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ABSTRACT
We discuss the possibility of performing experiments allowing one to test

quantum mechanics versus any local realistic model within the context of the physics at
the *-factory. After having sketched the main features of the physical process under
consideration and having focused the locality requirements for it, we derive Bell's
inequalitiy for the two-meson system. Comparison with quantum predictions shows that
the inequality is not violated for any choice of the parameters characterizing the
measurement process. Contrary to the case of spin variables, there is then no way to
exclude, by experiments at the ^-factory, the possibility of a local realistic description of
the process. A recent suggestion about a test of quantum predictions versus the
assumption of a spontaneous factorization mechanism, as well as the claimed validity of
an inequality which is different from Bell's one, are also discussed. The general
conclusion is that the ^-factory facility does not seem to open new ways of testing
quantum mechanics versus alternative general schemes of the type which are usually
regarded as worth considering in the debate about locality and quantum mechanics. The
concluding Section is devoted to making clear our position with respect to the problems
discussed in this paper. It is pointed out that, in our opinion, the existing experimental
evidence makes already clear that one has to accept the "mysterious" features of
microscopic systems. The really crucial problem is that of investigating whether one can
restore a coherent worldview which generally informs with our experience at the
macroscopic level, by keeping all highly successful predictions of quantum theory at the
microscopic one.
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1. GENERAL CONSIDERATIONS.

1.1. Introduction

Why is it interesting to investigate the possibility of experimental tests about

"quantum mechanical paradoxical situations" in the specific context of the physics at the

O-Factory? The reason, when reduced to its essence, can be expressed in the following

terms. As is well known, quantum mechanics does not allow one, in general, to attribute

individual objective properties to the constituents of a composite system. This fact has

been widely discussed with reference to observables like the spin components, and has

been considered quite peculiar and embarrassing. However some recent clear-cut

experiments1^ have shown that nature, as far as spin correlations are concerned, is

actually that peculiar. There still is, however, a rooted reluctance to accept the fact that

objective properties do not exist when they refer to the very nature of the constituents,

e.g., to their being a K° or a K° meson. This is why it seems appropriate to make a

conceptual analysis of this point and to investigate the possibility of performing

correlation experiments on states originating from the decay of a O-meson, testing the

predictions of quantum theory against those deriving from other possible conceptual

frameworks which might seem more "acceptable" since they allow one to attribute definite

physical properties, at die individual level, to the constituents of the composite system.

1.2. Properties.

As is well known, quantum mechanics is a theory which allows one to make only

probabilistic conditional predictions about the outcomes of prospective and, in general,

incompatible measurements of physical observables. One is then led to face the problem

of the attribution of "objective (i.e. independent from any observer) physical properties"

to physical systems. There is a standard way to do this, which was proposed in the

celebrated EPR-paper 2\ Denoting by P(A=al*F), the probability of getting the result a in

a measurement of the observable A when the system is in the state F¥>, we say that a

physical system possesses the property (or element of physical reality: EPR) A=cc, iff

P(A=alT)=I.
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1.3. Entanglement

For the sake of simplicity, to discuss this point we consider the spin states of a

composite system S1+S2 of two spin-1/2 particles. Suppose their state is the factorized

state

(1.1)

where the labels 1 and 2 refer to the constituents and n (tn) specifies that the state is an

eigenstate of an (cm), belonging to the eigenvalue +1. For state (1.1), according to

the previous prescription, one is allowed to assert that panicle I has the property that its

spin is along n, and particle 2 has the property that its spin is along m. However, not all

states of S1+S2 are factorized. The most commonly considered entangled state is the

singlet state:

ISinglet>=(l/V2) [II +>!2->-l 1 - (1.2)

It is worth remarking that, for such a state, even though the system S1+S2

possesses properties (in the considered case S2=SZ=O), the individual constituents do not

have any property at all. In particular, since there is no observable (spin component)

referring to SI or to S2 for which the probability of an outcome equals 1, one is not

allowed to state, or even to think, that the spin of particle 1 (or of particle 2) is "along a

direction", even though the two constituents are far apart and noninteracn'ng.

1.4. Wave Packet Reduction.

The theory must embody a principle leading to the disentanglement of

entangled states. The postulate of wave packet reduction (WPR) plays such a role and, in

the case of entangled states describing far apart and noninteracting systems, leads to
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factorized states. For the above considered state (1.2), measuring, e.g., crz^) and finding

the result -1 , WPR leads to the factorized state IH* >=ll->12+> for which

P(cz(-)=+11*10=1, so that one can state that a property has emerged in the far-apart region

where S2 is, as a consequence of a measurement on SI.

