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ABSTRACT

We describe the physical situation in which the consideration of the feimionic vacuum
bundle over gauge group manifold is useful. The bundle curvature turns out to be connected with
the commutator gauge anomaly. This allows to consider the problem where this curvature is man-
ifested.
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June 1991

I.' Introduction.

It is well known tliat two types of anomalies arise for the quantum ohiral femaiona

in an external nonabelian gauge field. The first type is oonnectsd with, the violation

of the classical conservation law J „ = Q for the gauge current [i]. Mathe-

matically, the appearance of this anomaly results from the existence of the nontrivial

one-oooycla in the gauge group oohomoiogy 1.2,3]. On the other hand, the existence of

a nontrivial t»ro-oooyole leads under quantization to violation of the gauge oharges

algebra, for ohiral fermions and to the appearance of central terms [3]. Gauge oharges

generate the gauge transformations on the time-like hypersurfaoe, thus, their quantum

algebra is not closed*

I t was shown by Bowick and Rajeev [4] for the boeon s t r i n g case

tha t the commutator anomaly means noninvar iance of the Fock space

under the gauge t r a n s f o r m a t i o n s . Thus one n-ay say about n o n t r i v i a l

bundle of the Pock spaces over the gauge group ( for boson s t r i n g

the gauge group i s U>i-.f-f fs^. / j3.£ )> curvature of which co inc ides

with the c e n t r a l term of the charge a lgeb ra , l i l c h and Warner have

shown t h a t i t i s s u f f i c i e n t to cons ider the vacuum bundle [ 5 1 . This

point of view is widely discussed in the literatuie [6-9].

So one comes to the following geometrical picture. Cne can con-

sider the classical algebra of gauge charges as an algebra of the

tangent vectors over the gauge group manifold. The quantization

then consists in substitution of the vector field by the covariant

derivative along this vector field. Its curvature determines the

charge algebra central extension [7,8].

The first type anomaly manifests itself in the particle creation

in the external nontrivial gauge field, for example in the baryon
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decay catalysis by monopoly [10],

We show here that the commutator anomaly also leada to the particle oreation.

The asternal gauge field in this oasa is a "pure gauge" at arbitrary moment of

time i

where M is a space index and we use the gauge J4o — O .

The gauge potential ( I . I ) at any subsequent time moment i s the gauge transfor-

mation of gauge potential at previous momenti

(1.2)

where /* are generators of group G ( we limit ourselves to the case of unitary

groups ).

functions c*. (_"t) determine the curvature on the gauge group mani-

fold. Wo nefine thia manifold as ( for two-dimensional cylindrical

space-time ) M. Gf =^$ 00 J X £ ̂ j , ? ̂  £ Gr (j . In any point of MG

wo h- ve vacnua nnd corresponding Pock: space, transition from one

vacuum to another means particle production. i'he method of ref.[4,5]

allows to connect the number of produced particles with curvature

of vacuum bundle over L'G, i.e. with anomaly of the charge algebra.

••]3pecially,we are interested in the acse of closed curve on MG

( i.e. ^ ( t ) is the same for t = - =" and t — +• ™ ° ) . However

out-vacuum r̂ciy differ fro^. in-vacuum, this difference is determined

by integral of the vacuum bundle curvature 2-form.

.Ve Ehull demonstrate here the abovementioned effect for 2D space-

tirr.e =ns non-abe]ian ^auge group case. This paper is organized as

follows. For the sake of completeness, in Sect.2 we give the calcu-

lations of commutator anomaly as curvature using the method of

ref.i.5] ( this section is based en results of [9] ). In Sect. 3 we

oonsicter realization of the tirae^iependent gauge transformation as a curve on the

manifold. MO. For closed curve the <fout i n \ -amplitude is expressed in terms

of integral of the vacuum bundle curvature two-form. In section 4 we discuss mono-

pole—like external gauge field. In this case i t is necessary to take into account

the nontrivial topology of the manifold MG, whioh can he decomposed into separate

sets corresponding to the elements of the homotapy group C"j_\_(xj . In Seot.5 we

results obtained.

2. Commutator anomaly aa curvature.

In this? section we consider the geometrical treatment of the

cownutator anomaly in chira l non-abelian c.-iir^e algebra in the s p i r i t

of papers [ 4 , 5 ] . We calculate the anomaly an curvature of fermion

vacuum bundle over the gauge group MG.

