S=0 the analytical
solution can be obtained by separation of variables:

(4.2) dn/n = [(1 + R siny) /(A+Rcosy)]dy (S=0).
We will assume S=0. Proposition 4.1 describe the relevant facts about

equilibrium points. Their stability character depend on the eigenvalues
Hi.H2  of the Jacobian

-1-Rsiny  -nRcosY
(4.3) J =
-S Rsiny

calculated at the points where dn/dt =0, dy/dt =0.
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Proposition 4.1. One mode system: Equilibrium points.

A) With n<0. Equilibrium points do not exist it R<ja]. W R2lA| : cos¥=-A/R.
Let p=(R2-A2)1/2>0

Al sing= -(1-{A/R)V2 5 pyapp =<1, pypp = pliop) .
i) p>1 : Saddle. i) O<p<1: Node attractor.

A2. sing= +{(1-(A/R)2)12 : py+pp =-1 , py.pp = -p{i+p) . Saddle
B) With nz0. Equilibnum points do not exist if 0sR<1. if R21: siny=-1/R .

B1. cosy = (1-(1/R}2)1/2 . n=(1/8){-A-(R2-1)1/2},
B2. cosy= -(1-(1/R)2)12 .  n=(1/S){-A+(R2-1)1/2).

In both cases, My+Hp =-1 , pe.po = -SnRcosy
One has saddie point or attractor. See Fig.4.1.

The attractor with n20 is a focus for all points sufficiently far in the
stable branch L% (Fig.4.1). We will be particularly intarested in Hopf
bifurcations; however, this type of bifurcation can never occur if only one
mode is present, because the reai part of the eigenvalue is always - 1/2 ,
that is, negative (in general, - ¥4/2 ). Nonetheless, through nonlinear
interaction with a second, weakly excited mode, this focus on the LS branch
is the "seed” for a Hopf bifurcation, as we wili show in section 6.

Proposition 4.2. ( Nature of the atiractor with n#0.) Let q=(R2-1)3/2 | The
condition for a focus attractor is  qla+qj>1/4 i S<0, and qla-gj>1/4 i S>0.
This is the case for R sufficiently large in branch LS.

It is instructive to sketch all possible different portraits in the two-
dimensional phase plane. One will be surprised by the number of bifurcations
already present in this elementary setling (where just one mcde is present),
Fig.4.2 depicts the phase portrait with A=1, 8=-1, R=1.2. There are here two
competing  attractors, one with n=0, and the other with n#0. Eventually, for
R greater than ({1+42)1/2 (Suhl throshold) only one attractor survives, that
with nz0. MNotice that hysteresis occurs: mode n=0 excites directly to a
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finite value when the Suhl threshold is exceeded (jump bifurcation); when the
control parameter is slowly decreased, the steady state follows lhe solid
line in Fig.4.1.

Considering the augmented 3-dimensional system with the "dummy”
equation R'=0 added, we note the elementary appearance of two dimensional
(inside the three dimensional phase x R-space) center manifolds , born when
a real eigenvalue changes sign. In fact, J has a zero eigenvalue (the other
being equal to -1) at (n=0, cos¥y=-A/R} when (i) R=|A] or when (i)
R2=1+A2, siny= -1/R. Case (i) corresponds to the coalescence of the saddle
A2 and the node attractor A1 . Case (i) corresponds to the coalescence of
the equilibrium point B) in branch L with Al. Here A1 changes from atiracior
to saddle as R? exceeds 1+A2, and this is consistent with B) being an
attractor in Fig.4.1 , (a),(c} and a saddle in Fig.4.1, (b),(d). Here either the
axis n=0 or the branch L (with a stable pant LS and an unstable LV} contain
the equilibria in the center manifold.

As we mentioned, in cases b) and d) of Fig.4.1 there is a stable nonzero
steady state above R=1, prior to the Suhi threshold (ST). Suppose mode 1
has the smallest ST, and assume that it is greater than ¥a/pp. Then it is a
mathemaiical possibility that mode 2 attains a nonzero steady state before
mode 1, provided the system is given suitable initial conditions. See section
8 for numerical examples. On the other hand, excitation begins at the
smallest Suh! threshold when the microwave power is applied to samples in
thermal equilibrium (all ng=0).
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5. Excitation of a second (weak) mode: a transcritica! bifurcation.

Physically there are intinitely many spin-wave modes involved in the
instability process. Suhl and Zhang [SZ,2S] point out that, "as the signal
increases beyond threshhoid, an entire manifold of pairs enters the piclure.
In fact for parallel pumping as well as for the subsidiary resonance, this is
already the case at threshhold". Using a simplified set of eguations, those
_authors have used center manifold theory to explain that the dynamics is
dominated by essentially two collective normal modes.

Hence we consider the S-system described by (3.5) with twoe modes. To
avoid unecessary numerical factors present in (3.5) when the Cooper-pair
contribution is added, we redefine its coeflicients by T2 &« 4T4p and

S12 & 2512, S & 2(S+2Tkk). So we have

dny/dt = ny [-¥4 + N2 Syp sin(¥2-¥1) - Ry sin{¥,4) ]

d';’ﬁdt = <Ay - T12 no - S-[ Ny - N2 812 COS(‘Pz"Pﬂ - Ry cos ‘P1
(5.1)
dnp/dt = np [-¥2 + ng Spy sin{¥4-¥2) - Rz sin{¥o) ]

dyqo/dt = -Ap - Toy 0y - Sz nz - ny Spq cos(¥a-¥4) - Ry cos Yo .

We fake the equilibrium points corresponding to LS  (Fig.4.1), maintaining
na=0. This is the more relevant situation, but the analysis below can be

replicated to the branch LY, if one is interested in following the bifurcations
of unstable equilibrium points as well. Thus

ny® = (-A4/Sy) + (R12-842)1/2/|8,|
(5.2)
' sin ¥ = -¥ /Ry

and the signs of cosy (¢ are given in Fig.4.1, depending on those of S, .
Although ny=0, we nevertheless search for values ¥,¢ suchthat ¥, = 0.
We must solve:

Az + Tpy n4® 4 Ry COsY2® + N8 Spy cOS(Y18-928) « 0

Substituting (5.1) this equation becomes
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Case A2+B2< C2. Since mode nyo=0, ¥, is just a "mathematical entitity”
following the “nonphysical® T-periodic orbit (¥2' never vanishes)

(5.6) N =9, $1=¥y, np=0 , Yo=Ppot), O<t<T.
where
d¥o/dt = -Ap - ny® Spq cos(¥8-72) - T2y n4® - Ry cosyy

(5.7)
2n
T = .[ d¥o/ [-Ap - N18Soy cos(Y18-¥3) - Toq Ny - Ry cosY,]
0 .

The following is a natural question: is it possible that the onset of the
second mode has its origin on the Floquet unstabilization of this periodic
orbit? We show in Appendix 1 that the answer is negative : the periodic
orbit remains stable as long as A2+B2 < C2, A residue calculation yields

(5.8) T = 28/(C2-(A2+B2))1/2 ,

Thus the period becomes infinite at a parameter value h# where E(h) =
A24+B2 - C2 changes sign from negative to positive. At this value equations
(5.4) have a double solution, corresponding to a degenerate equilibrium point
(saddle-node bifurcation) for the restricted dynamics in ¢5. Subsequently,
this equilibrium point separates into two, of different stability types, as we
now proceed to discuss.

Case A2:B2> C2 . The two equilibrium points are

cos ¥ = [AC - B sqrt(A? + B2 - C2)}/(A2 + B2 )
(5.9)
sin ¥26 = [BC + A sqrt(A2 + B2 - C2))/(A2 + B2) .,

cos ¥ = [AC + B sqrt(A2 + B2 - C2))/(A2 + B2)
(5.10)
sin ¥o¢ = [BC - A sqri(A2 4+ B2 - C2))/(A2 , B2)
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For the restricted 1-dimensional dynamics of ¥» (5.9) is a stable
eguilibrium, while (5.10) is unstable. Thus {5.10) has no interest and c¢an be
discarded. Proposition 5.1 below gives the behavior of ( ni€, np=0, ¥2, ¥,€)
with ¥,€ given by (5.9). The Jacobian matrix has the following structure:

0 Jiz hia O

-S4 -84 Jas 0
(5.11) J=

0 0 Az O

Je1 Ja2 Ry

where the nonzero coeificients are given in Table 1 below. The eigenvalues ot
J can be read off direclly as Ay, A2, A3 ,Ag ,where Aq, Ao are the
eigenvalues of the left-upper 2x2 block corresponding to the 1-mode system
(4.3) at (fy, ¥4). Loosely speaking, As, A4, determine the stability of np, ¥ 5,
respeciiveiy.

