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ABSTRACT

A simple mode! is used to calculate the tracer diffusion in a Lennard-Jones tracer-solvent

system. The influence of the size ratio between tracer and solvent, and of their mass ratio

on the tracer diffusivity is investigated. The adopted model, proposed by Tankeshwar

et al., is based on the idea, put forward by Zwanzig, of separating the configurational

space of fluid system into a vibrational part and a structural part. The results offer an

interpretation of the molecular dynamics data showing a postive deviation from Stokes-

Einstein behaviour for small size of the tracer. The deviation is explicitly related to the

length parameter of tracer-solvent interaction. The calculated values of the tracer diffusion

coefficients for a large range of its size and mass values are quite satisfactory as judged by

comparison with simulation results.
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1. INTRODUCTION

In binary fluid mixtures and molten salts the two species have generally different diffu-

sivity. This difference in the diffusivity can be attributed to the size ratio between the

two species, their mass ratio, and to the interaction between them. From experiments

on real systems it is difficult to investigate the separate influence of those parameters as

they are changed simultaneously. Molecular dynamics (MD) simulation, on the other hand

allows a systematic investigation of the way each of them affects the diffusivity. Recently,

one of us has performed an extensive MD simulation for a tracer - solvent system[l] to

investigate the influence of the size ratio between tracer and solvent molecules, their mass

ratio on a small tracer diffusivity. The system was made of 100 solvent molecules and 8

solute molecules interacting through Lennard-Jones potentials. The main features of the

MD runs for the influence of size ratio on tracer diffusion is a strong positive deviation

from the Stokes-Einstein (SE) relation, which provides the following relationfl] for the the

tracer diffusion

(i)

where D and a are the diffusion coefficient and molecular diameter. The subscripts 1

and 2 represent, respectively the solvent and solute molecules, It has been found that

Z?2 increases as the tracer size decreases then levels off at a size independent value. This

levelling off takes place for a size ratio <Xi/er2 between 5 and 10; so for a2 < 0.1 <j[ the

tracer behaves essentially as a pointlike particle in the external potential created by the

solvent molecules. On the other hand, for the mass dependence of the diffusion constant,

it has been found that /?2 increases considerably when the mass of the tracer is very small

compared to the solvent molecule's mass. The enhancement in D2 increases with decrease

in the size ratio. This behaviour is contrary to the earlier prediction [2| of the weak

mass dependence of the diffusion constant. The aim of the present work is to investigate

theoretically the influence of the size and mass of the small tracer on its diffusivity.
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As is well known, the self-diffusion coefficient is a macroscopic manifestation of the

autocorrelations of the single particle velocity in time. Much progress in understanding the

dynamics of dense gases and liquids has been based on the Mori-Zwanzig formalism, using

phenomenological Ansatzes and mode-coupling approximations for the memory functions.

The approach is extensively discussed by Boon and Yip|3] and by Hansen and McDonald [4].

This line of approach has been followed{5,6] in theoretical work on the mass dependence of

the self diffusion coefficient of an isotope in a LJ system with satisfactory results as judged

by comparison with computer simulation data; in particular, when the mass of the tracer

was higher than that of the solvent molecule's mass. However, no similar studies have as

yet been reported on the tracer self-diffusion constant for sufficiently small size and mass

of the tracer molecules. Therefore, reasons for the large deviation of the tracer diffusivity

from the SE relation is not yet understood.

In the computer simulation runs for the tracer diffusion, it has been suggested that

for small tracer the diffusion processes involve the jumping motion in a locally nearly frozen

environment. Models of liquid-state diffusion through jumping processes have also been

developed for simple liquids. The model which we use in the present work belongs to this

class, since it invokes a combination of vibrational and jumping motions of the particles. It

derives from an idea of Stillinger and Weber[7], as developed and exploited by Zwanzig[8]

and Mohanty[9] to derive transport coefficients in cold dense fluids directly from the Green-

Kubo time correlation formulas. The general picture has been clearly stated in the work of