It has to be remarked that this is one of the ways in which the fundamental

non locality of the theory shows up. However, it has to be stressed that the nonlocal

features are such 3) that they allow the peaceful coexistence of quantum mechanics and

relativity,4^ since they do not permit faster than light signalling.

1.5. The EPR Argument.

Immediately after the measurement, as we have seen, one can predict with

certainty the outcome of a prospective measurement of the z-component of the spin of S2,

and, as a consequence, there is a definite physical property (EPR) for it. If one adds the

EPR-Iocality requirement, i.e. that objective properties of a system cannot be

instantaneously created at a distance, one is led to conclude that such an EPR existed even

before the measurement took place. The quantum description of the physical situation by

the singlet state, however, does not contain any formal element referring to this objective

individual property of S2 before the measurement. As a consequence, Einstein Podolsky

and Rosen were led to the conclusion that quantum mechanics is an incomplete theory.

It has to be remarked that J.S. Bell 5), with his deep analysis, has proved,

completely in general, that the above mentioned fact is really not a drawback of the

theory, but a peculiar feature of nature itself at the microscopic level; in fact, if one

assumes locality and that the quantum correlations are "true", then objective properties of

the constituents cannot (even be thought to) exist before the measurement.

To conclude this Subsection we consider it important to stress that the

occurrence of the 100% correlations involved in an EPR-type set up, and which have

been referred to as ^ "paradoxes" or "non intuitive quantum mechanical expectations",

does not allow to draw any definite conclusion about the problem of local realism. In fact,

as is well known, it is trivial to build up local hidden variable theories which account for

these correlations. Testing quantum mechanics versus local realism requires, due to Bell's

theorem, the consideration of the quantum predictions concerning correlation

measurements involving non commuting observables of the subsystems of the composite

system (or, alternatively T), involving more than two far away systems in appropriate

quantum states).

1.6. Bell's Inequality.

Let us consider a local hidden variable theory and let us denote by A(a,X) and

B(b,A.) the definite values of two quantum observables A(a) and B(b), respectively,

given the value X of the hidden variables. Suppose that IAI, IB1<1. For a two particle

system we can identify, e.g., A(a) with cr^'-a and B(b) with a(2)-b, respectively. Let

us consider the quantity:

M(a,b)=|
(1.3)

which corresponds to the quantum mechanical mean value < A(a)-B(b)>. One has

M(a,b>M(a,la,b')=|

-I
(1.4)

There follows:
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IM(a,b)-M(a,b1)l<

(1.5)

or

IM(a,b)-M(a,b')l<2±[M(a',b')+M(a',b)] (1.6)

IM(a,b)-M(a,b')l+IM(a',br)+M(a',b)l£2 (1.7)

As is well known, when one attributes to the quantities M(a,b) the values implied by

quantum mechanics, the inequality (1.7) is remarkably violated for appropriate choices of

the directions appearing in it.

1.7 The Spontaneous Factorization Hypothesis.

It is important to remark that, in the case of a statistical mixture of factorized states

with weights p; and states lli>12i>, the quantum mechanical mean value <A(a)-B(b)>

becomes

<A(a) (1.8)

which has the same formal structure as (1.3). One can therefore derive again a Bell

inequality for it. As a consequence, the hypothesis ^ of a spontaneous factorization of

state vectors of a composite system when the constituents are far apart, can, in principle,
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be experimentally tested against quantum predictions (see, however, the detailed

discussion of Section 4.1).

2. LOCALITY AND THE K°, K° MESONS.

2.1. Dynamics of Mesons

We consider the strong decay of the 0(1020), J p c=l", vector meson into a pair of

neutral pseudoscalar mesons K°, K° . Due to C-conservation in strong interactions the

initial state of the decay products is

(2.1)

where 1 and r refer to the particles propagating to the left and to the right, respectively. It

has to be remarked that since the meson masses are about 500 MeV, the process is

nonrelativistic.

