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1. INTRODUCTION

it is a well - know fact that the use of a coincidence system reduce profoundly the
contribution of the thermoionic noise. to the counting rate.

A negative aspect of the coincidence system is the decrease of the counting
efficiency as the energy of the interesting particles is low, lower than 100 keV, and the number
of the photomultipliers used is high.

In 1961, in a pioneer work, Horrocks and Studier [1] proposed the idea that the ratio
between the counting efficiencies calculated for two photomultipliers in coincidence and for
only one_photomultiplier is related to the counting efficiency in such a way that if it is
extrapolated to rate 1, the extrapolated counting efficiency will be of 100%and theﬂ extrapolated
counting rate will coincide with the activity expressed in the same time units. Although the idea
and procedure described are correct, the difficulty of getting the real counting rate in an
isolated photomuitiplier, due to the interference of the thermoionic noise, limits the épplicability
of the procedure to radionuclides with beta-ray emisssion higher than 100 keV.

It seems immediate to think that the Horrocks and Student procedure may be applied
to a detector system with three photomultipliers and use the counting efficiencies for triple and
double coincidences.

The main difficulty was the fact of the quantum efficiency from the photomultipliers

being very reduced, especially in the case of 3H (lower than 10%), which meant a high

uncertainty in the determination of the specimen activity.

The development of photomultipliers with high quantum efficiency changed radically
the situation to the extent that, already in 1966, Schwerdtel [2] assambled the first system
based on three photomultipliers. In 1979, Pochwalski and al. [4] assembled a system of triple
and double coincidences, much more alaborate, in order to obtain directly the activity of a
radiactive specimen.

In this paper it is described and analyzed the way a system with three photomultipliers
work. The two models developed to calculate the triple to double coincidence ratio and the
counting efficiencies are: the model based in the distribution of Poisson, developed by Grau
Malonda and Coursey [5] for beta-ray emitters and Grau Carlés and Grau Malonda [6] for
electron capture decay; and the model based on a binomial distribution, Broda and al. [7} for



beta-ray emitters. It is shown in this paper that, in spite of the different hypothesis and statistics
applied, the two models lead to identic results for monoenergetic electron emission.
2. THREE PHOTOMULTIPLIERS DETECTORS

When the detector system of the liquid scintillation spectrometer is  constituted by
three photomultipliers, the liquid scintillation emission is distributed among the three tubes. If
the three photomultipliers are placed around the vial on a plane normal to the axis of the vial and
making an angle of 120® between each of them, the light received through every
photomultiplier will be, as an average, the same. If, in addition, the photomultipliers have the
same characteristics, the output signals will be similar.

A system with three photomultipliers A4, Ay and Ag may work in three different ways:
without any coincidence, or S mode; with two photomuitipliers working in coincidence, or D
mode; with three photomultipliers in coincidence, or T mode.

Different forms of logic pulse additions may be associated to each mode:

S4, individual signal from A4, A, or Ag.

So, signal being the addition of two photomultipliers, Aq+ Ao, Ay +Ag orA2+A3.

Sg3, signal being the addition of the three photomuitipliers, A4 + Ao + Ag

When the system works in a double coincidence mode, the following forms of logical
addition may result:

D4, coincident signal withcut any addition, Aq Ao, A2A3 or Aq A3

Do, addition of a couple of coincident signals, Ay Ap+ A{Az, AjAp+AgAg or

D3, addition of the three double coincidences Aq Ao+ AqAz +AsA3

Finally, the mode of triple coincidence is:



T, coincidence of the three photomuitipliers, A1A2A3

Fig. 1 represents the block-diagram of a system with three photomultipliers and the
electronic scheme to obtain the addition of the double coincidence D3 and the triple T. The
photomultiplier pulses go to four gates C of the “y” type. Three of them work as double
coincidence gates and their outputs are logically summed in the “or” type gate that constitutes
the first output for the system (A{As+A, Az+ApAg). The fourth C gate is a triple coincidence
AqArAg

3. POISSONIAN MODEL
In this model it is assumed as a basic hypothesis that the photocathode answer is a
discrete distribution of photoelectrons following the statistical distribution of Poisson, when a

monoenergetic electron bean interacts with the liquid scintillator.

