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ABSTRACT

We describe the physical situation in which the consideration of the fermionic vacuum
bundle over gauge group manifold is useful. The bundle curvature tams out to be connected with
the commutator gauge anomaly. This allows to consider the problem where this curvature is man-
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I, Introduction,

It is well known that two types of anomalies arige for the quantum chiral rermions

in an externsl nonabelian gauge field., The firet type is ocomnected with the violation
of the claseical congervation law Vf" ﬁal':: for the gauge ourrent [I]. Mathe-
matically,the appearance of this anomaly results from the existence of the nontrivial
one—cooycle in the gauge group cohomology L2,3].‘ On the other hand, the axistence of
a nontrivial two—oooyole lemds under quantization to violation of the gauge oharges
algebra for chiral fermions and to the apprearance of central terms [3], Gauge charges
generate the gauge transformations on the time—like hypersurface, thus, their quantum

slgebra is not closed.

It was shown by Bowick and Rajeev [4] for the boson string case
that the commutator ancmaly means noninvariance of the Fock space
under the gauge transfermetions. Thus one may say about nontrivial
bundle of the Fock spaces over the gauge group ( for boson string
the gauge group is 33*»13{5 S‘L/S.'l ), curvature of which coincides
with the central term of the cherge algebra., }ilch and Warner have
shown that it is sufficieat to consider the vacuum bnundle [51. This
point of view is widely discussed in the literatute [6-9).

Sc one comes to the following geometrical picture. Cne can con-
gider the clagsical algebra of gauge charges as an algebra of the
tangent vectors cver the gauge group manifold. The quantization
then consisgts in substitution of the vector field by the covariant
derivative along this vecter field. Its curvature determines the
charge algebra central extension [7,8].

The first type anomely menifests itself in the particle creetion

in the externsl nontrivial gauge field, for example in the baryon
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decay catalysis by monopole [I0],

We show here that the commitator anomaly als¢ leads to the particle oreations
The external gauge field in this case is a "pure gauge" at arbitrary moment of
time:

. -1 (
; —- I.I)
1‘ ﬂ/"‘ —g 8/‘ 3 ) *
a
Ro=0C

The gauge potential (I,I) at any subsequent time moment is the gauge transfor—

where /1 is a space index and we use the gauge

mation of gauge potential at previous momenti
i f, (et)- B B (09 + 597,89,
T 94 g (Fab) = L (1)at P, (2)

A4
where J\ are generators of group G ( we limit ocurselves to the case of unitary
gToups Je
) a .
Suneticns ol (t) determine the curvature on the gauge group mani-
faold. We fdefine this manifold as { for two-dimensicnal cylindrical
apace~time ) _M_Cx ;{%(1) X(—lgi, %E(.‘X’k « In any point of MG

we hrove vacuum and corresponding Pock space, Jransition from one

vgcunm to another means particle production. 'he method of ref.[4,5]
allows to counect the number of produced particles with curvature
of varuum bundle cover 1'G, i.e, with anomaly of the charge algebra.
ispecially.we sre interested in the acge of closed curve on MG

(i.e. 9 ()

out-vacuum may differ from in-vacuum, this difference is determined

is the same for t=— o0 and t=+% 0 ). However
by integral of the vacuum bundle curveture 2-form,

#e shnll demonstrate here the abovementioned effect for 2D space-
tire and non-atelian geuge group case. This peper is organized as
folleows, Por the sake of completensss, in Sect.? we give the ealcu-

letions cf commutator anomaly as curvature using the method of

ref,19) ( this section is based on results of [9] ), In Sect.3 we

e IR L Lo P . H

————

ponsider realization of the time=dependent gauge transformation ag a curve on the

manifold Mg, For closed curve the (@ut in:> —amplitude is expressed in terus
of integral of the vacuum bundle curvature two-form, In seotion 4 we discuss mono—
pole=like exrternal gauge field. In this case it is necesaary to take intc account

the nontrivial topology of the manifold MG, whioch can be decomposed intc separate
sets ocorresponding to the elements of the homotopy group LQTL ((%j) « In Sect.5 we

disouss Tesults obtained.

2s Commutator anomaly as curvature,

In this section we consider the geometrical treatment of the
commutator ancmaly in chirel non-abelian charge algebra In the apirit
of papers [4,5), We calculate the anomaly as curveture of fermion
vacuum bundle over the gauge group MG,

Let us congider two-dimensional deyl fermions, interacting with

: . il . .
an external non-abelian gauge field J1/4 . The Lagrangiesn has the

form:

[=ith ¥

where V,...‘JF':- ’b/u“l“+‘i)q/3 }q)'i'l, }\q are hermitian rmatrices.

e guppose that the chiral ferrions satisfy the condition E§+;“FP

(2.1)

and we use the following representuticr for two-dimensioncl Elmatri-

ces:

¥y=

0 -4 o 1 i 0
= ‘6} = Ko‘g =
A r Bo 1 o) 7 *

~

-4 ).
From (2.I) we find the expressicn for canonical momentum:
'P .++
=2
r - q O
and obtain the Hamiltonien in the gouge 140 =

1= (e P o g k- o A2 ]



Becausae of chirality we have O

so the Ha.m:.ltoma.n reads

“zgq’(ag +3 N n>+d’. (2.2)

Note that herea.fter we 1mp13 that two-dimensional gpace-time is oylindrioal. Thero=

foreall field functions are periodical in B with the period ;‘L i .