Zwanzig [8]. The model assumes that the configuration space of the many-body system is

divided into "cells", each cell being associated with a local minimum on the potential energy

hypersurface. Some of these minima correspond to almost crystalline configurations, while

others correspond to liquid-like configurations. The configuration of the melt remains in

one of these minima, performing approximate harmonic vibrations about it, until it finds a

saddle point in the potential energy surface and jumps to another cell. The effects of a cell

jump are (i) to rearrange the equilibrium positions of the particles in some subvolume V*

*nd (H) to ifltni-mpt the oncillBtlon* within it, so that the motion* In V before wnd after the

jump are uncorrclated. Similar ideas have been used by Tankeshwar, Singla and Pathak

[10] to develop a simple model for the calculation of self-diffusion of classical fluids. The

model when applied to LJ fluids, one-component plasma and Yukawa fluids, provides good

results for the diffusion constant over large ranges of values of system temperature and

density, as judged from the comparison with simulation results. Recently, the model has

been extended to be applied to the two component molten salt system by Tankeshwar and

Tosi [11], and was found to predict successfully the right ratios of self-diffusion coefficients

of the two ionic species in superionic conductor and normal melts.

The main result of our application of the above model to a tracer-solvent system is

to explicitly relate the difference in self-diffusion coefficients of the tracer of different sizes

to the 'partial tracer-solvent' liquid structure factor. The levelling of the tracer diffusion

constant at very small sizes is found to appear as a result of its dependence on the tracer-

solvent diameter, CTU = [a\ +<rj)/2 and not solely on the tracer diameter <r2. Our numerical

calculations involve the use of pair potential and of pair distribution functions obtained

from MD simulations, so that the pair potentials are in fact the essential input. Our

calculations are successful in predicting the ratio of self-diffusion coefficients for the tracer

of different sizes and masses in agreement with simulation results.

The layout of the paper is briefly as follows. In section 2 we develop the model to be

used in the calculation of self-diffusion coefficients. The results are presented and discussed

in section 3. Section 4 gives a short summary and some concluding remarks.

2. THEORY

We consider a solvent-solute system consisting of TV] solvent molecules with mass mi

and diameter <7i and N% solute molecules with mass mj and diameter a2, in a volume V.

The self-diffusion coefficients D| and D? are given by the (Jreen-Kubo formulas

D, - -?— / CL(t)dt (2a)
ml JO

and
• / C2(t)dt, (26)
Jn
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where Ci{t) and Cj(t) are the VACF's of solvent and solute molecules. These are, respec-

tively, given by

and

(3c)

(36)

where vl '{t) and vj '(£) are the velocities of the ith solvent and solute molecule at time

t, respectively. The angular brackets in eqns.(3) represent the ensemble average.

The realization of Zwanzig's model recalled in section 1 introduces a spectrum of

oscillation frequencies to reduce the sum over coordinates in eqn (3) to a Bum over normal

modes localised in the various subvolumes V* and having a time dependence of the form

cos(ut). One also introduces a waiting time distribution for cell jumps destroying coherence

in any subvolume V*, that we take of the form [10] sech[^). With these approximation

we obtain, in general, for the velocity auto correlation function:

We approximate the frequency spectrum by Einstein frequencies wi and 1J3 for solvent and

solute molecules, respectively, and correspondingly introduce jumping frequencies rj"1 and

r2*'. With this approximations we obtain

, t ,

and

f ' l

w

(4a)

(46)

Substituting eqns (4) in eqns (2) we obtain expressions for the self diffusion constants given

by

i * I -— ' ' ' — Tt SCCrll "•"•LJ'iTi 1 [OQj

(56)

An advantage of using the same frequencies for all the solvent or solutes molecules is that

the parameters u;i,3 and r ^ can be estimated from the microscopic sum rules satisfied by

the VACF. On comparing the short-time expansion of eqns (4) with the exact short-time

expansion of the VACF for solvent and solute molecules, given by

(6)

we obtain the following relations

and

- ( i )

AC.( i )

(7)

(8)

where superscript 1 in brackets represents the solvent system. Similar expressions relate

wj and T-i to the coefficients C\ ' and C\ ' in the short-time expansion of C^{t). As can

be seen from eqns (5)-{8), if C4 = C\ then D = 0, implying perfect crystalline behaviour.

