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ABSTRACT 

The procedures developed previously [Phys. Fluids 31 , 3713 (19S8)j to 
simulate the radiatively induced tokamak density limit are used to examine 
in more detail the scaling of the density limit. It is found that the maximum 
allowable density increases with auxiliary power and decreases with impurity 
concentration. However, it is demonstrated that there is lit. =• lependence 
of the density limit on plasma elongation. These trends are consistent with 
experimental results. Our previous work used coronal equilibrium impurities; 
the primary result of that paper was that the maximum density increases with 
current when peaked profiles are assumed. Here, this behavior is shown to 
occur with a coronal nonequilibrium impurity as well. 
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I. Introduction 

Recent experimental discoveries1"* have indicated that the density limit 
increases with input power. Correspondingly, the emphasis on the density 
limit in Compact Ignition Tokamak5 (CIT) and International Thermonuclear 
Experimental Reactor" (ITER) design work has declined somewhat. The 
possible benefits, however, of a high edge density for power handling 3 still 
indicate a need for greater understanding of radiatively dominated tokamak 
discharges. 

Here, we use the model developed in Ref. 7 (referred to hereafter as I) to 
once again focus on the density limit set by radiation. The previous work 
dealt only with Ohmic discharges in a TFTR geometry. A simple coronal 
equilibrium description of the impurities was used. The primary conclusion of 
I was that the electron density profile has a significant impact on the limiting 
density; there are two different effects involved. First, since it is the density 
ip the highly radiative edge region that is most important in calculating the 
toul radiated power, simulations performed with centrally peaked density 
profiles achieve higher Murakami parameters 8 than runs with flat profiles. 
The second effect noted in I was that the maximum line-averaged density 
increased almost linearly with plasma current when peaked profiles are used, • 
but varies only slightly with fiat profiles. 

As was stated in I, our model should yield a maximum density that in­
creases with auxiliary input power; we will demonstrate this in the present 
work. Recent experiments on the Joint European Tokamak 1 ' 2 (JET) have 
found that the density limit scales as P^2 (Pin is the total input power). 
Furthermore, the edge density has been determined to be a useful parameter 
in describing the scaling. 1 , 4 , 9 These results seem to indicate that the toka­
mak density limit is indeed caused by excessive impurity radiation. There 
is, however, some evidence of a fuelling limit 2 , 1 0 in JET. Since these results 
are all consistent with our model, we can have greater confidence in using it 
(once properly calibrated) to predict the density limit in future devices such 
as CIT and ITER. 

In this paper, we again consider the scaling of the density limit predicted 
by the l | -D BALDUR transport code 1 1 given the procedures and assump- • 
tions described in I. As alluded to above, we will show that the density limit 
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increases with input power, although somewhat more strongly than is in­
dicated by the JET results. We will also demonstrate that the maximum 
density increases with decreasing impurity concentration, as one would ex­
pect with a radiation limit. In both cases, the noted behavior can be obtained 
analytically by extending the calculations of I, 

The dependence of the density limit on plasma elongation is much less 
obvious. In order to determine this, we follow a set of experiments performed 
on the DIII-D tokamak. 1 2 ' 1 3 We find, as in the DIII-D experiments, 1 3 that 
there is no strong variation of the maximum density with elongation. 

The current scaling described in I arises largely because the radiated 
pcver is strongly peaked in a narrow temperature interval. Hence, there is 
some concern as to whether or not this result is dependent upon the assump­
tion of coronal equilibrium impurities. We show here that the scaling of I 
persists with non-equilibrium impurities, at least for the case of a titanium 
.mpurity. 

We describe in Sec. [I the changes we have made to the simulation model 
discussed in I. In Sec. Ill, we consider the question of the auxiliary power 
dependence of the density limit. Section IV provides a look at the scaling of 
the maximum density with impurity concentration, n:/ni. Using a DIII-D 
geometry, 1 2 we investigate the elongation dependence in Sec. V. Then, we 
consider the impact of a coronal non-equilibrium model for the impurities 
on the density limit current scaling in Sec. VI. Finally, we summarize our 
findings in Sec. VII. 