The Poisson distribution is given by:

n! (1)
where T is the average of the expected electron number and P(n, N) the probability of being

emitted exactly n electrons as the expected average is .

The second hypothesis implicitly admited is whenever in the photocathods is emitted

at least one photoelectron a pulse will be produced at the output of the photomultiplier anode.
Therefore, the counting efficiency for a single photomultiplier may be expresed as:

£ = iP(n, n)
n=1

or

£=1-P(o,ﬁ)=1—e (3)



In order to connect the initial energy from the incident particle with the average value
of expected electrons it is defined a free parameter A, such as

m (4)

where Q(E) is a function taking into account the non-linear effects of change from the kinetic
energy of the particle into scintillation emission and m is the average number of
photoelecirons emitted by all the photomultipliers in the system. For one photomultipliers

m=T1 and for p photomultipliers m = pn.

It is assumed that the only non-linear effect is due to ionization quench. Following
Birks [8] the conection factor due to ionization quench is:

dE

1 ¢E
0 EL 1+kB (E-E-)
dx

dE
where k isa constant and (E;) is the concentration of ionizing events.

Expressions [2] and [3] are valid for just one photomultiplier. The expressions are
modified when the signals from several photomultipliers are taken to logic systems of
coincidence and addition.

Tables 1 and 2 show the corresponding formulae allowing to obtain the counting

efficiency for the different operation modes of the logic system, in the case of systems with 2
and 3 photomuitipliers.

4. BINOMIAL MODEL

In this model it is assumed that when a beam of monoenergetic electrons interact with
the liquid scintillator the number of emitted photons per electron reaching the photocathodes
follows the Poisson distribution. The probability that a determined number f of photons arrives
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at the photomultipliers will be given by

where f is the average number of photons.

It is beside supposed that the emission of photoelectrons by the photocathode is
ruled by the binomial distribution:

L Rk - gyt A - w) o

where k is the number of photoelectrons emitted through the interaction of f photons, £q is
the quantum efficiency of the photocathode.

When just f photons arrive at the photocathodes they will be distributed among the
photomultipliers in such a way that the probability of a determined distribution being produced

will be:

1 fl

Py = — o
T f gL ! ®)

where Q is the number of photomultipliers and

f=f1+f2+...+fo (9)
if X is the probability of at least a photoelectron being produced in each of the active
photomultipliers, it allows to express the probability P(f) of a fixed number of photons f
producing a countable pulse:

Pr=Pg X (10)

The additions of the probabilities P for all sets of numbers fq, f5,..., fq subjected to
the condition (9) is:

11



fl X
Pr(f) - -—_f
{ l f — f,—~...— {
AT T Ll (- -l ) 1)
where
Yy =t

YQ1=f-f1- fa-..-fqo
When the system has two photomultipliers, Q=2, we shall have

f

fl X
P(f) = of az f, L(f - 1)1 (12)

And if for three photomultipliers, Q = 3, it results:

fof-4

fl X
Pa (f) = f E E
| | — — |
3 f1=°f2=°f1 I, I(f f, ) ! (13)

The counting probability for f photons may be calculated through the expresion

P, (f) = P(t, T) Py (f)

And so, the counting efficiency wili be given by the expression

oo

e =P (= DP( TP (M
f=1 (15)

Then the counting efficiency for a system with two photomultipliers is given by

(16)

12



as well as for three photomultipliers it will be

f

o0 f-h rs
, - f X
e:PE(f)=efzz Z(EJ flf, I(f— 1, — f,)!