A3 =-¥2- Rasiny2® + nq® Szysin(¥18-92°)
Ag= -Bp-Ag

Ji2 = - nye(R2-%,2)172

Jiz = Syz ny@sin(¥e -4 4e)

Joz = ~Typ - Sqp cos(¥,®-¥¢®)

Jog = ~Tpq - Spy cos{¥a8-¢4€)

Jg2 = - S Ny sin{y2@ -y 4€)

Remark 1: only parameter 8, is not present.
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Remark 2: Since A3 = -¥5 + Ay-Bx, Ax+By=C and x2+y2«1, elementary
algebra yields the following useful formula:

(512) g =-%, 2 (A2+B2-C2)¥2

The - branch corresponding to (5.10) has no interest for us since A3 is
always negative, while A4 is always positive. In a sense the - branch is just
an artifact of the polar coordinates: it would not appear if we work with the
C-equations. For the + branch, corresponding to (5.9) we may have a zero
eigenvalue bifurcation exciting mode ns.

Proposition 5.1. For the equilibrium solutions (5.9), corresponding to the +
branch of (5.12), A5 changes sign at values h* such that E(h*)=¥,2. Note
that A\, is always negative.

The spectral analysis of (5.11) can be readily done. it suffices to do it at
h=h* where A3(h*)=0. Notice that A 4(h*)= -T2 < 0.

Proposition 5.2. At h=h" a suitable basis for center manifold calcuiations
is given by the colums of P, ordered as {v3,v4,v4.,v2}

a 0 1 0 0 0 1 0
b 0 0 1 d - -c+tad+be 1
P- P“' =
1 0 0 0 1 0 -a 0
c 1 d e 0 1 D 0
0 0 0 0
P1JP = 0 Ag 0 0
o 0 0 Ji2
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Ag=-B2
b = Sy, sin(y,2 -¥,8)/ (R12-¥,2)

a=(-%1 b+Jx3)/Sy

C = (So-Jg1a-Jaob)/ Ay

d = [Jg1{E1+24)-SyJa2l[A 4(-¥ 1- X q)-J1254]

e = [Ag Jaz2 +gqdq2)[Ag(-T1- Ag)-di2 S4)

Proposition 5.3. Suppose that at the point P where LS starts (Fig.4.1) one
has A3 (P) < 0. Thisis the case if ¥,2 » E{P) > 0 . The values of h* at

which Ag3=0 are roots of the biquadratic polynomial (top signs correspond
to cases bjd) ol Fig.4.1) :

(5.14) PiZhd+ 2 (Po Py -2p12Qo?) h2 +pof + 4842052 = 0.

Pt = P12T7212842 + [p2 t Spq p4/1S4]]2
Po = 22 £ 2(¥42 S2¢/iS4l} [p2/p1 ¢ S21 /1841]
(5.15)
- %12 1212842 - 8§42 (842 + ¥42)/8,2
+(82 - T3 81/81 )
Qo = - [(S5212 44/(84]S4]) £ Ay Szy p2/(S1 p1) ]
- Ap Ta4/1Sy)  + 7292 84/(8484])
As stressed before, care must be taken since we may have introduced
spurious roots. Examples will be given in the next two sections. As one

moves along branch LS (ny€z0 , np=0) , varying the control parameter h, there
may exist h* at which Ag changes from negative to positive.
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it is well known from the theory of dynamical systems that at this
moment a one dimensional center manifold with no20 is born [C,RHA] . In

the cases of physical interest, we have

Proposition 5.4. [n this center manitold, for 0< h-h*<<i there is a new
stable equilibrium point with ny; = nye(h*} + 0(h-h*) and 0 < no® = O(h-h*),
for h > h*, arising from a transcritical bifurcation.

Appendix 2 gives the main features of a center manifold algebraic
calculation, kindly emaiied to us by Prof. Richard H.Rand.
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6. Hopf bifurcation.

The onset of a steady state containing both a strong and a weak mode
paves the way for further bifurcations. One ore hand, one may consider the
imbedded hierarchy of ODEs with more modes and investigate the appearance
of equilibria with three or more nonzero modes. Each new mode arises at a
zero-eigenvalue bifurcation, after the excitation ot a finite number of
- modes, a Hopf bifurcation may eventually take place. On the other hand, we
may at the outset restrict the study to the two-mode system.

Let's discuss the latter possibility. Consider parameter choices such that
A4, A are compiex conjugate with negative real parts -%4/2 for the 1 mode
system (Proposition 4.2). Mode 2 is excited as soon as h surpasses h*, and the
behavior of Xy, Ap changes. Numerical experiments indicate indeed that there
is a domain of parameters such that the strong mode-weak mode steady state
suffers a Hopf bifurcation at a higher value  hyops > h* . Furthermore, there is
a (possibly reduced) parameter range such that the resulting limit cycle will
suffer a cascade of period doublings to chaos.

In the example of Fig.6.1 we describe numerically the onset of the auto-
osciliations, using parameter values as in [RA1,Fig.8), namely (using
gquation (2.16)): « = 0.7, g =5.0, Ay=Aps = 0, $1142T1¢ = -1, §22+2T»5 = 0.5,
Si» =25 and Ty = 1.125. Caveat: changing the notations to those of (5.1),
Yym 2, ¥p=10 , Sy=-4 , Sp=2, Sy0=10,T12=9 . In the experiments, np was
excited at h'=2.4. This agrees very well with the theoretical prediction
h* = 2.394566, using (5.14) with the top signs.

Notice that in Fig.6.1 the strong-weak steady state for 24 < h < 3.1 appears
to be moving uniformly on a straight line. The onset of auto-oscillations
occurs at h#=3.1. Fig. 6.2 depicts the behavior of the four eigenvalues. The
pair of conjugate eigenvalues A4, Ap corresponding to the ny mode when
no=0, initially moves on the line ReA = -1. When h'~2.4 mode ny is excited
" to a non-zero steady state. At this value the pair X, Ao sharply tumns its
direction, moving towards the imaginary axis. From Fig.6.2 we see that it is
reasonable to approximate this motion by a straight line. Thus we used the
change on the eigenvalues immediately after h*=2.4 to predict, by linear
extrapolation, the value h#=3.15 for the crossing, which is in good agreement
with the results. The absolute value of the eigenvalues when they cross the
imaginary axis is = 5.4. Correspondingly, the numerically ov-erved frequency
of auto-oscillations at h=3.2 is about 5.48. Moreover, the amplitude of the
oscillation n4({t) was observed to vary, as expecied, like (h-h#)1/2,
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For other numerical examples, see [RA1, Figs.3,4,5] . The Hopf bifurcation
was observed on physical experiments [RAA]. See Fig.6.3, taken from {RACK] .

Proposition 6.1. The mathematical mechanism for the Hopf bifurcation of
the strong-weak equilibrium consists on the deviation of A4, A» (eigenvalues
of the strong-mode) from the line Re A =-¥4/2, due to the coupling with
the weak mode.

At the moment we do not have a formal proof, but we present a few
remarks in support of Proposition 6.1. First, the behavior of the eigenvalues
in Fig.6.2 resembles qualitatively 1o what one knows rigorously in the case
of equal dissipations [DL]. The movement of the eigenvalue pair
corresponding to the weak mode, in the direction of negative real values, is
compensated by the movement of the Hopi-bifurcating pair in the other
direction. Observe that practically linear motions of (nq,n3) and (Ay, Xp) are

occurring even though ¥ 4= 2 is not very small.

Following this linear scheme, in Appendix 3 we outline an approximate
method to predict the control parameter value corresponding to a Hopf
bifurcation, using computer algebra. We plan to pursuc the details in future
work. As far as we know, this type of study was pionesred by J.P.Kzener
[Ke,Ke1] which followed, using computer aigebraic metnhods, the locus both on
phase and parameter spaces, of Hopf bifurcations for a chemostat model and
for a predator-prey system.

We point out that the first period doubling is generically associated to the
dissolution of the 2-dimensional center manifold containing the Hopf limit
cycle. The parameter value associated to this bifurcation can be predicted on
the basis of Floquet theory, using semianalytical procedures. See [Rd, Kap,
KM]. In this way it is possible to obtain, approximately, the region of
parameters where the Feigenbaum route to chacs occurs.

In section 9 we sketch the unfolding of the degenerate situation when
¥ 4=0, where the Hopf bifurcation occurs together with the excitation of n, at
h*. In some related situations it is now known the existence and uniqueness
of the limit cycle which arises in such unfolding [CSG).

We now briefly discuss the possibility of the onset of a third mode, etc.
prior 1o the Hopt bifurcation. We take the spin-wave equations with three
modes in the potar form, and we consider the strong-weak steady state with
two nonzero modes, and a vanishing third mode na=0. Looking for a
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(mathematical} value ¥3¢ such that dyg/dt= 0 , one obtains a similar
situation as (5.3-4) (but the algebraic implementation is harder). As before,
mode n3 unstabilizes at a zero eigenvalue bifurcation. If the corresponding
control parameter value is less than the value for hy,pt calculated for two
modes, the third mode will be excited before that 2-mode-Hopf bifurcation
having a chance.