II. S imulat ion Mode l 

The equations solved by the BALDUR. code and the transport coefficients 
used in it are given in I. Note that all of the simulations discussed here employ 
the anomalous inward pinch described in I and, hence, exhibit peaked density 
profiles. 

Although the x c< l / n e transport model is i-easonable for Ohmic simula­
tions, it fails to reproduce the degraded confinement (i.e., L-mode scaling) 
expected with the addition of auxiliary input power P a u r . Consequently, we 
will also make use of the Singer-Ku thermal transport model1 1 , 1*1 in examin­
ing the Paux dependence. This model has been found to be robust and easy 
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to use. Since , \ 5 A <x T, it yields the feature we are most interested in, power 
degradation of confinement. 

The auxiliary power and impurity concentration scaling studies have been 
carried out with the same moments equilibrium routines mentioned in I. Use 
of these routines, particularly in noncircular geometries, has led to some 
difficulty in obtaining converged equilibria. Consequently, for simplicity, the 
scans of plasma elongation and current discussed in Sees. V and VI have 
been performed using analytic expressions for the equilibrium moments. The 
equilibrium packages in BALDUR have since been reworked, eliminating the 
numerical difficulties.15 

In order to treat nonequilibrium impurities, separate equations must be 
solved for each of the impurity charge states, balancing the effects of radial 
diffusion, ionization, recombination, as well as sources and sinks. 1 6 The equa­
tions used here and their original implementation in BALDUR are described 
in Ref. 17. Namely, for each charge state k of an impurity of atomic number 
Z, we have 

d_ 
dt 

(nkV) = -4- V(m\) 

~D, 

nk 

' K (TO + nkvk - nkp 

A\*t\ 
+ V'\ Skncnk + Sk-incnk^i 

- Rkncnk + Rk+intnk+i + Vk 

where nk is the density of charge state k, Sk and Rk are the associated ion­
ization and recombination rates, respectively, and T>^ is the local source rate. 
The L/TJ| term represents a simple treatment of the scrape-off losses.1 8 Conse­
quently, it is nonzero only for flux surfaces intersecting a material boundary. 
All other notation is as in I. 

We will assume that the anomalous impurity diffusivity and pinch velocity 
do not vary with charge state and that their values are essenitally the same 
as thos« of the hydrogenic species (as in 1): Dk — D = 0.5 m 2 /sec. vk = 
v = —'IDr/a2. We write ry = \2/D, where X is an effective scrape-off length 
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chosen to be approximately the distance between the last closed flux surface 
and the vacuum vessel wall. 1 9 

Neutrals [k = 0) arising from recombination are in included in Eq. (1), 
but have a much larger (constant) diffusivity and no pinch velocity. It is 
convenient to distinguish these neutrals from those due to edge sources. 1 0 

Namely, in order to enforce a particular level of recycling or impurity influx, 
we include a source of k = 1 ions associated with neutrals streaming in from 
the edge. A deposition profile is calculated using the background plasma 
parameters and then normalized to yield the desired influx of impurity ions. 1 6 

These appear in Eq. (1) as Vt which is thus nonzero only for k = 1. 
The atomic processes included in the rate equations are electron colli-

sional excitation and ionization, radiative and dielectronic recombination, 
bremsstrahlung radiation, and charge exchange recombination. The rates 
used here have been provided by Hulse,1 6 In fact, BALDUR solutions of 
Eq. (1) have been compared directly with those of Hulse's MIST code. 1 8 

Good agreement of impurity density and radiation profiles has been found 
for both steady-state and time-dependent situations. 2 0 

During a time-step, the equations Eq. (1) are solved before those of the 
main BALDUR code. 1 8 The most recently computed electron density and 
temperature profiles are used to evaluate the various rate coefficients in 
Eq. (1). Once these equations are solved, the main BALDUR code is provided 
with the total energy loss rate due to the impurity radiation and ionization, 
as well as information about the impurity density and charge state distribu­
tion. The equations for the hydrogenic densities, species temperatures and 
poloidal field can then be solved, completing the time-step. 