The dynamics of the K-mesons is governed by weak interactions which are

responsible for the strangeness oscillations as well as for the decays of such systems. The

strangeness oscillations can be phenomenologically described within the space spanned

by the IK°> and IK°> states by a non-Hermitian Hamiltonian Hw , which also takes into

account the loss of probability into the decay channels. The eigenstates of H w are

appropriate linear combinations of IK^> and IK°>:

IKs>= plK°>-qlK°>

[KL>= p'I

(2.2)

Let us denote by

Xs=ms-(i/2)Ys, X.L= (2.3)
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the eigenvalues of H w associated to the states (2.2).

One can choose the phases of IKS>, IKL>, IK°> and IK*> in such a way that p, q,

and p' are real and positive. We remark that CPT invariance implies p=p', q=q\ while the

further requirement of CP invariance would imply p=q=(lW2). In this case, using the

convention that CPIK°>=-IK°> and CPIK°>=-IK°>, the states IKS> and IKL> are

eigenstates of CP belonging to the eigenvalues +1 and -1, respectively and are therefore

orthogonal.

2.2. Local Properties of the K°, K° system.

The complete evolution of states (2.2) is described by a unitary operator U(t,O)

whose effect can be written as

(2.4)

where IQSjL(t)> describes the decay products.

Independently of any invariance requirement the initial state (2.1) turns out to be

(p'q+q'p)VT (2.5)

The state at time t is then obtained from (2.5) by applying to it a unitary operator

which is the direct product

U(t,O)=U!(t,0)Ur(t,0) (2.6)

of the operators U](t,0) and Ur(t,0) acting on the space of the ! and r mesons in

accordance with (2.4). One then sees that the probability of finding, in two measurements
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performed at the same time, mesons with the same strangeness, i.e two K° or two K°

mesons, is equal to zero, independently of any specific invariance assumption.

One can then argue as follows: suppose one performs at time t a measurement

aimed to detect the presence of a K° meson at r, and suppose one finds it. Then one can

assert that the subsystem at 1 has the objective property of not being a K° . Any local

theory would then imply that this EPR at left must be present independently of the

measurement at the right having been performed or not. This fact gives rise to

"difficulties" for the quantum scheme which are the analogue of those discussed in Sect.

1.4 for spin variables. One is then led to investigate whether one can find for the

considered process a local deterministic completion of quantum mechanics, i.e. a theory

in which the outcomes of measurements at any time t (in particular of those ascertaining

the very nature of the particles which are present) are determined and correspond to

possessed properties of the systems at the considered times.

2,3. The Quantum Probabilities.

We derive now the basic expressions which will be useful in what follows and

which will allow the evaluation of the probabilities, according to standard quantum

mechanics, of finding a K° or a K° meson in two measurements performed at two

different times tr and x\ (tj > t r) at positions xr and x|, respectively. We denote by Pi(k),

where i=lj; k=K^, K" , the projection operators on the l,r-meson states, so that, e.g.

Pr(K°)=l K ^ n ^ K 0 I. As usual, we also denote by Qj(k) = 1-Pj(k), the operators

projecting on the manifolds orthogonal to those associated to Pj(k). Obviously all the now

considered operators commute among themselves.

According to eq.(2.6), starring from the initial state (2.5) one gets, at time tr the

state

|«P(t=t r)>=U,(t r,0)Ur(t rtO)l>F(t=O)> (2.7)
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Measuring Pr(k) yields reduction to the state

HPr(k)lH'(t=tr)>ll (2.8)

with probability IIPr(k) llF(t=tr)>ll2. One then evaluates the state at time t[ to which the state

(2.8) has evolved. The probability of finding a meson state k in the measurement at the

right and a meson state k1 in the one at the left is therefore given by the squared norm of

the state

IT(t1,tr)>=P1(k
1)U1(t,,tr)Ur(t1,tr)Pr(k)l4'(t=tr)> (2.9)

Such a squared norm, taking into account the unitarity and composition laws of the

operators U, as well as the fact that operators referring to the different (r and 1) Hilbert

spaces commute, coincides with the squared norm of the state

PPft i,t r)>=P1(k')Pr(k)U1(t ,,0)Ur(t r>O)IH'(t=0)> (2.10)

In what follows we will be led to consider also the probabilities of not finding a specific

particle in a measurement. Obviously this requires the consideration of the projection

operators Qj(k) defined above. Evaluation of the corresponding probabilities for such

processes can be done by using again formula (2.10) with the operators Q replacing,

where required, the operators P.