In fact, since a great number of modes have nearby thresholds, it is likely
that several modes will be excited 1o a steady steale prior to the Hopf
bifurcation. This is our interpretation of the statement in Suh! and Zhang
[SZ] that "the first Hopf bifurcation (which results in a limit cycle) sets up a
collective mode of the entire manifold of spin waves”.
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7. Direct excitation ot two modes; new transcritical bifurcations.
Nakamura and coworkers {NOK, ON] showed that in the case where all
coefficients are symmetric, a family of equilibrium solutions ny=ns=n
emanates from the origin as soon as the Suhl threshold is surpassed. Let

(7.1)  Ay=4z,% 1=, p1=p2, Sy =Sy, Ty2 = Tz1, Sy2 = Sy

Without loss of generality we may assume ¥4=1, py=1. The equilibrium
solutions ny=np=n , given by

(7.2) nN=-[A # (92-1)”2] /{812 + Sy + Tq2)

may undergo jump bifurcations/hysteresis (analogously to Proposition 4.1).

The Jacobian matrix is

0 r 0 u
S -1 T 0
(7.3) J =
0 u o f
T 0 S -1
with
u= n2512 ’ T= -812 - T12 ' S--S1
(7.4)
r= -Rncosy -n Sy5
The roots of the characteristic polynomial
(7.5) Pohar = X2(1+x)2 + (rS+uT)(14x)+(52-T2)({r2-u2).

were obtained by computer algebra:

(7.6) 172 2 (12)[1 +4{rzu)(S2T)]1/2

Note that this is in agreement with the symplectic relations for
dissipative Hamiltonian systems with equal damping [Dr,OV]: the eigenvalues
are pairwise symmetric with respect to the line Re A = -1/2,



30

Propesition 7.1. Hopf bifurcation does not take place along the ny=ny

branch. Two of the eigenvalues are never zero, actually being real negative or
complex conjugate with negative real parts. One of the other eigenvalues will
be zero, producing transcritical bifurcations, when (r+u)(T+S) or (r-u)(S-T)
vanish. -

It is easy to find values of R such that r+u vanishes: either the Suh!
threshold R = (1 + A2)¥/2 at which n=0 or

(777. R=1, R={1 +(aQ2)1"2 (Q=T+8)

For the case r-u=0 we obtained, using computer algebra, the biquadratic
polynomial aR4 + bR2 + ¢ = 0 with

a= (-Q2-4522 +4Q 8
(7.8) b= A2 (85122-4845, Q+ Q2 +2Q2 - 8Q 5yp +85¢52

Cw A2 (-85522+451,Q0-Q2)-48,,244-Q2-45;52+4Q 8,
whose roots are the Suhi threshhold again and

[4 8122(A2 + 1+ (Q2-40Q Si2)]
{7.9) R2 =

Q2-4Q8y +4 8422

In general, the values of the roots are different so only one real eigsnvalue
vanishes at a time {(codimension 1 bifurcations). There are some exceptions,
fhough. At the Suhi threshhold r and u both vanish, so at the origin ny=ny=0
there is a double zero eigenvalue. Here a local unfolding analysis could be
done using techniques such as in [GH, §7.3). Special choices aiso tead to
double real eigenvalues. For instance, if A=0 or Q=1 then r-s and r+s
vanish at the same time. This is also the case when the the following
relation holds: Q(1-45122) = 2 845 ¢ 4 8422 .

In [ON, Fig.1]) regions of parameter space were depicted corresponding to
values of R at which the equilibrium solution with ny=ns, ¥y=¥, changes
stability. The specific type of unstabilization was not reported, and it has
been generally thought as Hopf bifurcation. However, we showed here that
this is not the case. Namely, the unstabilization always corresponds to the



31

passage of a real eigenvalue through zero, producing transcritical
bifurcations. '

In Fig.7.1 we show the periodic orbits which lead, as h increases, to the
strange attractor in [NOK]. In the notations of (2.16), 8;=1, A= -1, S;;+2T;;=1,

Tya= -0.75, S42=-04; following (5.1}, ¥i=2, A=-2, S=4, T12=-6 and $;,=-1.6.
The Suhl threshhold, here identical for the two modes, is hg = v2. Mode
(R4#0,n2=0) with ny= [14+VR2-1/2 unstabilizes at R*= 3.1113 , obtained by
(5.14) with the bottom signs. We followed numerically the periodic orbits
from h=4.4 back to h=3.65, using as initial guess for each R a point in the
orbit corresponding to the preceeding value of R. Below R=3.65 the solution
seems to be attracted to a fixed point ny=0, ny20, even though R is still quite

larger than R*.

Remark. 1t is possible to work analytically under slightly more general
assumptions. We consider systems with asymmetrical coefficients and look
for phase locked solutions ¥4=¥, (with both ny20, np=0 ). Since at the

equilibrium point we must then have
(7.10) singy = -¥4/Ry = sin¥5 = -¥3/Rp

it follows that we need just to assume the equality ¥4/py = ¥o/po . Under
this assumption, the equilibrium pair (ny,np) satisfies the linear system
(the solution (7.2) is recovered in the case of symmetric coefficients) :

S T12+S12 Ny -A¢- Rycosy,
(7.11) =
T21+321 Sg N2 ~Ap- HzCOS"Pa

Of course, only solutions with n¢, no > 0 have physical interest. We have
not been able yet to accomplish the algebraic calculation of eigenvalues in
this more general case. Nonstheless, we can at least guarantee that, for
smalil perturbation of the symmetrical case, there is no Hopt bifurcation. We
also observe that for small enough values of the difference ¥{/py -¥2/p2,
these equilibrium solutions may be continued into fully general asymmetrical
solutions (i.e., with slightly different phases ¥ = ¥3).

In the case of symmetrical coefficients, phase locked solutions were
computed numerically for up to. 100 modes by Lim and Huber {LH].
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8. Heteroclinic phenhomena at the origin: cycles.

To study the behavior of the spin-wave system at the origin, it is more
convenient to consider the C-equations. Dropping the cubic interaction terms
in (2.12), the complex modes ¢; uncouple and one geis for any given mode
the linearized equations dc/dt = (B + iA)c - i R ¢*  (subscripts ommitted).
The origin is a spiral focus for 0 < R < JA] . At R=|a| the imaginary parts of
the conjugate cigenvalues vanish, for |aj < R < ¥(42+%2) one gets a node. At
R= Y(A2+¥2) one of the real negative eigenvalues vanishes (Subi threshold)
and the origin is a saddle for R > ¥(A2+¥2).

We denote the critical values by hkp, = |Acl/p, and hkpe = V(8,248 2) py.
Here In means "focus to node” and ns "node to saddle”.

The numerical experiments described below indicate that heteroctinic
recurrence fenomena at the origin is present for certain parameter values.
Since the recurrent behavior was found as soon as one of the modes becomes
unstable, we may have here a situation of homocliinic bifurcations with
nonhyperbolic equilibria [De], yielding "blue sky catastrophes” [AM,CDF].

In Fig.8.1-8.3 the same paramgier values as in [BJN2, Figs.9,10} are used,
namely, in the notations of eq. (2.12), B =¥p=1, py=po=1, A= -1.884, 5=
1.254, 8;+2T1 = $p+27T, = -0.286, Sy, = 4.078, T1,=0. For mode 1 we get
hlig= 1.884 , hi,g = 2.133, while for mode 2, h?g, = 1.254, h2; = 1.604 . Thus
mode 2 unstabilizes at 1.604, value for which the linearization of mode 1 is
a spiral focus. This at first sight suggests Siinikov's homoclinic
recurrence [GH, Si,5i1). Indeed, we found a similar behavior in the numerical
experimenis. Unstabilization was first seen at h=1.64. Initially, the
osciliations resembled an aperiodic intermiltence, frequency beginning low
but increasing fast, as shown in Fig.8.2. For h=1.685 we observe a "psevdo
Silnikov" behavior for mode 1, as in Fig.8.3 (why "pseudo’?; see the remark
below). For h >1.80 one gets periodic oscillations similar t0 Fig.9 of [BJN2).

In Fig.8.4-8.6 we use the following parameter values, with notations of
(2.12): By= 1, Ey=2, py=1, pp=0.7, Ay= 0.8, 47 = -0.5, §1+2T¢ = -0.5, §,427T,
» 0.5, 842 = 2.5, T12=0.125. For mode 1 we get hiy,= 0.8, h1,g = 1.2806, while
for mode 2, h2;, = 0.35, hZ,c = 2.95 . Thus mode 1 unstabilizes at 1.28 where
mods 2 is a node attractor, Homoclinic recurrence here could be ar alogous

{but not exactly; see rernark below} of a type discussed by Holmes [H). In the
numerical experiments we found that the origin in nyxnp, space becomes

unstable at h~1.27. For h=1.30 Fig.8.5 suggests that there may be a
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heteroclinic cycle between the origin and (n(=1.6, nz=0). Fig.8.6 shows the
dependence f2 = (hWh;)2 -1 between pumping and frequency. Extrapolation to
h=0 yields hg=1.274.