III. Auxiliary Power Dependence 

We choose as the initial run (i.e., Paux = 0) in this scan the one designated 
"03d" in I. The other simulations in the series are carried out in the same way 
except that auxiliary input power is added (in equal amounts) to the electrons 
and ions. A centrally peaked deposition profile (falling to ~ 1/2 of its central 
value at a/4) is assumed. As in 03d, the line-averaged electron density ne is 
raised slowly in a series of steady states. The titanium concentration ni-Jnr_ 
is held constant by puffing hydrogen gas and infiuxing impurity ions at the 
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plasma edge. Once again, the density limit is defined as the point at which 
Te = 20 eV at the q = 2 surface. 

In Fig. 1, we show the results of calculations at Paux = 0, 2, and i 
MW with both the \ K l / n e a n d the temperature-dependent Singer-Ku 
transport models. Note that the two models, using the original calibration 
coefficients,11 give essentially the same result at Paux = 0. The Ohmic heating 
power in these simulations is typically ~ 1 - 2 MW. Because the range of 
densities required in a simulation increases with Paux, this scan can not be 
easily extended to larger values of Paux- In fact, the Singer-Ku simulation at 
5 MW terminates slightly below the defined density limit (Te ~ 400 eV at 
q = 2); so, this point must be viewed as a lower bound on the density limit 
at the 5 MW power level. 

For the \ oc l / n e model, the density is increasing in an offset linear 
fashion with Paux. The scaling for the Singer-Ku model may be somewhat 
weaker. The best-fit lines shown in Fig. 1 are included to illustrate these 
dependences. 

This scaling of the maximum density with -P a u x can be obtained analyt­
ically by c-xiending the model developed in I. To the iaitial power balance 
inside the mixing radius rmix, we add a term for the auxiliary input power. 

/ dTt dTM rm" 
M W i ^ + ii);!^ =j r dr (pan + Pa*x) (?) 

' "mix 

For simplicity, we will investigate only the implications of the \ x l/nc 

model. 
As in I we assume 

^ r > r m i x ) x - ( - J « - ) . (3) 
ar \ a - rm,x J 

Insertion of an expression for POH then leads directly to an equation of tlie 
form 

aTe0 = JT;a

V2 + Pa„(rnit), (4) 

where the first term on the right-hand side represents the Ohmic heating 
power and the second term denotes the auxiliary power deposited inside the 
mixing radius. 
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In calculating the radiated power, we use a simplified form of the expres­
sion given in I since we are interested only in the scaling with Paux: 

PTad ~ 2ir2RLp ( n - r 2 ) ( r a i i e ( r t )n , ( r l ) + r - 2 n e ( r 2 )n , ( r 2 ) ] . (5) 

Namely, we are taking the radiation function to be a constant (L p) between 
T\ — T^Ti) and Ti — Tt{r-i) and zero everywhere else. Using Eqs. (27) and 
(30) of I, we obtain 

Prad oc R(a - rmix) n\ ^ e&, T^1/aT, (6) 

with p ~ 1 for peaked density profiles. To understand this scaling of Prad 

with T̂ oi one must realize that the range in radius over which radiation is 
emitted becomes narrower as the central temperature is increased. That 
is, since PTad ^ 0 only for 7\ < T c < T2, the width of the radiating layer. 
T] — r ; , decreases as the local gradient of Te becomes steeper. Since the latter 
increases directly with Tc0, as in Eq. (26) of I. we arrive at an inverse scaling 
for the radiated power with the central temperature. For the following, we 
will focus only on the scaling of nCtCTit and TCQ with PQH and PatlX\ all other 
factors will be lumped into the constant of proportionality. 

The global power balance condition for a detached plasma is 

P*« = Poff(a) + PauX(a)- (7) 

Writing the total POHW) in terms of the Ohmic heating power integrated 
out to rmtI [i.e., 0T~O

3'2; see Eq. (23) of I] and using Eq. (6), 

" e . c T i f CC 
roH{rmix. 