It is physically interesting (see the discussion of the next section) to consider the

joint probabilities that in each of the two measurements at (xritr) and (x\t\) a K° meson is

detected (Y) or not detected (N). We denote such probabilities by P(Y,ti;Y,tr),
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P(Y,ti;N,tr), P(N.ti;Y,tr) and P(N,l[;N,tr), with obvious meaning of the symbols.

Typically, e.g.

(2.11)P(Y,t,;N,tr) = IIPi(K°)Qr(K°)U|(t,,0)Ur(tr,0)llI'(t=0)>ll2

It has to be remarked that in the evaluation of such probabilities the scalar product

of the decay states IOL(0> and liis(t)> appears. As is well known, such states are not

orthogonal when CP-invariance does not hold. One has:

(2.12)

The modulus e of the quantity <KrJKg> can be taken as a measure of CP-violation and it

turns out to be smaller than 10"2. As a consequence the computations of the following

section, as well as the conclusions we will draw in it, are easily seen not to be affected in

any significant way by making the approximation e=0.

3. BELL'S INEQUALITIES FOR THE K°, K° SYSTEM

3.1. Introductory Considerations.

The problem of testing the predictions of quantum mechanics against those of any

local detenninistic hidden variable theory presents some analogies but also significant

practical and conceptual differences with respect to the corresponding problem in the case

of spin variables. The differences derive from two specific features. First, while in the

spin case one can devise a test to check whether a spin 1/2-particIe is or it is not in any

chosen spin state alz+>+blz-> (which corresponds to the spin being "up" in an appropriate

direction), there is no analogous way to test whether the system is in the linear

superposition aIK°>+blK0>. Actually, what one can do is to identify the strangeness of

the mesons at a given time. In particular, since in the literature reference is always made to
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detection of K° mesons, we will take into account probabilities of the kind of the one

considered in (2.11).

The second important difference derives from the fact that, while in the spin case

the direct product space H ^ ^ ®H ^ ^ u , is sufficient to account for all spin properties

of the system, in the case under consideration the state vector acquires by evolution

components on the manifold of the decay products, orthogonal to the H ®K®/f MR

space. As a consequence, the norm of the component on such a space decreases with time

and this fact, through a subtle interplay of the damping and of the strangeness

oscillations, makes it more difficult or even impossible to test the theory against local

hidden variable models.

On the other hand, there are analogies between the two cases which deserve to be

stressed. The most direct way to illustrate this point is to consider only the strangeness

oscillations, disregarding the meson decays. Such oscillations can be described by a

Hermitian Hamiltonian which is obtained from the H w of section 2 by putting Ys=^=0.

In this approximation the quantum probabilities considered in the previous subsection

become

P(Y,t,;Y,tr)=P(N,t,;N,tr)=i{l-coseir]

(3.1)

where

(3.2)

We remark that, in the case of the singlet state, the probability of finding, in a

simultaneous spin measurement of the two particles, spins "up" (t) or "down" (*l) along

two chosen directions a and b is given by

P(a,T;b,T) = P(a,l;b,l) = J[l-cos 9lb]

P(a,T;b,l) = P(a,i;b,T) =i{l+cos
(3.3)

Comparing these equations one sees that the analogue of a spin correlation measurement

along two arbitrary directions at the same time is the detection of K° mesons at

appropriate different times.

Obviously eq.(3.1) does not describe the actual situation; the true probabilities are

damped due to the presence of the decay channels.

3.2. Implications of the Locality Requirement

As discussed in Section 1.6, in the case of spin variables one can derive the

inequality (1.7) for the averaged values (1.3) of spin correlations along arbitrary

directions a and b. The analogue of the free choice of the spin directions is, in the present

case, the free choice of the times at which measurements aimed to detect K° mesons are

performed at the left and at the right, respectively. Let us consider four times, the first

two, tj and t2, referring to measurements performed on the particle at the left (at points \\

and X2, respectively) the other two, 13 and t4, referring to measurements performed on

the particle at the right (at points xj and X4, respectively). The times are chosen in such a

way that each event at the left, e.g. (xj,ti), is space-like with respect to each event at the

right, e.g. (X3,t3), and so on.