Remark . The chaotic behavior observed in Fig.8.3 was classified by Bryant,
Jeffries and Nakamura [BJN2, §llIC] as of "Silnikov's type”. We wish to point
out that although the numerical observations may be similar to those one
sees in Silnikov's case, the dynamical explanation must be different . The
designation of “"relaxation vs. spiking behavior® actually introduced by those
authors seems more appropriate.

Silnikov's phenomenon arises on systems which can be reduced to a 3-
dimensional phase space; one assumes that an equilibrium point has two
complex conjugate eigenvalues with negative real parts, and one real
positive eigenvalue. The one dimensional unstable manifold emanating from
the equilibrium is a homoclinic orbit, returning to the equilibrium as an
spiralling orbit in the local stable manifold.

What seems to be happening here, on the other hand, is a bona fide four
dimensional phenomenon, which, as far as we know, has not yet been studied
in detail by the methods of Dynamical Systems. Consider a (cy,c2) phase
space such that the ¢y and ¢, complex planes are invariant manifolds for
the dynamics. Suppose that the origin is a global attractor, of spiral-focus
type, for the restricted dynamics in the cq-plane, and a saddle for the
restricted dynamics in the cp-plane. Since the unstable manifeld for the full
(cy,c2) system is contained in the ¢y plane, there is no chance that this
unstable 1 dimensional manifold returns directly to the origin in Silnikov's
fashion. Nevertheless, the unstable manifold can return to the origin,
either directly as a homoclinic loop in the ¢, plane, or through a cycle
connecting critical elements in full (cq.c2) phase space [PBMB). One scenario
is as follows: there is a orbit connecting the origin and a stable equilibrium
c2820 viewed in the restricted cp-dynamics. However, suppose {cy=0, c2®) is
an unstable equilibrium viewed in the full dynamics, the unstable 1-
dimensional manifold emanating from this point may also be contained in the
three dimensional stable manifold of the origin. Actually this 1-dimensional
unstable manifoid may connect to other critical elements untii a cycle to the
origin is formed.
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A detailed study of this situation is in order, both from the numerical and
the theoreticali viewpoint. Ong possible direction of research is to find an
algebraic approximation for the dynamics, coatinuing the Hartman-Grobman
linearizing scheme outside the invertible region {OCR, ROD).

On the experimental side, we remark that recent measuremenis produced
results similar to the type of numerical solutions [RACK].
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9. A codimension-2 bifurcation: one zero, two imaginary
eigenvalues.

We go back to the S-equations in the form (5.1) and consider the Jacobian
matrix (5.11) at (n;e, ¥ €, ny=0, ¥,8). fwe set ¥4 = 0 then at the control
parameter value h* we get one zero eigenvalue A3=0 and two imaginary

(9.1) )&1'2 =+iw ., W= (J12 Sg) 12

This is is a codimension-2 bifurcation, discussed in Guckenheimer ahd
Holmes [GH,§7.4]. Two small parameters are necded to unfold it: here these
parameters are precisely ¥4 and h-h*. The assumption of very small ¥4 is

physically reasonable, since spin-wave systems have large relaxation times.

The nature of the bifurcations laking piace for one real zero, two purely
imaginary eigenvalues is not yet completely understood ([GH,§7.4,7.5],
[CSG])). Here we will just outline the computational-algebraic steps
necessary to characterize this Dbifurcation, for the spin-wave system, in
terms of the presently available mathematical theory.

Step 1. Let P  be the matrix of Proposition 5.2 with column vectors
reordered as  (J12 S1) 12 vy, vo,v3, v4 . Then

(9.2) P1JP «

0 0 0 X4

Weset u=h-h",and regard u,¥¢ as new dynamical variables. We are
in the standard form used for a center manifoid calculation with additional
dummy equations p'=0, ¥4,'=0, Products of p or ¥4 with themselves or with
the other variables are considered as quadratic terms in the Taylor
e«pansions. See {C,RHA] for background and computer codes.
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Step 2 . Call x,y.z the center manifold coordinates (besides the two
additional dummy coordinates ., ¥4). The lincar part is of the form

0 -w 0
(8.3) w 0 0
o 0 0O

and the quadratic and higher order terms contain the five coordinates.
Transform to cylindrical polar coordinates  (r,8,2).

Step 3 . Find the truncated, ©-averaged-out, planar system in (r,z)-phase
space. The main computational problem is finding this k-determined jet .
Guckenheimer and Holmes consider in some detail the case of the 2-jet
dridt=pqr+arz, dz/dt=pp+br2-z2 {[GH, eq. {7.4.9)] , but this seems not to be
the correct guess here, since our system has fixed points at z=0 for all
Ki.n2 . A more plausible form is  dr/dt = pyr + arz, dz/dt = pp ¢ r2 - 22
[GH,eq.(7.4.42)) , which now has a transcritical bifurcation of the fixed point
at z=0. Another possibility is the Zo-symmetric pitchfork bifurcation [GH,

eq.(7.5.10)].

Step 4 . Restore the sufficient higher order terms to the planar system,
study the corresponding phase portraits. Finally, consider the implications
for the full three-dimensional flow, when the 6-dependent terms are
restored. identify the distinct phase portraits and dynamical phenomena to
regions of the original parameters.

Among the delicate dynamical phenomena known 10 exist [GH] for the "one
real zero, iwo purely imaginary eigenvalues” bifurcation: (i) invariant tori
with two frequencies, one fast and one slow; (ii) transverse homoclinic
orbits with Silnikov behavior. It seems important to find numerically
trajectories of these types for the spin-wave system.



37

10. The near Hamiltonian limit for 2 modes: homoclinic phenomena

Although the Hamiltonian structure was introwuced in section 3 under the
hypothesis of symmetric T; and Sj, in the case of two modes we are able to
allow Sy #S2q ,Ti22 Tyy. Setling 1= 3F,= h = 0, we get the constant of
motion ‘

(10.1) 2=nJ/S1p + NSy .

The following reduced system is obtained, where ¥ = ¥,- ¥, is the phase
difference, and Ay = Ag - A3

dnqy/dt = -821(812 Z-nqg) ng siny
(10.2)
dy/dt = -Ags - Spq (S12 2 - 2ny)cosY + (S2-T12)S5¢ 2 -
- [54-T21)4(S2-T12)521/Sy2) M

This system is Hamiltonian, with conjugate variables p = ny, g =¥, and
Hamiltonian function H = pF , where F is given by

(10.3)  F(p.g) = -Aq2 + (S2-T12)521 Z - (P/2)(Sy-T24)+(S2-T42)S24/S42) +
+ 521 cosq (p-S122) .
Depending on the choice of parameters, there are several different types

of phase portraits for H, with a rich structure of separatrices. The full
system, written in terms of the variables p.g, z, 8 = ¥, , is of the form

didt (p.g) = (‘Hg(P.9.2) , Hp(p.q:2)) + € ( P1(p.q.,2.0), P>(p.q.2,0))
(10.4) dz/dt = ¢ R(p.q.z,9)
de/dt = S(p,q,2) + O(¢)
Here ¥, ¥, Ry, Ry are assumed to be 0{¢) and
€Py = -p[¥1+ Ry sin (6+1)]

€P, = -Ry cos{0+q)+ Ry cos ©
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(10.5) ,
€R = - (¥5 + Ry sinB)z - (p/S13) [ ¥4-B2 + Ry sin(é+q) - Ry sind |

S = -8z +p [-S21c0:q + Sp1 S2/S92 - T29) - $2821 2.

Wiggins, Holmes and Shaw ([WiH WiSh] studied systems of type (10.4),
with S=1, using Melnikov's method. Their model is an “oscillator” {p.q)
with a slowly varying parameter z and time periodic forcing dé/dt = 1. The
fact that here § is not constant brings some technical difficulties only in
case it changes sign, but the method of Melnikov can still be applied. Then
some extra work is needed to insure the desired homoclinic behavior
(S.Wiggins, personal communication) .