- I 1 / 2 

(S) 

Finally, we solve Eq. (4) in two different limits. At this point we neglect 
any differences between \Paux + Pon]r„a and [Paux + PoH]a- In the limit of 
Pai.r < POH , 

r "*(!f + F^ (9) 

and 

nt,crit - nc,cTit(Pwx = 0) oc PauI. (10) 
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In the opposite limit, Paux ^> POH, 

Tc0ocPtux, (11) 

and 
n=.cr,( OC Pa£T . ( 1 2 ) 

If we take aj = 1.4, the exponent on P o u x in Eq. (12) is 0.86. 
The result for the low power limit is confirmed in Fig. 1. We do not 

have sufficient data or a large enough range of Paair to verify Eq. (12). If the 
thermal diffusivity [represented by a in Eq. (4)] increases with temperature, 
we would expect a weaker scaling than shown in Eqs. (10) and (12). Presum­
ably, this accounts for the less than linear increase of the maximum density 
with P a u i in the Singer-Ku case (Fig. 1). 

Simpler scalings have appeared in the literature; typically, they exhibit a 
P*lz dependence. 2 1 The above formulas give rise to this behavior if we assume 
that the size of the radiating volume is independent of F O U I , For example, 
one might account for radiation only in the region between the q = 2 surface 
and the plasma edge. 2 1 This assumption would be inadequate in describing 
our simulations (or TFTR detached plasmas) since we allow the plasma edge 
to approach and even go through (i.e., past the "density limit") the q = 2 
surface. 

There is experimental evidence supporting the P*£ scaling, U 2 A although 
some devices have reported a weaker dependence of the maximum density on 
auxiliary input power. 3 - 1 3 In fact, JET has proposed a scaling for the edge 
density1 which is proportional to P^H- Note that the present theory as well 
can be more easily phrased in terms of the edge rather than the average 
density. That is, only the edge density appears in Eq. (5); information about 
the density profile must be utilized in order to write expressions in terms of 
n,_. Since the density profiles in the BALDUR simulations vary little, the 
edge and average densities are roughly proportional throughout these runs. 

Clearly, there are effects neglected in the present model which could af­
fect the scaling of the maximum density with Paul- First, it has long been 
suspected that the impurity concentration in the plasma center is related 
to the total power flowing to the limiter or divertor surfaces. Different -.vail 
conditions in other devices could give rise to different dependencies. Second. 
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the density profile shape may be affected by the input power level, the fueling 
method and the average density; since it is the edge density that is funda­
mental, the introduction of such additional variation would alter expressions 
for ne,cTit{P(itn)- Third, both particle and energy transport may vary with in­
put power. Finally, JET reports some indications of a fuelling limit in their 
high density discharges; 5' 1 0 this could also impact the Paux scaling. 

IV. Impurity Concentration Dependence 

The procedure used in this section is the same as in the previous one 
except that each of the discharges (all Ohmic) simulated will have different 
values of the impurity concentration. In order to include a wide range of Ze/f, 
we employ a carbon impurity in these runs. In particular, nc/nt varies from 
0.02 - 0.15; the corresponding values of Zejj are ~ 1.4 - ~ 5. Of course, 
during a particular simulation Z,/ / changes somewhat as the temperature 
profile evolves. Our results are shown in Fig. 2. The best-fit line drawn 
drawn through the data yields a scaling 

"e,cm<X ( — j . (13) 

It can be shown from Eqs. (28) and (34) of I that 

n. 
nl.crit-r x Zzu 

>\ °T J 

= [i + J ( { * > - < z > ) ] l ( 5 £ ^ . (14) 

We now consider two limits. First, in the case of low impurity concentration, 
Z.u * l, 

"«,cr,( x \JnJnl. (15) 

In the opposite limit of high impurity concentration, Zcjj ~ Z, 

2 i ) ^ ) ((*»)_(£)) K ^ ) . ( 1 6 ) 

9 

file:///JnJnl


[f we insert aT = 1.4 into this expression, we find 

"e.crit « ( l 7 . . / n e ) ~ ° 1 6 . (17) 

Fortuitously, the best-fit exponent from the simulations is midway between 
those of Eqs. (15) and (17). 