(17)

Tables 3 and 4 give the equations for X for the systems with 2 and 3 photomuitipliers.
The meaning of the different functions is as follows:

P(f) =1-(1- gt

P(f-tf) =1-(1-¢g) "

P(f-tf~fh)=1-(1-g) " h~"

5. EQUIVALENCE OF BOTH MODELS

We shall proof that both models the binomial and Poissonian lead to the same values
of the counting efficiency. Instead of carrying out the demostration in its most general form, for
a number p of photomultipliers when g of them are active and for complex conbinations of
coincidences and logic additions, we shall consider the arrangements shown in Tables 1 to 4.

The procedure followed in every case will consist in starting for the counting
efficiency formula for the binomial model, Tables 3 and 4. Through mathematical
transformations it will be reached the corresponding counting efficiency expression in the
Poissonian model. To make easier the deduction procedure it will be obtained the formula
designed as non-detection mode in Tables 1 and 2.

6. SYSTEM WITH TWO PHOTOMULTIPLIERS

As the detector system has two photomultipliers, the way of being treated the signals
shows three modes: only one active photomultiplier, U; two photomultipliers in addition, S;
and two photomultipliers in coincidence, D. We shall analyze each of them beginning with the
last one.

13



6.1 COINCIDENT SIGNALS A A,

From the development of the expression for X in Table 3 it may be obtained:

X = 1= (1-g)" = (1- &) 7" + (1- &)

(21)
Taking this expression to the formula (16) it will result
o0 f =
P f)(f f fot f
e:Zz——zf—(f1J{1-(1~£q)—(1~8q) +(1- g |
f=1f_0 (22)
. By developping the right hand member of (22) we have
f
2 i)-2
oo \1 (23)
f f
)y @ (1- g = 2 (-fij
; f, 2 ,
1=0 (24)
f t
2 (f} (1-¢g) " =2 {1—-8—‘*-]
o (25)
f f ; ; f
Z (f] (1- &) =2 (1'EQ)
fioo M (26)
And so
- e
€ =Z P (, f){1—- 2(1~—“-j + (1 - eq)f} =
fo= 9
N £ Eq -f &g
=y {pu H-2 P{f,f(w —H g™l G g
2
f=1
e ~ Fi\2
+ PIf, 11— &)l e “}=(1-e ™
[t 7 (1~ )] e
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Taking into account that

K (28)

because # is the number of photoelectrons emitted by only one photomulttiplier.

62. SIGNALS ADDITITON A4 + Ao

The developed expression for X in this situation is

X=1-(1-¢g) (29)
Therefore the counting efficiency may be expressed as:
N P(f, f) (f 0o
E—.f Z 2f (‘J“ (1M6q)]w
=1k.o
=3P [1-01- &)]
f =1 (30)
It results by simplification
831—'8{5‘1:1—9”2” (31)
As we wanted to demostrate
6.3 ONLY ONE ACTIVE PHOTOMULTIPLIER Ay
In this case
X=1-(1 -eq)f1 (32)

i5



and the counting efficiency is:

= f
’ :223%ﬂ(f1] [ 1= e)] -

f= (33)

Applying the property that the Poisson distribution is normalized to the unit and
simplifying, we have:

~f eq/2 = -0

E = - ¢ =1~ e (34)

7. SYSTEM WITH THREE PHOTOMULTIPLIERS

As it may be observed in Table 2 the number of ways to deal with the signal is much
higher that in the case of the two photomultipliers.

First of all it will be studied the case where the three photomultiplier work in
coincidence.

7.1 TRIPLE COINCIDENCE AqA5A5

By developing the formula for X in Table 2, it is obtained

X =1-(1-g)" = (1- g) + (1- g)i % ~

- f - - - f
—(1- ) TR TR (- g TR (1 ) T - (1= gy)

And taking this expression to the formula (17) it results:

16



fl
16, 1(f— 1 - f

)| f-0-ei-(1- gt +

+ (1 - eq)f‘ tho(1- sq)f “hohkoy (- zsq)f “hp1- sq)f “ho (- eq)f} (36)

By developing each of the members in the right side of (36) and carrying out several
mathematical simplifications we reach