Let ug consider two-dimensional 'Veyl fermions, in te rac t ing with

an external non-abelian gauge f ie ld J-|M . The Lagrangian hns the

form:

l 2 . n

where V T ~ l +i }• T, are her.-r.itian matrices.

.ve suppose that the chiral fer: ions satisfy the condition

and we use the following representation for two-dimensional Jf-r;atri-

ces :

Prom (2.1) we find the expression for canonical

and obtain the Hamiltonian in the gauge ) - \ o =



Because of ohirality we have ^

so the Hamiltonian reads

£ . (2*2)

Uote that hereafter we imply that two-^iimensional space—time i s oylindrioal. Here—

foie all field functions are periodical in (5 with the period -3. l| .

It cF.n easily be seen from (2.2) that the fermion Hamiltonian is

not diagonal. Cne should diagonalize it in order to determine the

creation and annihilation operators which enable us to define

correctly zero-energy vacuum.

J-et us substitute the following ansatz into (2.2)

(2 .3)

Here, / I - )•} J\ , and p stands for path-ordered exponent.

Then we obtain

functj.cn one has the Courier expansion:

J
and f i n a l l y for tiv: Hami l ton ian ( 2 . 2 ) we f i n d

rius tlie cinsatz ( ? . 3 ) <}i.'i, onal i zeo the H a m i l t o n i a n . I t should be

noted that the above calculations were made on the constant time ( t=O ) hyper—

The approaoh of ref.[4j5] is based on the method of geometrical quantization,

whieh results in the quantum Hirbert space of functions I ^ h ^ n J of antioom-

mutating variables with the following measure

(2.4)

K.

The operators

act on this Hilbert space.

The vacuum state "T© is determined by the condition?

At £
Q n- To = 0 , c t (2.5)

i'roni the field T* one can construct by standard procedure

charges which generate gauge transformation for 'T :

(2.6)

where 1\ is an infinitesimal transformation parameter.

Under canonical transformation generated "by l^LT^ \ (2.6) we

have

etc.

Cne can alao consider the geometrical quantization for new

T-- 1



variables ( (3 k ; C\ ̂  ( ftK 6 ^ ). Then the

t e determined by the conditions

now vacuum state will

Substituting (2.6), (2.7) into (2.8) and taking into account (2.3) one gets

for the new vaomim

(2.9)

The vacuum trundle over the gauge group HO i s an homogenous spaoe. Therefore,

a l l calculations can be limited by the vicinity of uni t . Thus in the expression

(2.9) for OK, tv one is interested only in the f i r s t order terms in vari-

ables \A •

By direct calculations one obtains

(2.10)

Let us note that o]d vacuum state To is constant which is

detemireil frm ccnditicn "C 9̂ , j '-fc */> — i_ . Therefore the new vacuum

state has the norm

After calculation of the functional integral one gets

Thus we have the Kermitian metric in the vacuum bundle over MG:

The metrical connection one-form X

(2,11)

is determined as usual

The curvature r v - ^ •!• formally should be equal to zero. However as i t i s

shown in Appendir A, oaloulation of R by point-spli t t ing regularization method

givea the following result 1

(2.12)

Since d[ r - * p D ,so one has

I t should be noted that the algebra of classical charges Gre» tX_) (2.6) can be

considered aa an algebra of tangent vectors on KG in vicinity of unit . The quanti-

zation then corresponds to oovailant derivatives along these vector fields [7>8]

with curvature 2-form (2.13).

Hence we receive the algehra of quantum anomalous' charges {2.6}:

with central term

Thus working with l'/eyl fermions in the external nonabelian gauge

field one should consider the fermion vacuum bundle over gauge

group manifold ft!G. The nontriviality of this bundle means appearance

anomalous term in the quantum algebra of gauge charges.

3. Time-dependent gauge transformation.

The idea considered in this section consists in realization of

time-dependent gauge transformations as curves C- on the manifold

Then at every time moment the reconstruction of the quantum



fennion vacuum state takes place and the time-dependent vacuum

cr°saection of the vacimm 'bundle oirer MG. Since this bundle is not trivial, vacuum

state ^ (-t) depends on oorreaponding path (_, on Md. Especially,we

aie interested in closed curve case. Then the system is in the same point of MG at

time moments T» — oO ana t« +- &o . However the corresponding in- and out-

vacuums will he differed and the difference will be determined by the curvature

2-forra H integral { i .e . by holonomy group )i

on the surface 3 with boundary 0-

Lei us consider the Veyl 2D-fermions interecting with external

nonahelian gauge f i e ld J-fJ; „ The Lagrangian (2.1) for the

chir/il fermions in the gauge }j o i s as follows

(3.D

where j-\ - p^ j \ .