Tt cen  easily be seen from (2.2} that the fermion Hamiltonian is
not diagonal. (ne chould diagonalize 1t in order to determine the

creation and annihilaticn crerators which enable ug to define

correctly zero-energy vacuum.

Let us substitute the following ansatz into (2.2)

P (6)= FAe) e,
s .
F ()= Peyp (-1 S A0 d6").

Here, H: n f\q , and P stands for path-ordered exponent.

(2.2)

'hnen we obtain

AW :
H=-3 (ds +7(6) 26 P (&),
Jor functicn Cf"‘(G) oné has the Fourier expansion:

qb(s);.i,- 2 Th& me)

(ame 'i"g
29T h>o

and finally for the lamiltonian (2.2) we find
< + +
H: 7_, R(Gnﬂhx-gn, gh_)
nyo
Thig the angatz (2.73) diq.cnalizes the Hamiltonian, It should be

noted that the above caloulations were made on the constant time ( +=0 ) hyper—
surface.

The approach of ref.[4,5] is based on the method of geometrical quantization,
which results in the guantum Hilbert space of funotions 4>(a:? g:) of anticom=—

mutating variabdbles with the following messure

<\ y=\erpl- S(atane 6 6] H 4, -
1 dandQl d6ndbn.

{2.4)

The oper—'ators
A
A ‘ .
o= 2 B gy o o= O

act on this Hilbert space,

>

+

S
oDy
S &
i
T
¢ +

The vacuum state c#o is determined by the conditione

ah, C‘?O__;O 9 é\n Cijo: 0. {2.5)

From the field L‘}" onie can congtruct by standard procedure

charges which generate gauge tranaformation for :

s e { GRuTY
Gtu]:—sﬁW*J\‘*u‘*ws 1

@ s , .
where (L{ ig an infinitegimal transfeormation parameter,

(2.6)

Under cancnical transformation generated by G’Lul (2.68) we

have
a\,r.‘: Aet ‘i,ak ,G[M} s EL: €;+§QR,GL’M1} (2.7)

etc,

Cne can also consider the geomectrical guantization for new
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/ 4
variables { (A k) Q eh , K Je Then the new vaouwm atate ¢)o will

be determined by the conditions

Ay ;
O‘h =0, gh— 4)0 =0. (2.8)

Subatituting (2.6), {2.7) into (2.8) and taking into acoount {2.3) one gete

for the new vacuum

- (%xp(cawtfh,\@*)%, (2.9)

The vacuum bundle over the gauge group MO is an homogenous spaoce, Therefore,

all calculations can be limited by the vicinity of unlt. Thus in the axpression

(2.9) for Bk n one is  interested only in the first order terms in vari-
avles  US .,
By direct calculations one obtains
AN —i(h+m)E -1 (2.10)
Khn,'r‘”“ﬁ, d6 € EUF "~

©
Let us note that old vacuum state CPO is constant which is

determined frem condition < d?‘_ ‘ dﬁ;} = i_ . Therefore the new vacuum

state hag the norm

<4>c/,<?o/>: ge)(P (a,t ?S,hn\ ‘e..t'f' @h K:.m B~
~ Gha.- @0L) [1d0. dak dé. det.

after calculation of the functional integral one gets

> = det (4-¥%).

Thus we have the Hermitian metric in the vacuum bundle ocver MG:

9= det (4-T%). (2.11)
The metrical ccunecticn one~form P

V9= dg+I'g=0,
['=-g*dg.

ig determined as usual

1
The curvature R: df formally should be equal to zero, However as it is
shown in Appendix A, caleulation of R by point-splitting regularization method

glvea the following result 1

% .
'R._._;_ STZLA (Fdﬂpli)/\(‘jd’up’iﬂ?{g' (2.12)

Sinoe - LF H s 80 one has finally

on
Re- QT [,4 (d%)A d”ujdm gmm[ndmdu] (2.13)

It should be notsd that the algebra of claaa:l.ca.l charges Gq (X) {2.6) can be
oonsidered aa an algebra of tangent veotors on NG in vicinity of unit. The quanti~-
zation then corresponds to oovarlant derivetives along these vector fields [7,8]

with curveture 2-form (2.I3).

Hence we receive the algsbra of gquantum anomalous charges (2.6}

[G'Q(X), G—e&)}]:_f;g Ge () + ?\ag (X,%) (2.14)

with central term

v\ue (x %) :‘}WT'L L?\J)«;%‘S(x-gﬂ +;—,|r f;ie T’L[}c}d ﬂc}%‘ﬂ}z.ls)

Thus working with Weyl fermions in the external nonabelian gauge
field one should consider the fermion vacuum bundle over gauge
group manifold MG. The nontriviality of this bundle means appearance

ancmalous term in the quantum algebra of gauge charges,.

3. Time-dependent gauge transformation.

The idea considered in this section congists in realizaticn of
time—-dependent gauge transformationes as curves C on the manifold

MGy Then at every time mement the recomstruction of the gquantum



fermion vacuum state takes place and the time-dependent vacuum #)c (t) will be

erossection of the wvacuum bundle over MG, Since this bundle is not trivial, vacuum

state 42 (&)

are intereated in closed curve caase., Then the system is in the same peint of MG at

depends on corresponding path C on MG. Especially.we

time moments Te — O and t= + o« , However the corresponding in= and out=
vacuums will be differed and the difference will be determined by the curvature

2-form R integral { i.e. by holenomy group ):

SR

i
on the surface 3 with boundary c .