On the other hand, for C* > BC22 diffusion is gas-like and no backscaltering process is

present.

In order to calculate the self-diffusion constants from eqns (5a) and (5b) we need

expressions for the sum rules C% and Ct. These are given by the following:

f
J

H f (9)

and

where C4|2) represents the two body contribution to the fourth sum rule. The deriva-

tion of the triplet contribution to this sum rule and its simplified form are given in the

Appendix. In eqns (9) and (10) ni and n% are the number density of the solvent and



solute molecules, 9 n ( 0 and 9i2(r) are the partial solvent-solvent and Bolvent-solute radial

distribution functions, f /n(r) and Vl2(r) are the the corresponding pair potentials and

the notation

a d <d¥W\ nn
Ua0 = -—( ) t i l )

drf) ara

has been used, with the convention of summation over repeated Cartesian index a. The

second and fourth sum rules for the solute, C^ and c[2', follow by interchanging the

indices 1 and 2 in eqns (9) and (10). Clearly, each sum rule contains a contribution from

like particles and a contribution from unlike particles. The expression (9) and (10) are

general and are applicable to any binary system of any partial concentration. However,

in the present case we are interested in a system of infinitly dilute solution, where tracer

molecules interact very weakly with each other than with the solvent molecules. For such

a system the above equations reduce to

(12)

and

(13)

(14)

From the above expresions for C2
2' and CJ2' one finds that these sum rules and hence w2

and r2 are implicitly related to the solute-solvent diameter <r12 = (CTI + o2)/2 through the

solvent-solute interaction and gi2(r}. In the next section we proceed to evaluate these sum

mips and hence the self-diffusion coefficients.

3. CALCULATION AND RESULTS

The inputs for the numerical calculation of the frequency sum. rules of the VACF

are the interatomic potentials and the partial radial distribution functions. We have used

the LJ potential adopted by Ould-Kaddour and Barrat [1] in their (MD) work, together

with the structure factors that they obtained by simulation. The calculated values of the

sum rules for the tracer are given in table 1, for various sizes and mass ratios. The LJ

interaction energy e was kept constant for all molecules, and the units of energy, length

and mass were respectively i, O\ and mi. The thermodynamica! state of the system is

therefore specified by the reduced temperature 7" = ^ ^ and reduced density n* = no\.

In the first two sets of data in table 1, The tracer mass is varied for two fixed size

ratios o^jci = 0.5 and <rj/tfi = 0.1. The thermodynamic state of the pure solvent was

chosen to be near the triple point (T* = 0.75, n* = 0.85). When reducing the tracer size

the total density had to be increased slightly, in order to keep the solvent-solvent radial

distribution function and the solvent diffusion coefficient constant. In the third set of data,

the tracer size is decreased keeping it mass equal to the solvent mass. The pure solvent

was chosen to be a supercritical fluid (T* = 2.75, n* = 0.7). As stated earlier the total

density was slightly increased. The results of C[ includes the triplet contribution which is

discussed in the Appendix. From table 1, it can be seen that both C2 and C4 are functions

of size and mass. The mass dependence of Cj, and C\ for a fixed size of tracer can be

approximately derived from eqns (14) and (IS), yielding the following relations:

(16)

and

^ + m./^la^^.m,]. (17)

On the other hand for a fixed mass the size dependence of C2 ' and C\ arc found to obey

the following relations:

and

(18)

(19)



The two latter expressions show that for a sufficiently small tracer size C^ and c{2 ' will

become almost size independent as cr12 = (ot -f- ffi)/2 acquires almost a constant value

for sufficiently small value of <72 compared to <r1. Therefore, one finds that the sura rules

coefficients are explicitly dependent on an and hence wilt be the self-diffusion constant.