I'Von: (3.1) we have equation of motion for Y :

(3.2)

let us suppose that the external pauge field has the following

form:

(3.3)

where Me d. ~ 1 3 -f t \ M ! A ~ <>. h I is covariant derivative

with reapect to a background time-independent field

The potential (3-3) can be rewritten also as

(3.4)

where M T €;)lp (TJ( oi. J is the element of gauge group MG.

Bsnoe we come to the equation

with periodical boundary conditions on the functions

Substituting

with

into (3.5) we obtain the equation for

Since

where

-JL

the equation (3,8) has the form:

For the Fourier expansion we have

ft =

and

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.IO)

(3 . ID

(3.12)

(3.13)

where L,-&ajP

One should impose the periodicity condition on the derivative

9- v(stt) . As a consequence, function V (€~t) in general

has the form '(3.13) with nonperiodical (monopole) term,

^he .. monopole term will be considered in the next section.

Here we suppose that function V l S ^ t ) ia periodical and



search the solution of (3.H) in the following form

Substituting (3.I4) into C3.Il) one gets

We shall suppose that at first the system is in the unit on MCS, i .e.

•'he s o l u t i o n of e q u a t i o n (3 .15 ) i s found i n Appendix B so

where ^ (•£) ~/fh>£;'cfhv
are creation and annihilation operators at

the Tioment t ( d ^ a r e operators at t=0 ). Matrix f\hr

has the form (B.23).

After substituting (3.6) the Hamiltonian corresponding to the

(3.1)

(3.17)

transforms into

(3.18)

and for solution (3.16) one gets

H^ 5 w.(cCcoa*io- ?*oo ft!" 00). ".is)
Hence the solution (3.16) diagonalizes the Hamiltonian at every

tine moment.

As it is seen from (B.20), (B.23) .Hhr* ("t) is unitary

fl w > i (3.20)

Hence at every time moment we have the unitary equivalent set of creation and annihila-

tion operators. Itahould be noted that ona can consider the above problem from the

Berry phase point of view [ I I ] , i . e . one can suppose Vh, t 0 ^e "tlle adiabaticaly

time-dependent variables. However the above results differ from the standard results

by Berry, because f-f̂ ^ C"t) is unitary operator but not simply a. phase factor.

As it iS seen from (3.14), (3.16) the solution (3.5) can be

rewritten as follows

where Yc i&t'i-) is solution cf equation (3.5) Tor external

potential Ĵ  f\ fa) - (^d. 1 ;
(3.£2)

Thus if o\ (6\"fc) is varying slowly ( adiaba.tico.llu) with time

one obtains solution (3.21) at every time moment as time-dependent

gauge transformation, realizing the curve (_ = | ^ r g

4: -~ oo-t-»oVon the manifold HG.

let us now consider the time evolution of variables Qft, , tCj

im (B.T5) one haa

13.23)d dn (i)--

where

For variables

^ c+) d* W ,

we obtain

(3.24)

etc.

Prom (3.24) it is seen that the time evolution of variables

Q w fcn, represents the time-dependent gauge transformation (2.7).

11



Under quantization one should oonaider the momentum variables (\n GUjbuv^y"

diagonalizing the Eamiltonian <3.I7)-(3.I9). Thus we come to the Hilbert space of

functions T'(."•*• C+J, « K. (^ V with measure (2.4). The following operators

act on this space: c ^

(3.25)

The fermionic vacuum state Cpt (t) corresponding to the zero

energy at the moment t ia determined by conditions:

A
a, (3.265

It follows from (3.20) that if the operators (A t satisfy anti-

comniutti tive relations j_ (A\_ ,, (A*\, J+~Dt h. "^ ̂ e rnoriient t=0, then

they would satisfy these relations at any other moment.

•Jonnequerctly. each point in curve (̂- defined by functions

oL (t) on manifold "G is associated with vacuum, ^ock space

and the creation and annihilation operators.

