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ABSTRACT

In this paper, some contiguous function relations and generating functions have been
established for extended Jacobi polynomials. The resulis obtained here, are of very general nature.
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The object of this note is to furnish some contiguous function relations and generating
functions for extended Jacobi polynomials defined as
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(where nis a non—negative integer), by using a very simple and easy intcgral given as Theorem 28
in [4, p.85).

CONTIGUOUS FUNCTION RELATIONS
We have from %4 P. 264(9)]
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In these relations, replacing z by (12 vx), multipiying both sides by z£~! (1 —- )61,
and intcgrating between limits 0 and 1, with respect to z and using Theorem 28 in [4, p.B5), we
gel respectively,
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Repeating ¢ — 1 times the same procedure as given in the above paragraph, one can easily an
obtain the following contiguous function relations for extended Jacobs polynomials: On combining (10) and (11), we obtain
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GENERATING FUNCTIONS
We have from [2, p.120]
; ~ o~ Ja-1
(o(- 1’7,}))) ol o /’3
s £, (x)th::(Hf) [”lal(x“’)t] ,
N:ce
(13)
from [2, p.120]
o ) R ARl
s 0 et = p-P [1- Lexnt]
-o
{14)
and from [1] ( )
o > ")T}) E"'h; (%
b ,w l"Ut
yr-¢0
/ ~{ ~ -3/
— [ o uk )Jn(* []-f{ulh] [!- -i[')C—l)LL({‘)J y

(15)

where u(t) = 3t[t+ Vit + 4],

In these relations, replacing z by (1~ 2 vz), multiplying both sides by z8-'(1 —2)P¢-,
integrating betwecn the limits 0 and 1, with respect to z and using Theorem 28 in [4, p.28], we get
respectively,
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(18)
where u(t) = }e[t + V17 + 4],

The results (16), (17) and (18) can be obtained from {5, p.591(9)} also, but vur approach
is entircly different here. Further repeating ¢ — t times the same procedure as given in the above
paragraph, we get the following generating functions for extended Jacobi polynomials:
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where u(f) = 3t + Vi? + 4]

PARTICULAR CASES

In (8), putting { = pandv = ‘?’ we get a well-known result {4, p.265(17)] for Jacobi
polynomials. Similarly, on specializing the paremeiers, the results obtained here, can be reduced
10 50 many other weli-known polynomials,
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