Lec ug cousider the ¥eyl ZD-fermions interecting with external

nonabelian gauge field ﬂq « The lagrangian (2,I) for the

is as follows

L= Db+ idt(res MY, (3.1)
where H: ﬁf ﬁﬁﬂ .

froe (3,1) we have equation of motion for 4/

(>e+ 26 +1 B)des,ty=0. (3.2)

chiral fermions in the gauge HD

Let us suppose that the external gauge field has the following

form:

N (s 4)= A&+ Vg ok (8,1), (3.3)
where Vgo(, d‘i + 1 (RD{ O{-ﬂ)

with respect to & background time-independent field A(S)

is covariant derivative

The potential {3.3) coan be rewritten alsc as
. -, o A
where %: exp ("‘.l ?\qo{q)

ig the element of gauge group MG.

Hance we come to the squation

(’ac+ag+ aﬁ(63+iV60’\(€\fj)J/:o (3.5)

with periodical boundary conditions on the funotions ﬂ and 4’ .

Substituting

b Fieo) #6.0

i o _
FA(6) Pexp (3 S A (s)ds") 1)
into (3.5) we obtain the equation fér CJB( 5,t)
. 1 (3.8)
(30“‘"56 +3 F Vs £ ) #’:—C).
Since
(3.9)

<
F Ve ¥ 7= :’TSVLG.’C)

where

\/(glt) = Fd B (3.10)

the equetion (3,8) has the form:

(20+26 +ig¥>4’(6,t) =0, (3.1I)

For the Fourier expanaion we have

h& (3.12)
Ps.t) - Z . (t)e
(3.13)
Vs, t)= Je.ms + z Vn(ue
where P‘.P )a .
Cne should impose the periodicity condition on the derivative
5'_6\/(6‘,{') . As a consequence, function \/CG‘,t) in general

has the form {(3.I3) with nonperiocdical (menopole) term.

The . menopole term will be considered in the next section.

Here we suppose that function V(S’,‘t) is periocdical and



search the golution of (3,II) in the following form

, VARY
Fe- ¢ F ey (3.34)
Substituting {3.I4) into (3.II) ona gets
: . dV $ .
L Bc‘+35*7ﬂ:{ =0. (3.15)
We shall suppose that at firat the aystem ig in the wnit on MG, i.e.

VCE:O): L.

"e solution of equation (3.I5) is found in Appendix B so 4)(5‘;“:)

reads:

SV oo
i -_'8 -i— 2 n e
b ) Wh:“”d (+)

2w (6-t)

Y h (S-t)  p+ r(E-t) (3.16)
U3 (e a0 6°)
¥ one
where d. (_t).:/f‘fhvgﬂdiare creation and annihilation operators at
trhe moment t ( df“ are operstors at t=0 ). Matrix ﬂhh (‘t)

haz the form (B.23).

4fter gubstituting (3.6) the Hamiltonian corresponding to the

lagrangian (3.1}

H--3 ;g.“c-{fa' ‘1[’+('8€+'1E+:1 Ve &)‘P

transforms into
X
Heoi(ds 7 (a2 V) ¢

and for sclution {3,I6) one gets

(z.17)

(3.18)

He S n (@b () 0n (- 8u(8) Br (), 019

ne o

Hence the solution (3,I6) diagonalizes the Hamiltonian at every

time moment.

4s it is seen from {(B,20), (B.23) .ﬂhm ('E) is unitary

matrix:

N B =4

11

(3.20)

CUTTIEE TR AL N i oy o

Hence at overy time moment we have the unitary eguivalent set of creation and annihila
tion operators. I?’éhould. e noted that one can conpider the above problem from the
Berry phase point of view [II], i.e. one can Suppose‘\/y\, t0 be the adiabaticaly
time—dependent variablaa, Howsver the above rosults differ from the standard results

by Berry, beoauss th (_{') ig unitary operator but not simply & phase factor,

As it is seen from (3.I4), (3.I6) the solution (3.5) cen be

rewritten as follows ” (G t)
-1 - \
\f’(s,t):e \,f/c (5,+) : (3.21}

where ‘k (S,f) is solution cof equation (3.5) for externsl
potential L H[ﬁ’)_ dOL 1 :
At A

¥ (54> Fi(e) Fot).

Thus if ok (G,t) ig varying slowly ( adiabatically) with time

{3.22)

one obtains solution (3,2I) at every time moment as time-dependent
gauge transformetion, realizing the curve CE -T(j: BTOL(G'{?
+=- og+.o}on the manifold MG.

Iet 18 now consider the time ewvolution ot variables ah. ) gn,,

+
[}:-) eh,- . From (B.T5) one has

d dn ()= 7 dBuom (+) oy () (3.23)
where o{%km:d\/tmé“t,

+ pt
For variables Qh' eh . ah, gh, we obtain

O{Gm(’cﬁ 10 Brom Gn t 1 ABpipm e (3.24)
A €n (Y23 d By O~ ABrr L

etc,
From {3.24) it is seen that the time evolution of varisebles

amhgm represents the time-dependent gauge transformation (2.7},

12



Under quantization one showld consider the momentum variables (fu ({\, g’l“),”‘ ’

diagonalizing the Hamiltonian {3,I7)-(3.I9). Thus we come to the Hilbert space of

funotions Cﬁ(a: ), g:.@“) with measure (2.4). The following operators
act on this spaco:
A
A 5 % )
Qe (0= 2 be (1): =
Tapy TeE (Y (3.25)

Ay /1+ +

Av (1) ab (v £ (V) €7 ().
The fermionic vacuum state Ch (t) corresponding to the zero

energy at the mement t ia determined by c¢onditicns:

ay, () (h; ('ﬂ =0 ) gg (f) C!-Jc (t)'—_— 0.