-L-et us consider the condition (3.26)

and its tir.e variation

Insertinf; (3.24) into the last expression we get

Then we obtain

(3.27)

and for VBCUUF- at the nror;ent t we have

It should be noted here that this formula ia analogous to the expo-

nential factor for the 3erry phase [II] . However the integrand in

(3.28) is not number function hut the operator one. Tlotice also

that '•f̂. (jk) generally isV'path-dependent ( on curve C )

function on MGj

f r v "1 i
(3.29)

where

r=-i
Supposing that operators

V

X1

c

• t

(3.30)

are functions on MG,

one can consider X as a connection one-form on l.iG. Cne

should note that I! differs, from connection J? considered

in Section 2, though (3.29) is analogous to (2.9).

For the closed curve C one gets
v

cwhere ^ S - C- . , ^
V v

Let us calculate r = Q L , under condition that differentials
n +
* iv satisfy relations (3.24) in each point on

CW and

V

at
Consequently for closed curve

Since (X^-% + , ̂ fc

Mk , fct w e obtain:

and

(3.31)

one has

doesn't depend on



Hence for vacuum-vacuum amplitude one has

where

(3.32)

(3.33).

(3.34)

is curvature ?-form (2,21). ( In Appendix C we give another proof

for formula (3.33), which illustrates^in particular the connection

of result (3.33) with first-type ( one-cocycle ) gauge anomaly. )

A.s j t is shown in appendix B, one can rewrite the curvature

(3.34) as a function on MG ( from element ^ (e) 6: M C ^ ) (B.S6):

(3.35)

Let us now discuss the question of particle production. As it

was noted, we suppose that operators Lir*. j ̂ -K are functions

( from <A L ̂ J in vicinity of unit ) on [TO. Consequently.,one can

also ccnsidor particle number operator as a function on MG:

s~ <- A \_ A

(3.36)

Under variation (3.24) we have for

- -i fed
b e vacu-in in pointLet

we r e c e i v e frorr: (3 .37J t h a t

{ 3. 3 7 )

on KG, then for

^ 0.
On the other hand calculating the second differential for A*

one O'Jtains

15

(3.39)

hio

Let us consider the case of the adiabatic vacuum arrangement.

Then the created particles are aciiabaticully removed, PO at every

moment of time the state of quantum fermionic field is returned to

vacuum state corresponding to the external cai.ige potential at this

moment of time.

Hence for the total number of created particles Ĵ fl- from

(3.38) one has

where Kug ̂ •^h) e r e components of curvature ?-form (2.15),

(3.34).

On the other hand one can consider -A fV , which is function

on MG as the Kahler potential for 2-form R. Using complex structure

on MG, which LB determined by the Fourier expansion ĉ. (Ŝ  = Z_°vh. 6
n,

one can obtain from (3.38), (3.39) for curvature R components:

Consequently the coiranutator anor:aly manifests in the particle

production (3.40) under adiabatic arrangement of vacuum.

For the time-independent quantum field state one can calculate

the number of created out-modes in the state of in-vacuum. It will

be determined by matrix (B.23):

= Z.
where

It is seen from (3.24) tlw.t for closed curve on MG (

16



is the same for t- — c»e> and t= -f- <=o ) one finds that

fj^.^0 and particles are not created.

Notice here that adiabatic arrangement of vacuum is analogous to

parallel vector transport: after returning to the initial point, the

parallel transported state differs from initial state,

4. Remarks on the influence of monomole term.

Let us now discuss t'ie raonopole term in (3.13) and the solution

of (3.II) v.'ith this term. In this case we come to the following

equation for y (6~j £•) :

L " c ^ O6T ~*-^/SJ i ( 6̂ j X ) — C . ( 4 . 1 )

w h e r e A = A 71 ) fc> ~ @> Ct)
It should be noted that one cannot use the substitution of (3.14)

then, because 6- is not periodical function in general

case. Hence substituting the Courier expansion

into equation (4.1) one comes to the equation

= Q U.2)

At f i r s t let us suppose that & doesn't depend on time t . Then

inserting <f'tv(±)~B " <ff into (.4.2) one gets

This systen lias a solution if the following condition holds:

- 0. ( 4 . 4 )

f o r t K ~ h - + B- t h e e q u a t i o n ( 4 . 4 ) i s equivalent to-

-- o,

17

(4.5)

Consequently. £_ should be a eigen-value of unitary traceless

matrix k~&aJ\^ ( we remember that only unitary gauge groups

are considered ). If rank of matrices J\ is equal to H, then

, 'i=I,...,M. Moreover their sum

( since matrix & is trace-

(4.5) has N real solutions t
AT

is equal to zero 21 £^ = 0

less ). Jor every £ ^ one has corresponding solution T K .