_,,
!
o

=
p M_ﬁ
°
o~
H
°
AY
._A_h
N_h
iy
—y
I
-
|
o
N
i
w
2
—
w
3
-

LIS f f e\
! (1- &) =3 [1- 2
Z f1‘f21(f“f1'f2)'\ Eq) ( 3}
f1=0 f2=0 (38)
fof-4 f
f1 { fa f Eq
1~ =3 |1~ —
Z 16, L(f—f — fp) I\ &) ( 3
fi:O f2=0 (39)
f -4 f
o+ f €
> S NUNEY I LR
Bl L - f - f) !
f1=O fZ:O (40)
f -4 f
f1 { f-f-f i €q
2 flfl(f-f_f)|\1“8q) :3(1“?
f1=0 f2=0 ! 2 1 2 (41)
f -4 f
f1 { f—1 i Eq
1- =3 [1-228
2 BUh L= f = f) I\ ) ( 3
f1:0 f2=0 (42)
foof-f f
f1 ( f—f £ Eq
1- =3 {1-223
2 2 W1 1(f = f — ) 1\ £) (
fl:O f2=0 (43)
Pt
f ( b af f
ZZ f[fl(f..f-f)|\1"EQ)“3(1’%)
fi_o beo 1 2 ¢ 1 2 (44)
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If the expressions (37) to (44) are substituted in the equation (36) and some mathematical
simplifications are carryed out, it results:

+3e—2fsq/3~e~f£q:(1_9—5)3 (45)

7.1 ONLY ONE ACTIVE PHOTOMULTIPLIER A4

in this case

X=1-(1-g4)1 (46)

q
and the counting efficiency is

HER £l

G (- f1_f2)![1—(1— £q)"]

fa=1 fi =0 f =0 (47)
Taking into account the results (37) and (38) we may write:
- e
e =Y P( f) |1- 1-—“}
Seen o[- 5]
(48)
By simplifying after some operations we obtain
e=1-¢ %% -1 ¢T7 (49)
As we intended to demostrate.
7.2 TWO PHOTOMULTIPLIERS IN ADDITION Aq + Ao
The function X is
X=1-(1-gq)l1+12 (50)

18



The formula for the counting efficiency may be expressed as

S PED v il
P Y D VD VR o S TLUUR U

f=1

and taking into consideration the formulae (37) and (40) we may write

= B €f
= P(f, f 1-1-2—“]
- Spon (-]

which after a few simplifications is reduced to:

— 2F £,/3 -2
e=1-¢ 7 5% =1 ¢ 27"

as we wanted to demostrate.

7.3 THREE PHOTOMULTIPLIERS IN ADDITION Aq + Ao +Ag

After several simplifications the expression for X is reduced to:

e
X=1-(1-¢q)

that carried to (17) gives

xf) f f“ﬁ f!
I 1(f= 1 - )

= P(f
P

! [1- (1= &)]

i =01 =0

and applying (37) and (44) yield

e =f§1P(f, ) [1 - (1- eq)f}

itis to say

19
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7.4 TWO PHOTOMULTIPLIERS IN COINCIDENCE Aq Ao

From Table 4 it is obtained by operation

X =1-(1- gt = (1- g)? + (1- ¢g)h %

(58)
The counting efficiency will be expressed as
> P, D) i fif‘ i { ,
£ = : 1— (1= g)" -
f21 3 o T Bl b -1 - )1
- (1- g% + (1~e)f‘+f2} (59)
and applying the results (37) to (40) we have:
- e\ e
=S P@ET 1-2|1- 3| + [1- 28
c=Srun foe (-5 (-5
f=t (60)
that after a few simple transformations gives
e =1- 2 e~—f £4/3 4 - 21 g/3 _ (1 _ e_ﬁ)g (61)
as we wanted to demostrate.
7.5 ADDITION OF TWO COINCIDENCES Aq As + Ay Ag
From Table 4 it is obtained
X =1+ (1-¢g)" = (1= g) "+ (1~ ¢g) (62)

20



and the counting efficiency may be written as

o ,f f - £l
”Z 2:4 2___4 L1, 1(f = & = b - et -

- (- g) T+ (1 g}

and introducing the results (37), (38), (43) and (44) it is obtained:

= f f
- o od1- (1= 8 2 (12 25 -
£ _f; P(f, ) {1 (1 3) [1 2 3) +(1 eq)}

and simplifying, it results:

as we wanted to demostrate.