The calculations become remarkably simple for the symmetrical model
[NOK], for which Aq= Ap (= A), 81= So (= 8), Tyz = Tas , S12 = Spy. Denoting
« = Sy - Tyo = §¢ - Toy and taking units so that Sy = Spy= 1,

(10.6) Hsp(p-2) (-« +c0sq)

Phase portraits of (10.6) bifurcate at « = £1. See Fig.10.1a for the case
« > 1. The separatrices, energy level curves H = h = 22 (x - 1)/4 , are given
by elementary functions, solving

dp/dt = & (x2-1)2 | p-(z/2)] [ (p,-p)(p-p. )2
(10.7)
pr = (22) {12 [(2A(x+1)]"/2)

and extracting q(t) from (10.6).
The case «=0 is specially simple {Fig.10.1b). Here

Ci: p#t =0, g# = -arcsin(igh 2t)

Ca: p#t =2z, qf = arcsin(igh zt)
(10.8) '

Co:. gt = n/2, pR = 2/(1+ exp( zt))

Cq: q#t = -n/2 , p# = Z/(1+ exp(-zt))

The Meinikov function M measures th~ distance, between stable and
unstable invariant manifolds, for the perturbed system in the full phase
space (p.q,2,8). It is described geometricaily as follows. For ¢ = 0, the (p,q)
dynamics decouple, z is constant, and
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t
(10.9) 0=() =06,+] S (pHN), qH(t) , z, ) dt
0

where x#(1) = ( p#{t), q#{t); z,) is a separatrix of (10.2). Denote an
unstable equilibrium of H{p,q;z2) by X. = (P.(Z), Q.{Z)) and by

Mo = U x.(@x {(z0)}

¥ 4
the unperturbed normal manifoid. For the sake of notation simplicity we are
considering an homoclinic saddle point Xeo = lim  (p#(1), g#(t) )} but
everything holds true for heteroclinic connections. 15 2e

For € sufficiently small there is an invariant manifold M, e-close and a
graph over My. M. has stable and unstable manifolds W, S:6 . Their 0(¢)
distance can be measured (as depicted in Fig.10.2) by

{(10.10) M(a,20.00; €) = { 0rad xu(a; z0) H(X,2) | XV - XS ) =
= € My(8,25,6,) + O{e?)

where a € (-o,») parametrizes the unperturbed separatrices and  x, S.v
are the intersections of W, 5V n {z=2,,0 = 6, } with the line L, normal
to the unperturbed separatrix at x#(a,zp). In Appendix 4 we derive, in a
slightly more general setting, the Melnikov formula

(10.11) Mi(a,z5.8p) = I dt( grad H (x#(t+a),z,) | P( x#(t+a,z5,0 * (1)) +

-0 t

+ J Heg(x#(t+2),20) | du R(u+a,25,0%(u)) )
0
where J Hy =(-Hg,Hp). Here 6~ is given by (10.9) with x# = x#(t+a).

It follows from (10.10) that the sign of My determines in which way W, v
and W, ¢ split apart. M; vanishes along trajectories of the unperturbed
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system which “shadow™ the doubly assymptotic solutions of the perturbed
system as ¢ — 0 . The union of these double asymptotic, or homoclinic
curves, forms WU ( WS,

The results of the computations, using the symmetric model with « = 0 as
in Fig.10.1b , and py= pp =1, T1=¥5 (=¥ ) are as foliows:

My=0

My = A(zg) sin[ 6, + (A + Sz,)a + wié)
(10.12)

Mg = A(z,)sin[ 65 + (A+ S2z)a - =4 ]

Mz =- % (2r + 20) + (RW2 ){ B(z0) cos B + C(zo) sin 8}
where
(10.13) B=60,4+(A+S2y)a + 2arc tg exp(zpa)

(10.14)  A(zp) =J dt {cos (A+S z,)/ cosh2(z,v2) }

(10.15) B(z,) =.’ dt{sech2(zt)tgh(z,t)sin[(A+S2o)t+2arctg{expzyt-n/d))}

oo

1
+ _[ dtsech(zot)tgh(zot)_[ du {cos[arcsintgh{z,u) -u{a+Sz,)

o0 0
- 2arctg(expzpu - n/4) }
(10.16) C(zo) =I dt {sech(zpt)tgh(z,t)sin[(A+Sz )t + 2arctg(2xpzyt-n/4}])

Although ({10.14-18) could be explicitly evaluated by residues, this is not
necessary for our purposes. Indeed, the necessary recurrence for homociinic
behavior follows directly from (10.12):
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Proposition 10.1. Let C; i=1,...4 the unperturbed separatrices (10.8)
(Fig.10.1b). Then under the O(e) penturbation, C; does not split, C» and C4
always split with transversal intersections. Cj splits with transversat
intersections provided the ratio ¥/R is not too large. Due to the presence
of Smale horseshoes, there are infinitely many countable periodic motions of
arbitrary high period and infinitely many uncountable bounded non-periodic
chaotic motions.

Remarks . (i) The calculations were done for «=0, value at which the topology
of the unperturbed phase portraits changes (Fig.10.1). It is physically
reasonabie that for smali «x=20, a sufficiently large ¢ will create, around the
two unperturbed separatrices given by cosq = «, a single stochastic layer.
(it} Simultaneous zeros of the first and second Melnikov functions yield
homoclinic tangencies . The formula for M3z in (10.12) shows that this
happens for a certain value as ¥/R increases. Homoclinic tangencies provoke
interesting dynamical consequences, including infinitely many attracting
periodic orbits and cascades of period doublings [P,PT]). It would be
interesting to investigate numerically the ocurrence of these phenomena. The
tormula for M3 also indicates that when ¥/R surpasses a certain critical
vatue, then it is possible that homoclinic chaos ceases to cccur. (i) For
larger values of the perturbation parameters R and ¥, it is expected that the
*mild chaotic* orbits of Proposition 10.1 wil! evolve into strange attractors
with fractional dimensions.
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11. Further topics for research.

Besides those aiready discussed in previous sections, we present the
following.

Families of equilibrium solutions . There are only a finite number of
equilibria {or any choice of parameters: since the sysiem can be written as a
set of quadratic ODEs in RS, Bezout's lemma implies that there are exactly
26 complex solutions, counting multiplicities (certainly much less real
physical solutions; the same counting for the C-equations gives 34). In
comparison, Lorenz's system has at most three distinct real solutions among
the 23 complex. We have shown that several equilibria may coexist for
certain parameter ranges: besides the origin and the branch described in §7,
there are two solutions with np=0, and two with ny=0. From each of these,

strong-weak pairs can bifurcate.

In the symmetrical case (§7), other equilibrium solutions with ny=n, may
emanate out from the ny=ny branch, via the center manifold theorem, at the
control parameler values where there is a zero eigenvalue, This brings up
the following conjecture: the emanating branches connect with those which
arise from the ny=0, n#0 (n270, ny20) solutions in §5. We plan to pursue
this study by path following methods, using codes such as AUTO or PITCON
[Do, Rh].

In the asymmetrica! case find, e.g. via Routh-Hurwitz type criteria, values
of h for which J changes stabilty. Is it possible that Hopf bifurcations
take place? More generally, is it possible to give a complete description of
all equilibrium point branches of the two-mode system, and their stability
classification? -

Comparisons with Lorenz's equations . While the Lorenz system has only
three parameters, the number of parameters of the 2-mode spin-wave
system is 10 {or 12 if one allows asymetric values S12#S,¢ and Ty22T24).
Lorenz's system is known to possess Liapunov functions, for any choice of
the parameters, so all motions tend to bounded regions. It would be
interesting to find Liapunov functions for the spin-wave system, at least for
certain ranges of parameters (the Hamiltonian is a natural candidate). We
showed in section 4 that for special parameter values escapes fo infinity
are possible.

Lorenz's system has at most three equilibrium points. The origin of Lorenz's
strange attractor is identified to a “homoclinic explosion”, a giobal
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bifurcation due to homoclinic and heteroclinic connections between the three
equilibrium points [Sp), which occur frequently as the parameters are varied
(usually r is taken as the control parameter). These critical values of the
parameters have been found numerically through extensive studies done by
several research groups. For the spin-wave system, can one establish
recurrent homoclinic connections betweern the unstable equilibria (the so-
called "cycles” [PBMB]) at certain parameter values? One may exploit the
symmetry properties of the C-equations to classify, by combinatorial
arguments, the glebal structure of the homoglinic bifurcations [GI].

On the nearly hamiltonian limit . For N>3 modes without dissipation, are
there additional constants of motion for specific choices of parameters,
yielding “accidental” integrable cases (i.e, without symmetries)? This study
could be ailtempted via Kowalevskaya-Painleve's analysis.

The three mode system with zero dissipations and pumping and can be
reduced to a two degrees of freedom Hamiltonian. Find the relative
equilibria with three modes, and their stability. Assuming initial conditions
where one of the modes is weak (say, nj<<1), will it remain weak? Can it

induce Arnold's diffusion on the other two modes?

Given a nearly integrable Hamiitonian system with dissipation terms added,
can one dcscribe the process of transition from the usual KAM situation to
the appearance of strange attractors with non-vanishing fractal or Hausforff
dimensions? This gquestion is related to an idea proposed by Smale [Smy):
"I would like to develop the idea that by introducing a dissipation/forcing
term into Hamilton's equations of physics, one might be able to revive the
ergodic hypothesis of Boltzmann and Birkhoff".
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12. Discussion.

Summary . We have shown that the spin-wave S-equations of Zakharov and
collaborators {ZLS], using the Cooper-pair variables, are mathematically
equivalent to the model used by Jeffries and co-workers [BJN] for
perpendicutar pumping (C-equations). - The latter are well behaved at the
origin and have nice symmetry properties; nevertheless, we have chosen to
. use Zakharov's equations, mainly because emphasis in this work is given to
the bifurcations ocurring “far from the origin. Moreover, the Cooper-pair
variables have a nice physical interpretation.