of (4.3). Hence the general solution of (4.1) is as follows:

(4.6)

As we see, the monopole potential removes degeneration on group

index and gives rise to energy levels splitting. After separating

the positive and negative frequency parts In (4.6) one gets:

(4.7)

Oh,

As it was shown above the static periodical potential V \**)

doesn't influence energy spector, Pince functions 7^-6 6*

are the Hamiltonian eigen-functions with E=n. But non-periodical

monopole potential Vf6")- ft€T changes energy spector removing

the degeneration on group index.

If y& depends on t then the solution of (4.I) reads

*Ve shall consider only the adiabatic case, then \ ft lx)oCC - ft (i-) t

and the solution of (4.1) will take the form (4,7) where 2 1 (t)

are adiabatic solutions of the equation:

18



= o.
(4.a)

Aa it is seen from (4.7) the redefinition of creation and annihi-

lation operators do not occur for adiabatic £ t"t) • However

when the function f1 f-fc) becomes an integer t.1 (•£") =m for

some t , then the momentary redefinition of creation and anni-

hilation operators and corresponding particles production occur.

We shall illustrate the above by two examples,

A. Group TJ(I).

In this case the equation (4.4) has the unique solution:

E n - K+£ (4.9)

.•and for solution of (4.1) one obtains

let us nssu.me that at tbe moment t -i < £ (il < |p

(4.10)

for a

positive Integer ( let R̂ be positive ) then for Hamiltonian

one :-er,a

.+

C4.II)

and wave function (4.10) is >is follows

where

Consequently when & [-fc) n.t some moment becomes equal integer

19

p the redefinition of creation and annihilation operators occurs

and the new annihilation operator "&p= 6 p appears. Hence

at any such moment a new mode is created from the old vacuum state:

(4.13)

Assuming that at the initial moment

initial Hamiltonian:

, we have for

and vacuum state at initial moment:

cU<»= &
At the moment t , & (.I3)" P » o n e o b t a i n B f o r the Hamiltonian:

4-

and for the wave function

2, C + Co

Consequently^ at the moment t the vacuum state

determined by the condition:

- 0

(4.16)

|D/p will be

(4.17)

20



Thun ct the ror.Gnt t the new mode B (4.13) is created. Notice
p P

that when O < £ [t)<?- d. the zero mode C o , which does

not contribute to initial Hamilton^an, creates as dynanical. Hence

if & L"t) changes from 0 to p then during this time the total

nunbsr of new particles

(4.18)

is created in the in-vacuum state.

Tt is Interesting to note that the new mode B has a different

chirallty from that of an and b . The vacuum reconstruction occurs

instantaneously at the moment t . Hence the result would be the

same (4.13) if jh> (•£) instantaneously changes from 0 to p.

',Ve want to note that it is reflected in effectively two-dimensional

problem of particle production during the instantaneous solenoid

setting on L121.

B. Group 31T(2).

Let us consider (4.1) with & - A1 6"1 , where 6 1 are

the 2*2 i auli matrices. Then the equation (4.3) takes the form

fo\

\
o

(4.19)

I
The condition (4.4) for this system yields the following eigen-

values t-^ :
+

(4.20)

v/here

(4.21)

Thus equation (4.1) has the solution

K--7O
(4.22)

where

(4.23)

Hence the solution (4.22) is equivalent to the two solutions (4.10)

with Ly O and ft < 0

If at the moment t«0 one has & =0 and vacuum satisfies the

conditions

A —,

then at the moment t=t , when A =p £T £ ^ ̂ he solution

(4.22) takes the form

(4.25)

where

Consequently at the moment t = tp the vacuum j C^7p ±s defined by

conditions:

21 22



C] h I D > p •= O ( h ;

(4.27)

JSotice th:.t fl £, find Hn have an opposite ch i r a l i t y as

cornparecl to the i n i t i a l moment t=0.

Thus the picture is analogous to the case of group U(I) . At the

moment Wiier. (h ( t ) =p the crea t ion of two new modes in in-vacuum

occurs:

(-)
_ < o

If during the tirre t function

then dur i.u;' thi " time

(4.28)

has changed from 0 to p

(4.29)

(•ives >iu:\ber of p; ir t icles created.