7.6 ADDITION OF THREE COINCIDENCES Aq Ao + Ag Ag + Ag Aq

After a few simplifications it is obtained

X =1-(1-g) "2 —(1-g) ™" - (1-¢g) "%+ 2(1- &)
taking this expression to (17) it resuits
i P, T) i fi‘ fl
£ = ;
= 3 =01t =0 Bl M= 1~ ) !
{1— (1= g "o = (1— &) i (1= &) "+ 2(1- g}

21
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Taking into account the formulae (37), (40), (42), (43) and (44) we get to
- e ) f
z q
e = P {1-3(1—2?)+2(1-sq)}
f=1 (68)
and operating, it results

e_2f£q/3+2e—— & = {_3 20 , 20 g 3 (69)

—
o

g€ =1-3

as we wanted to demostrate.

8. CONCLUSIONS

The main conclusion from the present work is that the Poissonian and binomial
models are equivalent and that the counting efficiencies calculated through either of both
models must be the same.

Therefore discrepancies between counting efficiencies for pure beta-ray emitter such

as 3H and 14C as they are presented in the works (5) and (7) must correspond to differences in
the formulae used for calculating the beta-ray espectra or in other case to the error introduced
by limiting the sumation from one to infinity in the binomial model.
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Fig 1.~ Different kinds of coincidence pulsesin three photomultiplies
system.

24



TABLE 1

Counting efficiency formulae for a two photomulitipliers system

Signal Symbol Total events Non-detection mode

A1 or A U o 1-— exp(- n)

A1 +A ) — 1 - exp(-2n)

ALA K ~ [1 - exp (- A)F

25



TABLE 2

Counting efficiency formulae for a three photomultiplier system

Signal Symbol Total events Non-detection mode
> P (am) (1- 3™ 27 _
A u n=1 1-exp(-N)
- >P (nm) (1- 3™ _
A +A S n=1 1- exp(-2n)
i 2
P (nm) _
A1+A2+A3 83 n=1 1-exp(-3n)
P (nm) [1- 3™ (2™ —1)] _
AiAj D [1-exp(-Nn)J2
AiAj+AiA D2 he2 + exp (3n)
A A +A A+
12 2
ZP (nm) (1 _ 31 - n) 1—-38Xp(-—2ﬁ)+
+A3A1 D3 n=2 +2 exp (-3n)
P (m) [1- 3™ 2" -1)] _
A1A2A3 T n=3 (1-exp(- n )3
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TABLE 3

Probability X for a two photomultipliers system

Signal Symbol X
Ay+As S P(fq) +P(f-f4)-P(fy) P (i-11)
Ay As D P(fy) P(f-fq)

27



TABLE 4

Probability X for a three photomultipliers system

Signal Symbol X

A U P(t4)

A|+Aj 82 P(f1)+P(f2)'P(f1)P(f2)

Aq+As+Ag S5 P (1) + P (f5)+P(f-f1-t5)-P(f1)P(f)-
-P(i5)(P(f-f4-f0)-P(f4)P(f-f1-f5)+
+P(f1)P(fo)P(f-f1-f5)

A A; D P(f1)P(i2)

A ApAAY Do P (1) P (fp)+P(f{)P(f-f1-f5)- P(fy) P(fo)

AqAoAg

P(f-f1-f)

P(fy) P(fo)+P(fo)P(f-f1-15) +
+P(t-f4-f2)P(f1)-2 P(f1)P(fo) P(i-f{-f5)

P(i4)P(fo) P(f-f1-1)

28
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