(3.26)

It follows from (3.20) that 1f the operators D{r\ satisfy anti-
commtative relations [_0‘1._ N h-:l{-'—"(;k)h, at the moment t=0, then
they would satisfy tnese relations at any other moment.
consequently. each point in cnrve C defined by functicns
A,a () on ranifeld MG is associamted with vacuum, Fock space

and the creetion and annihilation operatcors,

Let us consider the condition (3.26)
A
G (£) R (B)=0

and its time variation
JGwd + Ao d S

Inserting (3,24) inte the last explession we get

1 d'&nﬂ\“emc’: T & 445_0

Then we obtain

d 4{- = Z E—% aF () dBnim (B) g: [t)] CR (3.27)

h mye
and for wvacuum at the morment t we have

13

t .
d (D)= exp (iSO ARnmER () b 020

It should be noted here that this formula is analogous to the expo-
nentiel factor for the 3erry phase [II]., However the integrand in
{3.28) ie not number function but the operator one, Notice also
that CR ({:) generally is\%)ath-dependent ( on curve C )

function on MG:
P (C):[@‘Péqu% (3.29)

A

v A,
F:—:L N d%hﬂn gin : (3.30)

4+

where

Supposing that operators Qh 3 gre functions on MG,
v

one can consider f
v

as a connectlon one-form on I:G. Cne
should note that _[' differs. from connection J:' considered

in Section 2, though (3.29) is enalogous te (2,9),

For the c¢losed curve C one gets
v v
s I=(dr,
€ s
where 333 C .

v
Let us calculsate F': d[‘ , under condition that differentials

Ola: and D‘g:\:
S

F= & dﬁh+h AdBrim :«* a; dEh+m/\dEk.+m ARt

satisfy relations (3,24) in each peint on

(3.31)

+
+ At dBey AdBnsm £ + a?; ABrimA AR m £
Conseguently for closed curve one has

®(C)= [WP $ Flk

Since G.(_§_q+ " gk_: %.g and Ch doesn't depend on
qk we obtain:

14



(Y= [er- &(dmw\a&m
a 0{%; r\,/\d(e}r\-}-m ‘?w\ - Q U‘Ehh‘n/\dgh Me ﬂCF (3 32)

Hence for vacuum=vacuum amplitude one has

<k (0)y- %P-éﬁ q (3.33).

where

D=5 kdVuAdV (3.34)

>
is ecurvature 2-form {2,2I), ( In Appendix ¢ we give anocther proof

for formula (3.33), which illustrates,in particular the connection
of result (3.33) with first-type { one-cocycle ) gauge anomaly. )
As It is shown in ~ppendix B, one can rewrite the curvature

(3.34) as n functlon on MG { from element %(0’) & .M.Gt ) {B.26):

q__STIL (%d@)/\%’ olgldg (3.39)

Let us nowdlﬂmss the question of particle production, As it

-~
was noted, we suppose that orerators an are functions
( from & (5) in vicinity of unit } on WG, Consequently,one can

also censidor particle number operator as a function on M

rs
N(o=3 Ay On (L (3.36)

Na>g
Under variation (3.24) we have for ,)( H
dﬂ{(d)- 1[_an d!Sh M(RM'+ a dish+W\g ] (3.37)
-1 Bl dgh*hﬁ an+ gm dghn\ anl
Let cf:(i) be vacwim in point gl cn KC, then for

AN = 2O A (| b () (3.38)

we receive frow (3.37,) that

AN = O,

A
On the other hand calculating the second differential for )I

one ovtains

15

A=< h @ @Y= 23w dldVn. G

h>o

Iet us consider the cese of the adiabatic vecuum arrangement.
Then the created particles are adiabatically remcved, #c at every
moment of time the state of guentum fermionic field is returned to
vacuum state corresponding to the external gouge potential at this
moment of time.

lence for the total number of creasted particles Afh from

(3.38) one has

o\f\rn SB\Q g (X, ‘a)daL (x) dok (44) dxdyg , (3.40)

where Izqg (X,H) ere components of curvature ?-form (2,I%),
(3.34).
On the other hand one can consider /(h- , which 1s function

on MG as the Kikler potential for 2-form R, Using conplex structure
0y G k&
on MG, which is determined by the Fourier eXpansiond\(E)zzo{he
n.

one can obtain from (3.38), (3.39) for curvature R components:

2
Q;f“ = ’_a/\r(d)e ‘ (3.41)
ddg Dl

Conseguently the commutator anoraly manifests in the particle
preduction (3,4C) under adiabatic arrangement of vacuum,

For the time-independent quantum field state one can celculate
the number of created cut-modes in the state of in-vacuum. It will

be determined by matrix (B.23):

< -4
aﬂhﬂm:“z 9h+m+ug(+"£>%g (‘ —03 . (3.42)
=~ oD

where h m>0

It is ssen from (3.24) thxt for closed curve on KG ( (t)

16



ig the same for t= ~ o0 and t= 4+ =<« } one finds that
ﬂh+m:o and particles are not created,