For the ;-;roup 3U(2) one finds

(4.30)

with ft - J fa^fcHRt
j; e n c e Q, ̂ ^ is periodical function if p ̂  •*- . More-

over for inte;:er p> the expression (4.30) represents the ele-

ment from the homotopy group vl^_ (G),

It should be noted that in this case the potential (3.3) takes

the form:

(4.31)

Thus for Integer fe> 1 G realises a nontrivial element of homotopy

group t/|j,(G) and potential (3.3) is a topologlcally nontrivial

configuration. In general,the background field j] can also haveb

a monopole character, i.e. . However cuch a gener-

aliEation doesn't give something new to our consideration.

Returning to our picture of the vacua bund]" over V.Q, it should

be noted that MG is not connected manifold. 11G is decomposed into

the non-connected pieces (I'.iG) characterized by an integer from

the homotopy group e/fj.(G). Thus the potential (3.13) with f)=P

means that we should consider the curve and corresponding vacua t>un-

die over the piece (MG) . The potential (3.13) with non-integer fi

generally doesn't correspond to any point of KG ( since the corres-

ponding matrix g(fa ) is not periodical ). However an adiabatic

change of £> from p-I to p one can consider as a transition from

one piece (MG) ^ to an other piece (KG)_ . This allows to consider

the vacua bundle over the total manifold of the gauge £roup MG and

determine the corresponding particle production. liotice that inside

where G=F-g , C -'las the form (4.30).

the one piece (KG}p the particles are created continuously, Tout

for a transition from (MG) to (KG) +^ particles are created

unevenly. The situation is analogous to that of phase transition.

5. Discussion.

We have attempted to describe the physical situation in which

the consideration of the fermionic vacua bundle over gauge group

manifold MG is useful . The bundle curvature turns out to be con-

nected with the commutator gauge anomaly. This allows to consider

the problem where this curvature is manifested. Certainly this is a

development of the Berry phase ideas [II] for secondary-quantized

systems. Though the role of phase here is played ( as it is seen

from (3.28), (3.29) ) by an operator constructed from the chiral



fermlonic creation operators, nevertheless the geometrical back-

ground of these effects is the same: this is the nontriviality of

a bundle over paraiuetors manifold ( in our case over MG ).

It should be noted that for (It-I )-apace-time our consideration

is quite general, since any nonabelian gauge field j\ fC ,'t) ( fn the

gsiuce f\0 =0 ) is represented in the form (I.I):

where the group element ia determined aa

If the s field ji (6) is nontrivial, i.e. i P

then g(f> ) (5.2) realizes a nontrivial element of the homotopy

Croup J\± (G).

On the other hand,one should note that the monopole term in (3.13)

taken the form of an angle depending part of the nonabelian atring

solution [133. Therefore the considered effects can take place in

the affective two-dimensional problems, for example in the cosmic

string field [13] with the angle dependence changing with time.

The quantum effects near such strings may be very important for

galaxy formation

Another application of the results obtained 19--condensed state

physics, for example the Hall effect in spirit of known Laughlin'3

consideration [14) or anionic: mechanism of high-temperature super-

conductivity [15]. It seems very attractive, since as shown in

ref.[16] the anomalous Kac-Moody algebras play a role in the quantum

Hall effect.

Ths natural development would be a generalization for the gravi-

tational anomaly case [17]. The gauge tranaformationa then are coo-

rdinate 's changing, corresponding to a transition from one reference

system to another.
These and other problems will be considered elsewhere.
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l e t us con;j id-.T the Y.t'.v :A t i a n - e t r i c ( 2 . 1 1 ) on the vacua bundle

o v e r p i ' J j ' e ; ; r c u p I..G:

where tho viotriit 0 in <i vicinity of unit is determined as

(A.2),

T:io metric (.•>..I) defines a natural me trio connection one-form r

'.vita '"ii rvti i.nr'O two-f (inn

I t EJV.U'II-1 :>••; note^l tjirit t'if; base apace i s an homogeneous space

r.iiJ tv.i' • : . ; r r : l i un s';ructisT-o i s I n v n r l a n t under the a c t i o n of the

fiiuf'-- ;;rniui. I'.ien the c i r v a t j r e ia a homogeneous 2- form. So i t i s

^noi^'ii tc ci.L.D'ito i t a t one po in t in k'.G. _'he va lue everywhere e l s e

ir, f ixed by t'-,JE [ ' j j , Hence onn can do c a l c u l a t i o n in a v i c i n i t y

of u n i t omitting trie h igh c r i e r by M t e r m s ,

Fro:r. ( A . i ) one e;ets ir, i-; v i c i n i t y of u n i t :

9
lence t a c oxpress Lon fur t;-c curvo ti.:re it '.

formally sho il.d !>e equal to zero.