We have identified the mechanisms leading to nonzero steady states and
Hopf bifurcations. 1t would certainly be interesting to make the analysis
directly on an infinite-dimensiona! evolution equation, e.g. Landau-Lifshitz
equation with dissipation included. We have discussed two new organizing
centers for routes to chaos, namely a codimension-2 bifurcation (with one
zero real eigenvalue and two imaginary ones) and the Hamiltonian limit with
nearly zero dissipation.

Analogies with other physical systems . Kovacic and Wiggins studied a
two mode truncation of the forced and damped Sine-Gorden equation; an
intermediate step !eads to a nonlinear Schrodinger equation.  Their model
[KW (1.3}, ] is precisely the C-equations with a special choice of parameters.

except for the forcing, which there is a constant term. Thus we believe that
the C-equations have a “universal nature”.

Suhl's often quoted observation {S, 1957] that spin-wave instabilities
"resemble turbulent motion in fivid mechanics”, prompt us to inquire if this
analogy can be carried further. Recall that Lorenz’s equations, probably the
most widely studied dynamical system [Sp,Sp1}, models a two-dimensional
fluid cell warmed from below and cooled from above. The resulting PDE is
truncated into a set of three modes, pruducing a set of three coupled ODEs
with quadratic nonlinearities, depending on three positive parameters r, b,
C: X =0(yx),y=1x-y-xz 2 =-bz + xy. We saw that the spin-wave
system can also be wrilten as a dynamical system with gquadratic
nonlinearities, but for N modes it is necessary to extend the phase space to
3N-dimensions. Like the Lorenz system, the flow is dissipative (volume
contracting), with constant negative divergence.

Hoimes {H1] found homoclinic bifurcations on a model for weakly nonlinear
surface waves on a closed basin. Based on earlier work by Miles [Mi], the
system consists of a two degree of freedom Hamiltonian with dissipation
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qy = -(A+3/4 e)py +mQy +x -8 q

Pi'= (A+3/4e)gqy+ mpy  -¥ py
Qyx'= -{A+3/4 @) pp - MQy -¥
P’ = (A+3/4 €) O - mpy -% p2

The Hamiltonian is

F o= -1/2 (A+3/8 €)e + M2 + x Py
with

e=q12 + P12+ Q2 +p22 , 2m =pyqy - q1P2 .

More recently, Kambe and Umeki [KU] studied the system (also based on
Miles' theory) {(d/dt + ¥;) (p;q)) = (-d/dq;, d/op;) H , i=1,2, with

H = 1/2 Zj.q,2 [AolPi?-qi?) + Bi{pi2+a;?) + 1/2 A; (pi2+q;2)2) +

+ 1/2 C (p12+912)(p22+922) + 1/2 D (P1G2-P21)2

These authors show that here the main bifurcations are not of homoclinic
type. We observe that both sets of equations are similar to the C-equations
for spin-waves, namely, with linear and cubic terms. We believe that for the
spin-wave system, both homoclinic bifurcations near the Hamiltonian limit
and other, more typically dissipative bifurcations, may describe observable
" physical phenomena.

In another tack, Miroflo and Strogatz {MS] have studied the gradient system
do,/dt = -gH/90) , 1 < k < N, where the potential function H is

Ha= -3 cos(By-0k) - K2N Iy x cos (0x-0).

Physically, a random pinning field tries to "pin” each @, at a random angle
Bx , counteracted by an attractive interaction between the phases. The B

are uniformly distributed random variables in the unit circle. The equilibria
undergo jump bifurcations and hysteresis as the parametler K varies.
Similarly, jump bifurcations and hysteresis are present in spin-waves.
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Onset of autc-oscillations . In a footnote on [ON,p.L607], a remark is made
that the asymmetrical solutions ny=0, nz#0, with ny2ns, na<<1 "are not
analytically tractable®.  However, these solutions are precisely those
analytically studied in §6, where we have shown the ocurrence of Hopf
bifurcations (followed in many cases by cascades of period doublings). These
strong mode-weak mode equilibrium solutions seem to be the relevant ones
to describe the onset of auto-oscitlations in the physical experiments. in
fact, for the symmetrical case we have shown that no Hopt bifurcations
occur on the branch ny=n, . A comparison with the work by Zhang and Suhi
[Z8] is perhaps in order. Equation (6) of that paper with By= Cx, Cx =0
and pyx =-1Syk is dodl=-m o -twg Vg € - Xk Six Gk Cx €k
(T represents a thermal value; in the numerica! solution a initial value =0
plays the role of thermal fluctuation). Making 7 =%,k and wg Vk= h py,
this equation becomes identical to (2.12) with Awy =Ty = 0, and where
Swkkr is pure imaginary. With these constraints Zhang and Suhl obtain auto-
oscillations independently of choice of the other parameters. Notice
however, that in [ZS] these authors report that in some experiments "the
auto-cscillation frequency is found to he of the same corder as damping”.
Unless one assumes all coefficients to be propertional to damping, this
seems noi in agreemeant with a prediction for the frequency based on §6. Our
result for the frequency is the imaginary part for the eigenvaive pair of the
strong mode (as an isolated system) plus a correciion of the same order as
the damping.

Modified spin-wave equations . It was shown in [RACK] that when the two
modes patrticipating in the interaction are close, i.e, ky-ky = n/d where 4@ is
the sampie width, one must add "9 terms® to equaticns (2.12) and the modes
become coupled afready in the linear approximation:

dcy/dt = - (51 + AW 4)Cy - R1 (cy* - i31 cp*) - terms in Sand T
dep/dt = - (¥ + iAws)co -1 Ry (Cr* - idpcy*) -terms inSand T

Numerical experiments, which will be reporied elsewhere, indicate that
substantially diffarent dynamic behavior occurs; a theoretical study is
definitely in order. We predict a sample size dependence on the frequency of
auto-oscillations, more in accordance with the physical experiments.
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Appendix1. Stability of equilibrium (n;#0,n,=0) when A2+B2 < (2

Let's recall some well known facts of Floquet's theory. The stability of a
periodic orbit is determined by the eigenvalues of the monodromy matrix
M(T) associated to the linearization along that periodic solution. These
eigenvalues are. here functions of the control parameter h. One multiplier is
always equal to 1; if some other muitiplier crosses the unit circle, the
periodic orbit becomes unstable. Three cases are possitle: first, if the
crossing is at some non real number then, generically, a Hopf bifurcation on
the Poincaré map of a transverse section takes place, and an invariant torus
is born. The other possibilities are real multipliers passing through 21 . The
-1 case is generically related to a period doubling biturcation, while the +1
case to the collision ¢f a stable with an unstabie family of closed orbits,
desappearing after surpassing the corresponding control parameter value.

None of these possibilities occur in  (5.6): the periodic orbit remains
stable as long as A2+B2 < C2. This result can be proven indirectly: since in
the C-representation the periodic orbit appears as an equilibrium point, it
would suffice 1o study its slability. We prefer to give a direct proof,

The monodromy matrix satisfies the linear T-penodic system dM/dt=JM,
M(0)=id, where J is as in (5.11) and Table 1. Here ¥.€ {which does not
exist in this case) is replaced by the periodic function ¢ 5(t), solution of
{5.7). Denote by any , AY 4 , Anp , A¥Y 5 the linearized variables. It follows
from the above linear ODE M=J(t)M that the structure of M(T) is as follows:

my3 0
exp(yT)
ma3a 0
(A1.1) M(T) =
' 0 0 T8 0

M4 1 Mgz M43 1
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Conscquently, the multipliers are 1, p, and the exbonemials of the
eigenvalues of the constant matrix =~ TJigy where Jiz) is given by (4.3). The

latler two multipliers, therefore, have always modulus <1. Now  Anp/An, =
As(t) so that Ang ( T) = p Anp{0) where

T

(A1.2) p= exp{ | Agiyat) 2 0
0

One obsetves on Table 2 that Ax (1} =- o - A4 (). Since from general
principles

.
(A1.3) f rsdt =0
0

(this corresponds to the multiplier 1; if one is skeptic, this can be confirmed
ditectly by a long calculation using residues), one concludes that

(A1.4) 0 p=exp(-5,7T) s1.

The periodic orbit is stable as long as it exists, ie., as long as A2+B2 <« C2.
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Appendix 2. A center manitold calcutation (by Prof.Richard Rand).

As one moves along branch LS of equilibrium points, varying the control
parameter h, there is a value h* at which A3 changes from negative to
positive. At this moment a center manifold with ny = 0 is born. This center
manifoid, and the flow on it, was calculated to second order, using MACSYMA,
by Professor Richard H. Rand, of Cornell University.

Let's describe the main steps of the calculation. At an equilibrium point .
we know the eigenvalues and the matrices P,P-1 that change to a suitable
sigenvector basis (Proposition 5.2). So we get a new system of coordinates
uq,uz,Ua,ug relative to the eigenbasis, centered at the equilibrium point. The

coordinate ny corresponds basically to uy.

Foliowing an idea exposed in [C], an additional variable uy = h-h* is
introduced. Thus, for instance, what was a linear term like huy; becomes now
huy = uy ug + h'uy , that is, a quadratic term plus a linear term.