Hotice here that adiabetic arrengement ¢f vacuum is analcgous to
parallel vector transport: after returning to the initial point. the

parailel trunsported state differs from initial state,

Hemarks on the jin en men
Let us now discuss the monopole term in (3,I3) and the solutlon
of (3.II) with this term. In this case we come to the following

equation for #{G’,t)
[3c +2¢ +1p] F(s,t)=0, (4.1)
where ﬁiﬁﬂﬂq, .ﬁq-—‘ ‘Fq Ct)

It should be noted that one cannot . use the substitution of (3.14)

Xa
case, !ence substituting the Fourier expansion

C;b(ert)* ? ‘#’ (t) e ms

into eguation {(4.1) one comes to the equation

gﬁl + [in+ ij] C‘h:o, (4.2)

At first let us suppose that

then, becrusec is not periodice? function in general

doesn't depend on time t. Then

-“E.t
inserting CP (e %’f into (4.2) cne gets

I En-h--Jbl c‘,b"::o‘ (4.3)

This system lLas & solution if the following condition holds;
det (En-n -g)=0. (2.4)

For Eh:' n+ E the equation (4.4) i8 equivalent to-

det| £ 4~ p"y]-

(4.5)

Consequently7 £ should be & eigen-velue of unitary traceless
matrix ﬁ:ﬁaj\q ( we remember that only unitary gauge groups
are conaidered )}, If rank of matrices }q is equal to N, then
(£4,5) has N real sclutions E& ’ 41 =1y44ssy8: Moreover their sum
1s equal to zero EN; Ei = ( gince matrix _)6 is t-race-
less ). for every Iéi one hag corresponding soluticn CP;L

of (4.3). Hence the genersal sciutien of (4,I) is as follows:

")E f 1 < [ 't)
Pren=3 € Z di, i g™

=4

(4.6)

As we gee, the monopole potential removes degeneration on group
index and gives rise to energy levels splitting, After sepsrating
the positive and negative frequency parts in {4.6) one gets:

A Et, o S
$isy-2 € (3 e iy

& e, (4.7)

An(6-t) p+i 4;
A
+ 5 e gn C:Ib
h<-£?*
As 1t was shown above the static pericdical potential V(E)
. "‘7V 'lhs-
doesn't influence energy spector, since functions
are the Hamiltonian eigen-functicns with E=n. But non-periocdiesl
moncpole potential V(G)-‘ﬁg changes energy spector removing

the degeneration on group index,

If 16 derends on t then the solution of (4.I) reeds

‘t A
Texp (4§ p(vydr) € ") P2 .

de shall consider only the adiabatic case, then gﬁ’h)dt ‘-ﬁ(ﬂ t
c .
and the solution of (4,I) will take the form (4,7) where g1 (t)

ere adiebatic solutions of the equation:

18




- -

(4.8}

det

a
£ty - BN
A3 it i seen from (4.7) the redefiniticn of creation and annihi=-
lation operators do not occur for adiabatic £ (‘t) . However
when tne function E7(+) vecomes an integer £.°{#) =m for
some 1 , then the momentary redefinition of creation and anni-

hilation operators and correaponding particles production occur,

We shall illustrate the above by two examples,

Ao Group U(I),

In this case the equation (4.4) has the unique solution:
b= +p (4.9)

and for sclution of (4,I) cne obtains

A . n(t-g) L+ ah(t-6) ) ‘
F(5,6)= e"t = (ame ( 1 W B )4-@c - (4.10)

n;'r_'n
Let us nssume that at the meoment t P—i(ﬂ;({)( P for a
positive Integer ( let UQ! be pesitive ) then for Hamiltonian

one cefag

H=2 \h+f‘>a A, + Z (Prh.)%t,&m +f3 C:CBQ“

nyp

- fé (h-p) € &x
h—
and wave {‘unctj_on {(4.10) is ns follows
_ E W (+-§) A in{t-6)
Feey=e (2 eV, Z Rt
(4,12)

+¢— e gh,‘f—

= n(}-8)
2 )

where B‘,\_: @: ; h= i)..) P-—i .

Jonseguently when ﬁ [1':) nt some moment becomes equal integer
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p the redefinition of creation and annihilation operators occcurs
+ 1
and the rew annihilation operstor EP: €P appears. Hence

at any such moment & new mode is created from the old vecuum state:

ot +
Assuming that at the initial moment ﬁ(‘f.):O , we have for

initial Hamiltonian:

Ho-2 n(al o, - 6n &)

and vacuum state at initiel moment:

Gn oY = Lulo>= Celoy=0. (4.14)

At the moment t }); (’}ZP) P , one obtains for the Hamiltonlan:

o= (nep) AT0n + E (p B Rt

h (4.I5)
+
2 (h-"P) ‘gn ‘gru
n=p

+PCC+CQ_

end for the wave funection

45(5 )= s éi(pm)teﬁhc ZP a(n-p)t -m.-B N
! - h>o

N " (4.I6)
-l . -
S e:@b‘P) 5ins gt ’P
h=pid
Consequently,at the moment tp the vacuum state IU>P will be

determined by the condition:

Qn|t7e =0, n>0 Cc\D>F=O (4.17)

gh’ lO>P: 01 R Pri Bh,|0>ra=o1 h’:i:“'f'P
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Thus #t the rorent t_ the new mede Bp (4,13) is created, Notice

that when O<F (e 4

not contribute to initial lamiltonjan, creates as dynamical, Hence

the zero mode Co , Wwhich dges

if ﬁ (t)  changes from O to p then during this time the total

nurber of new particles

p
N= 2 M= (prg)

is created in the in-~vacuum state,

(4.18)

Tt is interesting to note that the new mode Bn has a di-fferent
chirelity from that of Hy and bn. The vacuum reconstruction occurs
instantaneously at the moment tp. tlence the result would be the
same (4.I8) if /5 (f) instantaneously changes from O to p.