After eulculfctir-is the^traue one t--ets
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(A.3)

and choosing

, j _ .IP'•••!•"• I-

a integrating contour |?| > [̂

frlloWS

one can easily rewrite this as

After calculating the sum one has

Let us choose the differential operator on the gauge group manifold

UG in the form

and using the point-splitting method:

Inserting (A.,4) into {A. 5) one finds

^ (9u F'^AP^HF"1]^. u.6)

Appendix B.

Let us consider the equation (3.15):

We look for the solution in the form

( B a )

CB.2)

where M"L is a constant column.

n
Inserting (B.2) into (B.I) one gets for matrix j-\

We suppose that fl~ C'/p''; D ' then

(B .3)

(B.4)
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Taking into account the periodicity of fl( E> , t ) we obtain the

general solution of (3.4): t

n -- - ̂ i? o

where ths derivative acts on the second argument.

n - - --=•
one finds

(B.6)

Thus one obtains for solution of {E.I)

(B.7)

On trip otherVand. the s o l u t i o n of (B.7) ia r e p r e s e n t e d as

(6,0. 21 & dh, U) v CB.8)

where ^
r). h • 0 / i \ ^-^

dv.(n---1 \e> ' e'^ris 4= . (B-9)

From (ii.6) one sees that

(B.IO)

Substituting (B.IO) Into (B.9) one gets

.air
.vlierc

We can rewrite (3,11) in terr.s cf complex variable 6

One can corsider B,rf as an element of the gauge group algebra and

then

^ (3.13)

or

(3.14)

where

Prom (B.I2), (3.13) we have for the time differential:

Hence

a n d

where

(3.15)

(3.16)

Cur aim now is to derive a formula which connects Cl* W and fin ft

Cne has

(13.19)



•* "« * JB W

and

v, c+y- A —

k-

K. •:

-;-i

(B.20)

(E.2I)'

(B.22)

CB.23)

(B.24)

e nMain t!'5 natural condition fl k (c) = I> V-, 0

let us consider now the exprsssion for the curvature (2.12),

. 2 ̂ T^I.
Jubstituting (B.I7) into (3,25) one gets

CB.26)

'ti c(y) is tine group t"G element (B.I9).

| 4 : 2p(o|olF" i fror, (B.26) we get the expressionSince

(A.6), (2.12).

The formula (B.26) gives the curvature two-form R of the bundle

over the gau^e group IJG as a function on KG ( from group element

Appendix C.

'He give here another proof of the formula (3.33). Let us consider

the two-dimensional chiral Direc operator<~§> (By in the external

nonabelian gau^e field }\ i, on the two-dimensional torus with

coordinates (x ) . /Je shal l assume that

(c.D

where f\ (Y-%) is a background field independent of xT , and

g( i , i, ) is a group element:

Then for one has

(C2)

CG.3)

where \^. « =• 3L* 4 -1 |_f+.dtl is the covariant derivative with

respect to background |-j .

The gauge field choice (C.I), (C.3) cooresponds to the potential

(3.3 , (3.4) in the pseudoeuclidean case.

Vacuum-vacuum amplitude reads as usual

.rl^- (c.4)

Let us find how Z depends on Ot (X, ,AzJ . One can consider

the field j4/i (C.I) as an adiabatic pure gauge, ''he operator

rJ> ( ITJ determinant is not invariant under a transformation

}\ -^f j\ „ + V., ot and is changed as follows ( it is the first type

anomaly [1,3] ):
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Inserting (C.I) into (C.5) one gets

(C6)

Taking into account (C.3),

He nssume that function Cs. (X i ) gives a closed curve

t'ne finite e.:ruup manifold MG, then (G.7) yields

( c - 7 )

(C8)

where (-|j(; 'BJ Jy is differential on LVG,

j?or surface 3, bounded by curve G on KG, one obtains from (C.8):

sir

iience v--e find

where the 2-fo.rin curvature R has the form (2,13) and we again

arrive at the C(;.r-:ula (3.33)«
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