Making a Taylor expansion of nq, ¥4, N2, ¥2 and a, b, ¢, d, e (the latter are
terms of the matrix P) with respect to u, , one gets a new system of ODEs

for u; , 0<is4. Note that by construction,the constant terms that appear in
these equations are zero. The structure is of the form

(A21) = X 0% (kiju + B u? ) + Zmao? ( Znums1? Cimn Um Up )

where the coefficients can be stored in "telescoping” archives, according to
consecutive levels of complexity in terms of the original parameters.

Finally, it was applied the algorithm given by Rand and Ambrsuster [RHA),
to obtain the center manifeld and the flow on it, truncated at quadratic
terms. The center manifold is given by

ug= (- B2y ug2 - Ca01 Ugly - Bao Us?) ka2
ug=-[(B41k32-Batkasa)us2+(Cso1ks-

(A2.2) C301K44)Uou 1 +(BaokasBaokaa)Uo®Vkaskses

ug= (- B3y u12 - C3py UoUy - B3g Us2) K34
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and the flow on it is |
(A2.3) duy/dt = By ug2 + Cygy Louy + O(3)

One obtains the nonzero equilibrium
(A2.4) up = - C101 Up / Byg + O{ug?)

which in the case we are interested represents a transcritical bifurcation.
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Appendix 3. Control parameter vajue for Hopt biturcation.

Aithough there is no guarantee that hygpe - h* is small, the numerical
experiment in section 6 suggests that a good prediction for hyops can stilt be
obtained truncating to first order. The Jacobian matrix at the equilibrium
point in the center manifold is expanded about the parameter value h*
where this manifold is born:

(A3.1) J=J"+ (h-h*Ny + O(h-h*)R-
Let p* the complex eigenvalue of J* given by
(A32) B =-B4/2 + i { Sydy2 - (81/2)2 2
Expanding the perturbed simple eigenvalue and eigenvector as
p=p®+ (h-h )y + Oh-h?)2 | vav 4 (h-h')vy + Oh-h)2,
we get JV'=u'v' and  (J*-ptid)vy - py Vo= -y VL

Taking the real inner product of this equation with the row-eigenvector
w* of J* (also asssociated to u'), then  jy = (Jyv°, W'} 7 {v* . w°).

f folldws that taking first order truncations,
(A3.3) Ppopt = h® - Rep'/Repy = h* + ¥4/(2Rep,) .

This seems reasonable: we have assumed ¥4 to be small. Now, in order to
compute Reuy we need v ,w' and Jy. We find readily

vi= (1, %52, 0, gy + daa® i) (n*-2y) )
(A3.4)
Ws (1,-0°/T4, Jig/u’- Jo3/Ty, 0 ).

The matrix Jy is the directional derivative of the general Jacobian J,
computed at h*, in the direction of the center manifold equilibrium point
(which is a linear function of h-h*" in the first order theory). For this
calcuiation the telescoping archives alluded to in Appendix 2 are :.ueded.
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Appendix 4. A Meinikov formuia.

A general tratment can be found in Wiggins [Wi], but since the derivation is
short we present it here for completeness. Write the curves x, 4.5 () with

initial conditions (x¢ ¥'S (a;25),20, 04) &S
xWS(t) = x#(t+a; zo) + € VS (1 ;a,2,,0,) + 0(€?)
(A4.1; 2US(t) = zZp + € AUS (t,a,25,0,) + 0(e?)
ousS (t) = 6%t ; a,z,,08,) + Of¢)
where 6#(t) satisfies the initial value problem
(A4.2) do/dt = S x#(t+a); 25,80), 6(0) = 6.

We lake AU:S(0) = 0 so that initial conditions are in the 2z, level.
Substituting (A4.1) into (10.4) one gets the equations of variation

(A4.3) dA/dt = R(x#, 2z, 8%), A (0)=0

(Ad.4) dg s:u/dt = J Hy, ( x#,25) & SU + J Hyp(x#,2p) M + P v#,2,,6%).

Here we have omitted the s,u superscripts in A since it furns out that the
same equation (A4.3} is satisfied for both. The initial values ¢5.v(0) are
uniquely determined by the dichotomy condition  XS(t) - M, as t -3 « and
Xuty » M, as t - -=. Moreover, the solutions &5 (£V) remain bounded as
t— e« {t 2 -=) respectively. Substituting (A4.1) in the definition (10.10)
we get Mq(a,z,,0,) = AY(0) - AS(0) where

(A4.5) Asu(t) = ( grad H( x#(t+a);zp) | 5V (t: a,25,8,) ).



53

Furthermore
Ty
(A4.6) AS(0) = - |  idt As)dt + AS(Ty)
A ,
0
(A47)  Av0) = | dit A dt + AY(-Tp)
.T2

where
(A4.8) d/dt ASU = (02, H x| §3:U) + (grad H | JHy, §5.V)
+ (gradH|JHu X +P).

The first two terms cance! out and AS(T4),AY%(Tp) » 0 as Ty,To > oo,
The Melnikov formuia (10.11) is therefore ohtained.
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Figure captions
Fig.2.1. Dispersion relation: a.parallel pumping; b. perpendicular pumping.

Fig. 4.1. Nonzero equilibria for 1-mode system. Hysteresis occurs in cases
b) and d). .

Fig. 4.2. Phase portrait for a 1-mode system. A=1., T=-1. , R=1.2
(D = spiral sink; @ = node sink ; ® = saddle ).

Fig. 6.1. Hopf bifurcation: projections to (ny,ny) plane.
For 1.0<R<2 4, the "strong mode” ny is alone. When R exceeds 2.4,
a center manifold with np20 ("weak mode") is born. At K=3.15,
a Hopf bifurcation into a limit cycle occurs. The parameters are
the following, using equation (2.16): « = 0.7, g =5.0, A;=A, = 0,
S11+2Ty4=-1, Sp242T92 = 0.5, §42 =25 and T2 = 1.125.

Fig. 6.2. Hopf bifurcation: trajectories of the eigenvalues of the Jacobian
matrix in the complex plane for the parameters as in Fig.6.1.

Fig. 6.3. Amplitude of osciiiations on a physical experiment,
corresponding to a MHopf bifurcation (taken frem [BACK]).

Fig. 7.1. Symmetrical case: famity of periodic solutions. In the notations
of (2.16), ¥=1, A= -1, §;+2T;=1 , Tyo=-0.75, S40=-0.4.

Fig. 8.1. Heteroclinic phenomena at the origin: "pseudo” Siinikov's case.
In the notations of eq. (2.12), ¥1=¥2=1, py=po=1, A;= -1.384,
Ar= 1.254, §5442Ty = 82427, = -0.286, Sy5 = 4.078, Ty5=0.
For mode 1 we get hly,= 1.884 , h1, = 2.133, while for mode 2,
h2¢, = 1.254, h2,s = 1.604 . Thus mode 2 unstabilizes at 1.604,
value for which the linearization of mode 1 is a spiral focus.

Fig.8.2.  Aperiodic intermittency for mode 1. Parameters as in Fig.8.1.
Five trajectories with different pumping values are displayed.

Fig.8.3. Behavior of mode 1 for R=1.685. Parameters as in Fig.8.1. Note
the resemblance with Silnikov's phenomenon.



Fig. 84. Heteroclinic phenomena at the origin: node attractor for
weak mode. In the notations of eq. (2.12), ¥ 1=1, ¥o= 2,
p1=1, po=0.7, Aj= 0.8, Ay= -0.5, §442T4= -0.5, S542T;, = 0.5,
Syp = 2.5, T2=0.125. For mode 1 we get hlg,= 0.8 ,
hips = 1.2806, while for mode 2, h2; = 0.35, h g = 2.95.

Thus mode 1 unstabiiizes at 1.2806, value for which the
linearization of mode 2 is a node attractor.

Fig.8.5. A possible cycle joining critical elements, For no=0, the
trajectory stays a long time near ny=0 and near nq=1,58.
Parameters as in Fig. 84, R = 1.30.

Fig.8.6.  Linear dependence between the square of the frequency
and the square of pumping power. Extrapolation to h=0
yields critical pumping = 1.274. From numerical simutations
using the same parameters as in Fig.8.4.
Fig. 10.1. Svmmetrical case: unperturbed nhase portraits.

Fig. 10.2. Geometry of the Meinikov function.



1°2*bta

(9)

xl

*-

s tff— NN

ouxoﬂs
.

8ouDuosey Aioisqng
.oc_nE..a Jonapuediag

(0)

Buidwnd |s)joiod




(a)

(b)

(c)

(d)

f:cos e>0

S e R

\

\\
-

-

s
n ' T:c0s60
P/

\\Eu:cos 6<0-

]

J1:02 R

P/:

n

P

/e R
) .