Experimentally, it has long been known that the limiting density is re­
duced as the impurity concentration is increased, 1 ' 2 ' 1 0 , 2 2 , 2 3 but detailed scal-
ings have rarely been published. The expression appearing in Ref. 21 (moti­
vated by empirical trends) yields nc„;t <x (nz/nr)~lS2 at fixed input power. 
We expect, however, that the enhanced input (Ohmic) power accompanying a 
rise in n./nc (through Z,ff) will offset to some extent the radiation increase, 
leading to a weaker scaling of the maximum density than ( n : / n e ) " 1 ' 2 . Hence, 
our results are not inconsistent with those of Ref. 21. 

V. Elongation Dependence 

The scaling of the density limit with plasma elongation is of interest to 
reactor design studies. Present plans for ITER and CIT specify elongations 
at the 95% flux surface of « ~ 2. Since most of the tokamak density limit 
database is at K < 2, we have another variable (in addition to plasma current, 
size, etc.) which must be extrapolated in order to estimate the maximum den­
sity in these devices. By investigating the question with the BALDUR code, 
we can help to substantiate any trends apparent in the existing database: 

Recent experiments 1 3 , 2 4 on the DIII-D tokamak 1 2 have attempted to ad­
dress this question directly. The following simulations are based upon these 
experiments. The parameters held constant throughout our runs are: R = 
1.655 m, a = 0.625 m, Ip = 0.95 MA, and BT = 2 T. We will consider elon­
gations of K =: 1.1 1.3, 1.5, 1.7, and 2.0. The corresponding triangularities 
have been estimated from the equilibrium plots presented in Ref. 24; we use 
<5 = 0.13, 0.15, 0.17, 0.29, and 0.52, respectively. 

Note that the elongations quoted in Refs. 13 and 24, ranging from 1.09 
to 1.99, refer to the limiter-defined flux surface. The corresponding range for 
the 95% flux surface 1 3 is 1.06 - 1.56. If one were to interpret the bounding 
surface in the 1-1/2-D BALDUR simulations as the 95% flux surface, the 
range of elongations examined here would br greater than that of the DI1I-D 
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experiments. As mentioned in Sec. II, we make use of an analytic equilibrium 
prescription in these simulations. This results in a flux surface elongation 
that is essentially constant across the minor radius. 

The particle transport model includes an anomalous inward pinch, as in 
the above simulations, giving rise to "peaked" density profiles. Likewise, we 
again make use of the x oc l / « t thermal transport model. As was discovered 
in the work leading up to I, simulations with titanium are more well-behaved 
numerically than those performed with a low-Z impurity such as carbon. 
Hence, we assume for simplicity that the impurity is titanium in coronal 
equilibrium. 

Each run is a sequence of steady states at successively higher densities 
with a constant impurity density. Namely, the volume-averaged impurity 
density is the same during a simulation and is furthermore the same for all 
simulations. The intent of this procedure is to model as closely as possible 
the empirical trends (i.e., one would expect Z e ; / to drop with increasing 
nz). Note that the empirical density limit data of Ref. 24 were obtained in 
discharges which had average densities steadily increasing in time. 

The results of our simulations are presented in Fig. 3; there are no in­
dications of a systematic scaling of the density limit with elongation. The 
empirical data of Refs. 13 and 24 lead to the same conclusion. In our model, 
high qcyi (high K) discharges are clearly detached before reaching our defined 
disruption point; low q^ cases are only slightly detached. Similar trends are 
noted in the DIII-D study. 1 3 ' 2 4 However, the importance of locked modes 
in the experiments indicates that additional MHD stability physics needs to 
be incorporated into the simulations before accurate modeling of individual 
shots can be performed. 

The density limit database analyzed by Greenwald included some noncir-
cular discharges,1 0 although not enough to allow the elongation dependence 
to be clearly discerned. The resulting scaling, 

«=.cr,< = - r x 10 M m" 3 , (IS) 

where Iv is the plasma current in mega-amperes and a is the minor radius 
in meters, is independent of elongation. This scaling in particular has been 
found to represent recent DIII-D (as well as existing Dili) data better than 
others that have been proposed.1 3 
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These pieces of empirical evidence and the results of our simulations ar­
gue against any significant dependence of the density limit on elongation. 
Nonetheless, we cannot completely rule out such behavior until we have ob­
tained a more complete picture of the physical processes involved. It is 
possible to use the analytic model of I to obtain an expression for the elon­
gation scaling of th" deusity limit. The calculations are, however, much 
more involved than tho>= cf the previous sections and will be deferred to a 
subsequent paper. 