We want to note that it is reflected in effectively two-dimensional
problem of particle production during the instantaneous solenocoid

setting on (I2].

B. Group S80(2]),
Let us consider (4.1) with ﬁ, =JB’€:‘ , where 6’  are

the 2% 2 tauli matrices., Then the equation (4.3) takes the form
. o 0
PatE,-n Bafr ih
(4.19)

f

ﬁ";“"‘ 4 F—h__h"f% cEtoh' O

The condition (4,4) for this system yields the following eigen-

-1
values l:—'ru

En=nth, | (4.20)

fg:\];{gf‘ﬂgi +jgg ) (4,21)

I I+

where
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Thus equation {4.I) has the soluticn

SN Tift —in(t-6)_ (+)
4D(€'t) -Z:; € (éo(e Qn " (4.22)

_*_é',n(fﬁs)gt(t)\_l_co(i)),ﬁi |

where

,0-»: 1% - (4.23)

Hence the solution (4.22) is eguivalent to the two sclutions (4.I0)
with \)&'7 0 and ﬁ, < 0 .
If at the moment t=0 one has J& =0 and vacuum satisfies the

conditions
t
Gi)lo\ﬁo,

then at the moment t:tp y When

(%) (%)
W |Cy=0 , Co.
ﬁ - £ F

oy =0 ) (4.24)

, the solution

(4.22) tekes the form .

¢ AMEYPYE ar€ (D 1y Pooathepyt _ing (9 ey
P(st)=2, et Py Sl e e B Uy
h=g

hzo

] > R~ - 1, + *-" T
. hz G P)te & nw,ﬁu N 'S*)e F I
=p+i
; S T Afn-pt apg (- -
+ 3> o Pt gt S ESISGO0c0, (g o)
n3e n=pti
P . to NG - aft
2 c (Pﬁh)‘l:eﬂ.\g Qh '.LY() " Ct(),l((. )G :
h={
where

&) +(_+)
Br\,“eh_ ) h:i'”"F

ﬂ’fm fa (4.26)
o = ar\.. . h':i ""‘JP

i
Consequently &t the moment t:tp the vacuum ,Cﬁ?P ig defined by

conditions:
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31 - (5 .
ak)lL?P:L‘n-;; ptd QO 07p'=u heo
L)
=) -~ B .
b |C§P; ¢,hvo bn 1T7p=0 , 2 prd {4,27)
. (4)
Y . = 107}‘:'6
Co lere-C f—-ﬂ! 7 s
=Y oL C F:D n= , P -
HE\ lL\7P;O1h:i‘,-.’ P o E)h.- ] )
Notice thot :ﬁ and Egh have an opposite chirality as

compared to lhe initial moment t=0.
Thus thie pilcture i1s analogous to the case of group (I}, At the
woment wien (@ (t) =p the ere=tion of twe new medes in in-vacuum
.
ocours:

R 4 ++ (S22
IQP()‘? QC\?)F() %F "J):i

N <o B2 B o= 1

function f) (f)

{4.28)

£ daring the tire tp has changed from 0 to p

thien durit thin time
b
- R - (4.29)
AT NG 2(per)
o
gives muber of purticles created,
For the group 3U(2) one finds
, , . A CES (R (4.30)
G (8) = rp (P66 = Ea(fre) + ";%@ 2h(ES),
FAS - il Y
with (J,:Wg . R
lience % {&) is periodicsl funetion if ]g e . More~

over for integer }% the expression (4,30) represents the ele-

C\.—
ment from the homotopy group J@L (¢,

Tt stiould ke noted tha't in this case the potential (3.3) takes

i~
f-G* %G,

where G=F.g , & has the form (4.30).

the form:

(4.31I)
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Thug for Integer jg ) 0 realizes s nontrivial element of homotopy
group 5?&(6) and potential (3.3) 18 a topolgﬁically nontrivial
configuration, In genera17t2%!Eackground field }] can alsc have
a monecpcle cheracter, i,e. S AAG :,‘:O . However cuch a gener-

alization doesn't give som;ihing new to our consideration,

Returning to our picture of the wvacus bundl~ over LG, it should
be noted that MG is not connected manifold, NG is decomposed into
the non-cconnected pieces (MG)p characterized by an integer frim
the homotopy group éﬁ;(G}. Thus the potential (3.I3) with ngp
means thet we should coansider the curve and corresponding veacua bun-

A~
dle over the piece (MG)p . The potential (3.I3) with non-integer ﬂ

.

generally doesn't correspond to any peint of MG ( since the corres—

ponding matrix g(€ ) is not pericdical ). However an adiabatic
Fas

change of JB

one piece {MG)p_I to an cther piece (MGJp . This 8llews to consider

from p~I to p one can consider as & trensition from

the vacua bundle over the total menifold of the gauge group HG and
determine the corresponding particie production, ilotice that inside
the one piece (MG}p the particles are created continuously, but

for a transition frow (MG)p to (MGJP+I particles are created

unevenly, The situstion is analogous to that of phase transition.