The tracer self-diffusion coefficient D% \B calculated from eqn (5b), using the numerical

values for the sum rules from table 1. The mass dependence of the self diffusion is plotted

in figures (1) and (2), together with the simulation data, for the two different size ratios

studied. From fig. (1) and (2) it can be seen that the ratio •E>2(m2)/£>2("'i) start to

increase rapidly with decreasing m2 which is in agreement with simulation results. This

increase is found to be more pronounced for diameter ratio 0.1 than for 0.5, which is

also in agreement with the simulation results. In our model this fact is related to the

relative increase in jumping frequencies for the two diameter ratios. Overall, we find that

our results are in better agreement with the simulation data for the tracer size 0.1 than

for 0.5. The results of our model start departing from the simulation results for the size

ratio equal to 0.5 when the mass of the tracer is lower than 30 percent of that of solvent

particles. However, for very small mass ratio, our model predict a sharp increase in the

diffusion constant. The departure of our results from the simulation data may indicate the

limitations of our model in which highly correlated motions are not fully accounted for.

The results for the size dependence of D^(a3) are given in figure (3). The computer

simulation results and the prediction of SE relation (eqn. (1)) are also given in the figure

for comparison. From fig. 3 it can be seen that our model explains the levelling of the ratio

D2/Di for diameter ratio o^l^i ' e s s than 0.1 in agreement with the simulation results.

This saturation effect takes place in our model as a result of the levelling off in the jumping

frequency below a size ratio of 0.1, as can be seen from table 1. As has been stated earlier

the sum rules coefficients C\ and C\ and hence jumping frequencies are related to cr12

which itself levels off. Therefore, in order to have an empirical relation between ratios

D-ijDi and a^/ai, we have plotted Iog(Di/Di) vs log(c 11 o i?) in fig. (4). The data

points in fig. 4 lies almost on a straight line which yields the relation

El
D, [cl2'

(20)

The above emperical relation may be useful in further investgattons and in modification

of the Stokes-Einstein relation for the tracer diffusion.

4. SUMMARY AND CONCLUDING REMARKS

We have used a simple model for the diffusional dynamics in tracer-solvent system

and related its vibrational and jumping frequency parameters to sum rules describing the

short-time behaviour of velocity autocorrelations, in order to derive expressions for the self-

diffusion coefficients of the two species which explicitly contain pair potentials and pair

distribution functions. These expressions have allowed us to study the separate effects of

the mass and size of the tracer molecule on its diffusivity. The numerical values that we

have obtained are quite satisfactory for the ratio of tracer diffusivity of very different sizes

and masses. In our model the difference in the self diffusivity of the tracer of the different

sizes and masses arises due to the difference in jumping frequencies which are related to

tracer-solvent liquid structure. The levelling off the diffusivity for a very small size of

tracer takes place due to its dependence on the solvent-solute diameter fru. This levelling

off is contradictory to yhe predictions of the SE relation (eqn(l)). to Therefore, we expect

that our work will be useful in understanding and in modification of the SE relation in

views of the simulation results[l].
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APPENDIX

The triplet contribution to the fourth sum rule cj1 ' is obtained from

1 v -
na drixdl

{A.I)

where the particle 1 is taken to be a solvent particle, while particles j and k may be of

either species. Separating out the various choices of particles j and k and writing the

averages in terms of distribution functions, we obtain

^J f -friA

ML, {A.2)

where ga{f\,tt) are the respective triplet distribution functions and Ulxa = ^r
U}[r

1^ ,

2̂*<« ~ .tj^.lr'!, • T n e expression for Cj ( 3 ( is obtained from eqn (A.2) by interchanging 1

and 2 in the superscripts.

The integrals in eqn(A-2) can only be evaluated by using an approximate closure

for the triplet correlation functions. However, a simple decoupling approximation on eqn

(A.I), which amounts to neglecting the correlations between particles j and k, has been

suggested in earlier work for static quadruplet correlation function in simple Lennard-Jones

fluids [12]. Using similar ideas we approximate eqn (A.I) as

Separating out the possible choices of the particles j and k to solute or solvent particles,

wr obtain

We use eqn (A.4) to estimate the triplet correlation contribution to the fourth sum rule.