VI. Current Scaling with Non-Equilibrium Impurities 

The recently inco.porated changes to the BALDUR code which aliow us 
to follow the time-development of the impurity charge state distribution yield 
a more :ealistic calculation of the impurity radiation. It is not obvious that 
the rrFects which give rise io the scalings noted above and in I will persist 
with this more complex description of the impurities. For this reason, we 
have carried out simulations using ptoceduies which are essentially identical 
to those leading to runs 02d, 02f, 02g, and '32h of I, but do not assume that 
the impurity is in coronal equilibrium. 

As in I, ?'e perform a series of runs with titanium impurity and peaked 
i^nsity profiles; numerical problems apparently related to the extremely non­
linear dependence of the radiation rates on Tt have prevented us from carry­
ing out similar simulations with low-Z impurities such as carbon. Each run 
consists of a sequence of steady states at successively lower values of Ip and 
BT (at cor^tant q^i = ITC?BTJlpoRIP)- The baseline parameters are similar 
to those of TFTR: k = 2.57 m, a = 0.82 m, Iv = 2.2 MA, and BT = 4.7 T: 
'.lenoe qC!/i = 2.8. We arrive at runs with higher qcvi by increasing the initial 
toroidal field strength. A new point has been added at a qcyi smaller (= 2.4) 
than ;hat of the baseline case. 

The results of these simulations are presented in Fig. 4. For comparison, 
we have included the coronal equilibrium data points from i. Overall, the 
nearly linear increase of the Murakami parameter with llqCyi (linear increase 
of density with current) persists with the non-equilibrium impurity model. 

There are two features of Fig. 4 worthy of closer examination. First, the 
linear scaling appears to falter at the largest value of qcy[. This behavior 



is not predicted by the theory of I. On the other hand, the "error bars" 
(i.e., the range of Murakami parameters over which we must interpolate to 
determine the critical density) at large q^i are wider than the deviation from 
linearity noted in Fig. 4. Hence, it is not clear that we can rule out the linear 
scaling at low currents. These simulations require the most computer time 
to carry out because of the greater radial distance the collapse must cover to 
reach q = 2. Consequently, the runs at even larger q^t required to define the 
scaling more clearly in the lower current region of the Hugill diagram become 
prohibitively expensive and difficult to carry out, particularly with the non-
equilibrium impurity model. Fortunately, most reactor design efforts focus 
on values of q < 3, so that the behavior at large safety factors is somewhat 
less interesting. 

The second curious aspect of Fig. 4 is that the nonequilibrium runs achieve 
larger Murakami parameters than the coronal equilibrium simulations. Under 
otherwise identic.-.! circumstances, one would expect the radiation from a 
nonequilibrium impurity to be greater. 1 6 , 2 5 The apparent discrepancy arise? 
from two effects. First, the line-averaged electron density is larger in the 
nonequilibrium case (nt - 5.3 x 10' 9 m~3 versus 4.7 x 10 1 9 in the coronal 
equilibrium run), although the density profiles inside r = 0.S2 m are nearly 
identical in the two runs. Calculating the line-averaged density involves 
integating ne ovsr the entire plasma and dividing by a characteristic plasma 
length scale. In both cases this length is taken to be th.elimiter radius. H';nce, 
there is a contribution from the scrape-off layer density in the nonequilibrium 
case that is not compensated for by a larger length. This accounts for most 
of the difference in the two values of n e . The other contributing factor is 
that the impurity density is slightly larger in the equilibrium case. We would 
expect this to lead to greater radiation and a consequently smaller critical 
Murakami parameter. The impurity levels in the two sets of runs ^vere arrived 
at independently during the development of the simulations. 

The work described in Ref. 25 indicates that at these densities (~ 10 1 9 

m - 3 ) and impurity confinement times ( ^ 1 s), the departures from coronal 
equilibrium may not be significant. Hence, it is not surprising that we have 
obtained results close to those of I. The need for this more realistic description 
of the impurities would be much greater if we were attempting to match, 
say, the detailed time-dependence of the radiated power in an experiment 
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following impurity injection. 