S

\\
~

t5:cos ©€0

\ :cos €0

1

\II~+ A? R

Fig.4.1

n= 35-(-5-4931 ), 1942

s<O0 A<O

n-‘-‘% -a-JrR%1), R

s<O 4a>0

n=-ls-(-A +\JR2-I ), R}\Il-l-ﬁz

S>0 A>0

n =& (-a+JR%1), RY

$’0 A<O






0.6

0.5}
0.4}
0.3;
0.2} .
®
0.1y
R=1.6+0.1n °®
0_8-4L--mmeﬁ"'*lJLf |
0 04 0.8 1.2 1.6 2.0
Iy

Fig.6.1



i m‘ode 1 Ff"]
-4l
@®
R |
2-
= | - ® . R=1.6+0.1n
N —_— -— |
e ()P @ ® ® © 0 &P eP e
o - mode 2 ‘
e | o
. =2 / g
-4} -
- | - ‘e"’
-6

28 -7 -6 —5 —4 -3 -2 -1 0
Re \/%)

Tig.6.2



P00 005 040 005 020 055,

h/h; —-1

7ig.6.3






W —

§ |mode 1

R=1.5+0.02n

mode 2

L . . N

| ¥
- ..

3 Fs

50 —-16 -12 -08 -04 0.0
Re 0./

rFig.8.1



1

i

|

I

| T
N

|

| N0 N O N N Y

$00

510

520 530 540 .
7t
Fig.8.2



Im Cy

1.5

0.5¢

0.0}

-1.0

1.0

0.1 00 0.1 02 03 04 05.
Re ¢4

Fig.8.3



0.8

0.7}

0.6}

0.5}

ImC, 047
| 0.3.-

0.2}

0.1}

0.0

L L L

~14

Re C;

Figoa.‘

.—J:.2 -i.O —6.8 —6.6 | —6.4 . -6.2 . 0.0

0.2



1.0:

0.8;

m

R=130

!i._ - T —— ___”“4“;“”;.,g,,guggnqu,”*,HSL.*..ﬂ__J__.
000 0204 06 08 10 12 T4 16 18 2.0

Fig.8.%




150 -

)
O
O

(4oo1/%)

SO

25

20

1.5

Fig.8.¢6



(a) an

(b =0
< Y Jp z} —
D
C Cz
-Tr/2 o) w2

Fig.10.1



Z=Z°
0=0

Fig.10.2



ULTIMOS RELATORIOS DE PESQUISA E DESENVOLVIMENTO

LATEST RESEARCH AND DEVELOPMENT REPORTS

KUBRUSLY, C.S. Strong stebilily does not imply similarity to a contraction. 5 p.
(RP&D 06/90)

FEIJOO, R.A. & ZOUAIN, N. Elastic-plastic potential functionals for rates snd
increments of stress and strain. 23 p. (RP&D 07/90)

CARVALHO, R.L. Abstract semantical systems. 71 p. (RP&D 08/90)
MENEZES, C.S. & CARVALHO, R.L. Processamento de conhecimento em ambi-
enles mullinivelados. 65 p. (RP&D 09/90)

ZOUAIN, N.; FEIJOO, R.A. & HECKE, M. A contribution to structural plasticity
by optimization lechniques - Part II. Analysis of model discrelization and math-
ematical programming algorithms for elastic-plastic sncremental analysis. 20 p.
(RP&D 10/90)

PEREIRA, D.C. & MENZALA, G.P. Ezponential stability in linear thermoelastic-
sty: the inhomogeneous case. 17 p. (RP&D 11/90)

LUCENA, ABILIO The cost convergence algorithm for the Boitleneck transporta-
tion problem. 11 p. (RP&D 12/90)

CORREA, G.O. On bounded-input/bounded-siate stability for discrete-time, bilin-
ear sysiems. 39 p. (RP&D 13/90j

FERREIRA, JORGE & PEREIRA, D.C. On a nonknear degeneraie cvolution equa-
tion with strong damping. 12 p. (RP&D 14/90)

RIVERA, JAIME. Pointwise control: Differentiability of the optimal cost function.
7 p. (RP&D 15/90)

LONDRES, HELENA O uso da algebra booleana em analises qualitativas ¢ com-
.parstivas. 32 p. (RP&D 16/90)

COSTA, M.L.; SAMPAIO, R. & DA GAMA, R.M.S. Local description of the energy
transfer process in a packed bed heat czchanger. 19 p. (RP&D 17/90)

KARAM, JOSE & LOULA, ABIMAEL. A non-standard application of Babuska-
Brezzi theory to finite element analysis of stokes problem. 26 p. (RP&D 18/90)
FRANCA, L.P; KARAM, J.; LOULA, ABIMAEL & STENBERG, R. A conver-
gence analysis of a stabilized method for the Stokes flow. 7 p. (RP&D 19/90)
BORDONI, PAULO. Approzimating the nonlincar Schrodinger equation in B? by
the nonlinear Schrédinger egquction in open bounded conmvez sets. 14 p.
(RP&D 20/90)

FANCELLO, E.; SALGADOQ, AC. & FEIJOO, R.A. Aranha: gerador de malhas
2D para elementos finitos triangulares de 3 ¢ 6 nés. 13 p. (RP&D 21/90)
KUBRUSLY, L.S. Uma estralégia de andlise multivariada. 18 p. (RP&D 22/90)
SALDANHA DA GAMA, R.M. On the physical solutions to the heat equalion sub-
jecied to nonlinesr boundary conditions. 12 p. (RP&D 23/90)

FRAGOSO, M.D. & DE SOUZA, C.E. On the ezistence of mazimal solution for
generalized algebraic Riccati equalions arising in stochastic comtrol 16 p.
(RP&D 24/90)

HEMERLY, E.M. & FRAGOSO, M.D. Will the PLS criterion for order estimation
work with AML and o posteriors prediction errorf 16 p. (RP&D 25/90)



SALDANHA DA GAMA, R.M. Dynamical analysis of a compressible elastic rod in
the curreni configuration. 17 p. (RP&D 26/90)

RIVERA, J.EM. Energy decay rotes in linear thermoelasticily. 14 p.
(RP&D 27/90)

MURAD, M.A. & LOULA, ABIMAEL. improved accuracy ir finite element anal-
ysis of Biot's consolidation problem. 31 p. (RP&D 28/90)

RIVERA, 1. M. Decompesition of the displucement vector field and decey rates in
linear thermoelasticity. 28 p. (RP&P 29/90)

CORREA, HELIO & HUGHES, THOMAS. The finite element method with La-
grange multipliers on the boundary: circumventing the Babuske-Brezzi condilion.
27 p. (RP&D 30/90)

KUBRUSLY, R.S. 4 direct dual method for nounlinesr eigenvalue inegualities. 7 p.
(RP&D 31/90)

FRANCA, L.P; FREY, SERGIO & HUGHES, THOMAS. Stabilized finite element
methods: I appl:cat:on to the advective-diffusive model. 45 p. (RP&D 32/00)
SILVEIRA, M.A. & CORREA, G.0. On H, eptimal control of linear systems under
tracking/disturbance rejection constrainis. 40 p. (RP&D 33/90)

ZOUAIN, N.; BORGES, L.; HERSKOVITS, J. & FEIJOO, R. An iterative algo-
rithm for hm:t analysis w:th nonlinear yield functions. 26 p. (RP&D 34/90)
FANCELLO, E.; FEIJOO, R. & ZOUAIN, N. Formulagio veriscional do problema
de contalo com atnto resolugdo via reqularizagio. 16 p. (RP&D 35/90)
ZOUAIN, N; FEIJOO R.; HECKE, M. & BEVILACQUA, L. Potential constitu-
tive relations for pfaatsctt_,: using indernal variables. 16 p. (RP&D 36/90)

LOIS ANIDO, 3.C.; HERSKOVITS, i.; FEICGO, R. & TAROCO, E.O. Otlimizegiio
da forma de corpos cldaticos planos para redugio de concentragio de tensées. 11 p.
(RP&D 37/90)

HUESPE, A.; LOPES, J.L.; BORGES, L.; ZOUAIN, N. & FEIJOO, R. Elementos
misios tnangufares para amﬂue Limite: Part I Formulagio. 10 p. (RP&D 38/90)
BORGES, L.; LOPES, J.L.; HUESPE, A.; ZOUAIN, N,; FEIJQO, R. & HER-
SKOVITS, 1. Elementos mistos triangulares para andlise limile: Part I, Resolugdo
iterativa e aplicagoes. 10 p. (RP&D 39/90)

CORREA, G.0. & SILVEIRA, M.A. On the purametrization of all solutions o a
servomechamsm problem. 20 p. (RP&D 40/90)

Pedidos de cépias devem ser enviados ao:
Request for free copies should be addressed to:

Laboratério Nacional de Computagio Cientifica
Rua Lauro Miiller 455

22290, Rio de Janeiro, R.J.

Brasil

ImpressiolProducio
Grafica do LNCC



Secrelaria Especial da Ciéncia e Tecnologia
Conaalho Nacional de Desenvolvimento Cientifico e Tecnoldgico

Laboraténa Nacional de Computagao Cientifica
Aua Lauro Mulier, 455 - Caixa Postat 56018 - 22290 - Rip de Janairo - RJ - Brasil