5, Discussion,

We have attempted te describe the physical situation in which
the consideration of the fermionic vacua bundle over gauge group
manifold MG is useful . The bundle curvature turns out to be con-
nected with the commutator gauge mnomaly. This allows to consider
the problem where this curvature is manifested. Certainly this is =
development of the Berry phase ideas [I1] for secondaury-quantized
systems, Though the role of phase here ig played ( as it is sesn

Tfrom (3.28), (3.29) ) by an cperator constructed from the chirel
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fermionic creation operators, Nevertheless the gecmetrical back-
ground of these effects is the same: this is the nontriviality of
a bundle over purametors manifold ( in our case over MG ).

It should be noted that for (I+I)-apace-time our consideraticn
is quite general, since any nonabelian gauge field J}(G,f) ( in the

gueuge QL\ =0 ) is represented in the form (I.T):

. -1
; A;% d g (5.1)
de¢ V1
where the group element ig determined as

53
§6)= Penp i | A6 £) 6" (5.2)

aw

If the zauge field ﬂ (8) ° is nentrivial, i.e. %g[{ﬂdg :’:O}
then g(6 ) (%.2) realizes a nontrivial element of the homotopy
croup fﬁl(G).

On the other hand,one should note that the monopole term in (3.13)
takes the form of an angle depending part of the nonabelien string
sclution [I3}. Therefore the considered effects can take place in
the effective two-dimensional problems, for example in the cosmic
string field [I3) with the angle dependence changing with time.

The quantum effects near such strinzs may be very important for
galaxy formatio,.

another application of the results obtained iggggﬁdensed state
physics, for example the Hell effect in spirit of known Laughlin's
consideration [I14} or anionic: mechanism of high-temperature super-
conductivity (I%]). It seems very attractive, since as ghown in
ref.[I6] the anomalous Kac-Moody algebras play a role in the quantum
Hall effect,

The natural development would be a generalization for the gravi-
tational anomaly case [I7). The gauge traneformetions then mre coo-

rdinate's changing, corresponding to a trangition from one reference

25

gystem to another.

These and other problems will be considered elsewhere,
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- e e et iy P <o U ETT BT.  AN L i e PR g
- . B P _
a integrating contour ]Pi v [%\ cne ezn ©88ily rewrite this as

fppendix A.
. frllows
Tet s cunaider the Dersitian cetric (2.11) on the vacus bundle

aver fMuge preoup L ] ?‘ 2 (;T % (g T’?.. F 2) u(z)p (Z) F(‘a ,u i(ﬂ)ldg ;)_(EZ .
%: (-lt?t (i"‘)5+ ?S)'l (A.TY e ll\)l‘-ﬂ

After calculating the sum one has

where the ratrix \6/ in a vicinity of unit is determined as

o (AVE T Feue é) FlauwF? Azdy o)
-1 (4§ - | FEUEFE) Fa)u4iF"(y)
‘GM-*— \0‘5 Fuf+ (4.2) (& Iﬂ%lbl Ji(?tﬂ“

_[__, Let us choosge the differential opcrater on the geuge group manifold
Tae metric A...I) defines o natursl meiric connecilon one-form

V%: d% + T(A -G MG in the form
’ Uy
T g %—10{% d &(12 o'u 2) Ul (2)

Wit AveLire Swe-Torm and using the point- splitting method:

-di. dzd A1) Aduély). s
Rodl R-ddh lil%lﬁl La%u (235U 8)

Inserting (4.4) into {A.5) cne finds

It shonld b roted that the hase 3pace is an homogenecus space

npd b Ttarmitian stracture is invariant under the action of the AT
L 4

sause croap. 2ien the enrvatare is s homogeneous 2-form. 5o 1t is Q: 7 STI ‘:I_ (E;H F-i)/\ Pd,u F_i:[d(; (4.6)
G &

anongh to conpnte 9t oat one peint in kG, “he valne everywhere else A% o 4

is Tirzred by this (51, Vence one cnan do calculation in a vicinity

Appendix B.

Let ug consider the equation (3.15):

ty in &« vieinity of unit: . o
(¢ +2¢ ~ L‘g(glt))c}%@,ﬂ:-o. (B.1)

%f exp (- 1o ¥ ).
We lock for the solution in the form
flence the expressior for the curvature I . ~ e

N (3) Cfg/(\/%’,t); A (6,t) da_, i (B,2)
R= dd Ty =2 d:\o

. . . . a
of unit omitting the higlh crier by u terms,

From (a.1) one

<'D

where is a constant column. A~

Formally shold be equal to zero. Inserting (B,2) into (B.I) one gets for matrix ﬂ

('bt +g) ﬁ:’:;iz_f ﬁr (8.3)

We suppcse that ﬂ: @;.(F,!z B , then

After caleculeting t‘m tJd e one rets

h-Te¥-3 Ga) gg Te| F@ U F6)-

7(h+\1«3 (6 S) f .
-F(shuls) F- (6)1 dedst (Su’aG)B:%.V | (3.4)
i at
Tsing the cownlox veriobles Z2:€e and 3' € and choosing

?