11

REFERENCES

[I] Ould-kaddour F and Barrat J L Phys. Rev, A (communicated)

[2] Ebbsjo I, Schofield P, Scold P and Waller I 1974 J. Phys.: Solid state phys. 7 3891

[3] Boon J P and Yip S 1979 Moltcuiar Hydrodynamic (McGraw Hill)

[4] Hansen J P and Mcdonald J R 1986 Theory of simple liquids (London: Academic)

[5] Toxvaerd S 1985 Mol. Phys. 56, 1017

[6] Tankeshwar K (in press) Phyt. Chem. Liq.

[7] Stillinger F H and Weber T A 1983 Phys. Rtv. A 28, 2408

[8] Zwansig R 1983 J. Chem. Phys. 79, 4507

[9] Mohanty U 1985 Phys. Rev. A 32, 3054

[10| Tankeshwar K, Singla B and Pathak K N 1991 J. Phys.: Cond. Matter 3 3173

[II] Tankeshwar K and Tosi M P (1991) (in press) J. Phys.: Cond. Matter

[12] Tankeshwar K, Ranganathan S and Pathak K N (1987) J.Phys. C: Solid State Phys.

20 5749

12



Table 1 : Sum rules coefficients C^] and c | a ) of the VACF for tracer molecules as a

function of size ratio ffj/ci, and mass ratio mj/mi- Also given is the jumping frequency

from subvolumes T"1.

10"5 * C\

0.75
0.75
0.75
0.75
0.75
0.75
0.75
0.75

0.75
0.75
0.75
0.75
0.75
0.75
0.75

2.75
2.75
2.75
2.75
2.75

0.90
0.90
0.90
0.90
0.90
0.90
0.90
0.90

0.92
0.92
0.92
0.92
0.92
0.92
0.92

0.70
0.768
0.770
0.771
0.775

1.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.1
0.1
0.1
0.1
0.1
0.1
0.1

1.0
0.15
0.10
0.08
0.05

1.0
1.0
0.7
0.5
0.4
0.3
0.1

0.05

1.0
0.7
0.5
0.4

0.25
0.1

0.05

1.0
1.0
1.0
1.0
1.0

296.65
244.89
349.84
480.36
612.23
616.30
2406.5

4793.8

150.45
204.09
286.28
362.57
575.20

1497.10
3129.40

403.99
231.72
228.04
222.55
202.81

2.47
4.27
7.50
12.59
19.25
32.02
254.8
943.7

5.52
9.0
15.60
23.03
51.38
297.1
1353.0

9.01
23.69
28.6
29.5
25.2

11.63
19.23
23.26
23.26
23.26
23.26
45.45
62.50

29.41
32.26
35.71
38.46
45.45
66.66
100.0

21.28
50.0

55.55
57.14
55.55

Figure Captions

Fig. 1. Tracer diffusion coefficients as a function of mass ratio for a size ratio !L1 — 0.5.

The system temperature and density are T* = 0.75, n* =0.9: Solid circles, MD results;

solid triangles, theoretical work; - - - -, Stokes-Einstein behaviour (eqn (1)).

Fig. 2. Same as fig. 1, but for smaller size ratio ^ =0.1.

Fig. 3 The ratio of tracer over solvent diffusion coefficients ^ as a function of inverse

size ratio, for equal masses. The thermodynamic state of the pure solvent is T* = 2.75

and re* =0.7, the density is increased from 0.70 to 0.77 as the tracer size is decreases: Solid

circles, MD results; solid triangles, theoretical results; - - - - SE behaviour eqn. (1)

Fig. 4. Variation of togfZ^/Di) with log(<Ti/<T|;) for the thermodynamic state of the

system same as that of figure 3. The dotted line corresponds to eqn (20).
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