VII. Conclusions 

We have examined the dependence of the tokamak density limit (as de­
fined in I) on a number of variables. Our results can be summarized as 
follows. In both 1-I/2-D BALDUR transport simulations and an analytic 
calculation, the maximum density has been found to increase in an offset 
linear fashion with input power for Piux £ PQH- The scaling is expected to 
be weaker at higher powers. The use of a power-degrading thermal transport 
model also acts to Teduce the dependence of the limiting density on P a u r . 
Recent data from J E T 1 - 2 indicate that the density limit increases with input 
power, although with an exponent of 1/2, and that the crucial quantity is 
not the line-averaged density, but the density in the highly radiative edge 
region (as in the BALDUR simulations; see I). Other experiments show a 
weaker scaling. 3 ' 4 , 1 3 Undoubtedly, variations in the plasma-wall interactions 
account for some of the differences in these experimental results. A more 
quantitative analysis of these trends would require wall physics data to be 
incorporated into the BALDUR code. 

With regard to impurity concentration, an overall fit to the data from our 
simulations has yielded rae,cr,i oc (rj j /r j j) - 0 ' 3 . An analytic calculation indi­
cates that this exponent should approach -0.5 as nt/n, —» 0; a weaker scaling 
prevails in the opposite limit of Zt/j ~ Z. While it is widely acknowledged 
that the empirical density limit increases with decreasing impurity concen­
t ra t ion, 1 0 , 2 2 ' 2 3 no well-known scaling expressions have been published. 

Our simulations do not predict a strong dependence of the density limit 
on plasma elongation. Essentially the same cr.,. ision has been dr?."'n from 
experiments on DIII-D. 1 3 ' 2 4 There are no ' I'istic arguments to indicate 
whether or not this behavior is consistent with impurity radiation being the 
primary cause of the tokamak density limit. 

In the simulations discussed in I, the maximum density increased almost 
linearly with plasma current for peaked density profiles and a coronal equi­
librium impurity. We have found that this trend persists when we include the 
e.V ;cts of transport on the impurity charge state distribution by incorporating 
the complete set of impurity rate equations into the BALDUR simulation. 
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The similarity of the behavior in these runs to those using coronal equilibrium 
leads us to conjecture that the use of flat density profiles would again give 
rise to a maximum density which is nearly independent of plasma current.7 

Although we have not made attempts to model specific experimental dis­
charges in detail and have not incorporated a great deal of physics (beyond 
impurity radiation) into our simulations, the trends we are finding are largely 
consistent with existing density limit data. We conclude that the evidence 
for the density limit being precipitated by excessive impurity radiation is 
very strong indeed. However, the importance of the edge conditions 1 '* 9 in 
determining the amount of radiation in the plasma indicates that a more 
sophisticated treatment of the scrape-off layer and divertor plasma will be 
required to successfully model present-day experiments. 1 3 , 2 6 The related need 
for understanding the mechanisms of impurity generation and transport 6 has 
led to an increased level of detailed modelling of edge plasmas. Hopefully, 
the results of these investigations will shed further light on the origin of the 
density limit in tokamaks. 
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Figures 

FIG. 1. Maximum density as a function of auxiliary input power. The solid 
markers represent the \ &• l / n e transport model; open markers denote 
use of the Singer-Ku model. The lines are "best fits" to the data points. 

FIG. 2. Maximum density as a function of the relative carbon concentration. 
The solid line is the best-fit curve, nc,max oc ( n c / R e ) - 0 ' 3 3 . 

FIG. 3. Maximum density as a function of the plasma elongation. 

FIG. 4. Maximum Murakami parameter allowed at a given value of 1/<}CV;. 
The solid markers are the result of a assuming nonequilibrium impurity 

• species. The open markers are from I; Ip, Br scans are denoted by squares, 
n t scans by circles. Lines for n e = B-j-jRqcyi (solid) and ne = 2By/ Rqcr,i 
(dashed) are included for comparison. 
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