-l



Taking intc sccount the periodicity of B{ B , t ) we

general solution of {B.4):

B, *Z Cn(e, g g’aY (v t46,%)d1,

where txu dGPqutlvP acts

Since
+ - } 'kg

Vin- 2 V(e

W=t
onte finds
+ Lz

t ,
T ah(st) o - InT
Bty L € (&JS e (=) E dfc)

Wo-. T

Thus one abtains for solution of {B.I)

/“F(G,U sexp(5 Bes o) ‘fh

on the seccnd argument,

obtain

(B,

(B,

(B,

On tue other and. the solution of (B,7) is represented as

~ LSRRI
F (6 1) - 2. € “d. (+),

where
an ?B{G +) -
dh, f)" - &8 € de
From (3,£) one gees that k( 4
Ao SR (6=
B(‘;.{I): 2_. B (* 5

[ R -] t“
B, (1) B, 4 S\ (’t)e olt

Substituting (B.ID) into (B.9) one gets

An (f);

<kt

do (- &

where

A

A, (=1 &up(?&ﬂ%)e’kﬁ)éﬂ'izg e

(&)
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(B.

(B.

(B.

(B.

the

5)

&)

7)

9)

10)

II)

We can rewrite (3,1I1) in terrms of complex wvarisble ‘é: €

A

O\n(‘c):é%r%wlai‘é}:%&)l ‘ihﬂ[é gﬁ ] (B.I2)

Cne cen corsider B. as an 2lement of the gavge group algebra and

@)= exeli2 95 B, (n]

then

dy (+)-

as an element of the geuge group MG,

(3,I3)

1 oy 4
ﬁ%%(‘d,t)% {_3 3

d (+)= gh(-t) CE , (2.14)
where % [\a) - ,;g‘}%h({)gb

From (B,I2), (B.I3) we have for the time differsntisl:

dde®=1dBr. @ dn @) (5,15)

Hence

B, - m % 4 Q"%(ﬁ) Ld—k (5.16)

and

; dg _ A &Salgg dg (2,I7)

Cur aim now is to derlve a formula which cennects C*h{f)and ({n(c),

Cne has

G 40= As.) §(y,0), (s.78)

where

e
(N el
N

Glav=expi2 4B, (. e



Tiey

B 3.0-908(4,0) (5.20)

ENCILE RICKEEICTE oy
Lasuming }}}(3)_ 2 ﬂh‘.jh ’

(B.22)
d"‘ ({) ﬂh-m Cf)dm (0)
v d
ro »
o= 20 Guon (990 (o), (5.23)
S G (0 G (0)-The (2.24)

we ortain tre natural  condition ﬂk (C) :%}:,Q .
Let na consider now the expression for the curvature {2.I2),

(3.34)

Q:_ 2 LT'I_ A_@,h/\dgh, (B.25)

koo

Jubstituting (B.I7) inte {3,29) one gets

A5
N Ci( _1) 4 1 (B.26)
R VT[4 (0497)1g g Jas,
where ¢(y) is the group I'G element (B.I9}.
Since g_idﬁ: -';chl Fﬁi , from (B,26) we get the expression
(£.6), (2.12).
The formula (B.26) gives the curvature two-form R of the hundle

over the gauge group MG as a function con MG ( from group element

gly) ).
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Appendix C.

§e give here anotler procf of the formula (3.33), Let us consider
the two-dimensional chiral Direc oper‘ator"/j\) (H) in the external
nonabelian gauge field Hﬂ on the two-dimensional torus with

/

coordingtes (xI s Xo ). #e shall assume that

fi=c (c.1)
4. 4
ik 9T R 9749,
where ﬂ ()(,3_) is a background field independént of X1 and

gl x; 4 X, ) is a group element:
Q= exprol (%, 1),
Then for ], oue has
D= RV, ok,
mere Yok =42t 13 [T, o]

respect to background ﬂ .

(c.2)

(2.3}

is the covariant derivative with

The gauge field choice (C,I), (C.3) cooresponds to the potential
(3.3 , (3.4) in the pseudoeuclidean case.

Vacuum-vecuum amplitude reads as usual

< aidbiy= 2= (nd adterp WD () Y xdne s (0.4)
= C"Q+ rSD (“}
Let us find how Z depends on oz (X‘,ﬁl) . {ne can conzider

the field ﬂ (C.I) as an adiabatic pure gauge. "he operator
~

D (p() determinant is not invariant under a transformstion
ﬂr_a. ﬂ/.+Vﬂo{ end is changed as follows ( it is the first type

anomaly [I,3) ):

G Ondet {l\)(ﬁ)‘;—,“_ %Tfr. o €/V<af ﬂwéuﬂ/ﬁ[hf,hv])dlx‘ (¢.5)
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Inserting (C.1) inte {G.5) one zets

[ '2— S_Ltolél )Q;L (huﬂl

{C.6)

Teking into amccount {C.3),

S IPIRG A PYCTWES) L) TIRN

gives a closed curve C on

©.7)

ite assume that function DL (Xl)

the guupe &'I‘uup m‘lr-ifold MG, then {C.7) yields

('FJF Zz \TF‘I&A dd +1ol)._1 (i‘dll(’ul

where d,{ ’31(;{&

(c.2)

is differential on LG,

For Snrf'wce S, bounded by curve C on 4G, one obtains from (C,8):.

a¥

b= \\(Bz dand da- 91,1‘1)_}3{(1&/\&&1)4)( (c.9)

aiT I

Hence we [ind

u&@

where the 2- Lut‘m furvature R has the form (2,.I3) and we again

arrive at the for-ula (3.33).
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