The locality assumption requires then that the results at one side be completely

independent of the time at which the measurement at the other side is performed. To
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define the appropriate correlation functions to be used in Bell's inequality, one considers

an observable Oft;), which assumes the value +1 if in the measurement at (xj.tj) a K°

meson is detected and the value -1 in the opposite case. In terms of such an observable we

can define the correlation function O(ti,tj), i=l,2, j=3,4, which takes the value +1 both

when two or when no K° mesons have been found in the rwo measurements at (x;,ti) and

at (xj.tj), and the value -1 if only one meson has been found, no matter at which side. The

locality assumption implies then that O(t;,tj), in a specific individual experiment, equals

the product of O(tj) and O(tj):

O(q,tj) =O(ti) • O(tj)

From this equation one derives immediately

(3.4)

IO(tl,t3)-0(ti,t4)l+IO(t2,t3)40(t2,t4)l=2 (3.5)

Let us consider now a sequence of N identical measurements, and let us denote by

On the value taken by O in the n-th experiment The average

ti,ti)~L
(3.6)

satisfies then

IM(t i,t 3)-M(t !,t 4)l+IM{t2,t3)+M(t 2,t4)l£

{10 n(t i ,t 3)-0 n(t,,t 4)I+IO n(t 2,t 3)+0 n(t 2,t 4)1 )=2

(3.7)

- 1 4 -

Equation (3.7) is the Bell inequality for the considered case*. It has to be remarked that,

even though it has been derived having in mind a detenninistic local hidden variable

model, it can also be proved to follow from different assumptions. For example one can

derive it 11>12) by counterfactual arguments making use only of locality requirements

about the records of macroscopic apparatuses.

3.3. The Quantum Case

We are now in the position of comparing the predictions of quantum mechanics

with those of local theories, and to investigate whether one can, as in the spin case,

perform clear-cut experiments which prove that it is impossible to account for the O-decay

into K mesons in terms of a local theory. To this purpose one has to substitute in eq.(3.7)

the quantum expressions for the quantities M(ti,tj) and to study whether one can violate

eq.{3.7) by an appropriate choice of the times t[t t2, t3 and 14 appearing in it. To this

purpose we observe that O(ti,tp, in the quantum case, is an observable whose value is

determined by the outcome of the measurement aimed to detect a K° meson at time tj at

left and at time tj at right. In the case in which two or no such mesons are detected, O(ti,tj)

takes the value +1, in the opposite case it takes the value -1. The quantum mean value

M(ti.tj) of such an observable is then the sum of the statistical frequencies of the results

YY, NN minus the sum of the statistical frequencies of the results YN and NY. As the

number of measurements becomes very large the statistical frequencies become the

quantum probabilities, so that

M(ti,tj)=P(Y,ti;Y,tj)+P(N,ti;N,tj)-PCY,ti;N,tj)-P(N,ti;Y,tj) (3.8)

* In a recent paper')it has been claimed that one could build a local hidden variable theory reproducing
exactly the quantum mechanical predictions for the <t-decay process. If this would be true the derivation of
eq.(3.7) would have been useless. However, as remarked in ref.(10), the procedure of ref. (9) requires the
consideration of negative probabilities.



One can simplify the computation by remarking that the four probabilities appearing in

eq.(3.8) sum up to 1, so that one has

M(ti,tj)=l-2(P(Y,ti;N,tj)+P(N,ti;Y,tj)} (3.9)

One has then simply to evaluate the probabilities appearing in eq.(3.9) by using

the procedure we have outlined in Section 2.3. A trivial but cumbersome calculation

gives:

P(Y,t i=N,tj)

(3.10)

The probability P(N,tj;Y,tj) is obtained from (3.10) by interchanging q with tj.

Substitution of (3.9) and (3.10) into (3.7) allows one to check whether one can get a

violation of Bell's inequality in the case under consideration. As already remarked at the

end of Section 2, the contribution to M(tj,tj) deriving from CP nonconservation is

extremely small, and turns out to be totally insignificant for what concerns the possibility

of putting into evidence a violation of Bell's inequality. We are then allowed to assume

e=0 in the above formulae. From eq.(3.10) one sees that, if ysr^ (k=ij) is appreciably

larger than 1, the terms describing the strangeness oscillations disappear. As a

consequence the times which have to be considered must satisfy T^Hc-l .Since Yss582 "fi,

one can then put in expression (3.10) •ftjk = 0. With these approximations, substitution

of (3.10) and (3.9) in (3.7) gives:

[Arn(t i-tjfl-e-r^'+'^os [Am(t rt4)]l

(3.11)

[Am(t2-t3)J+e"1'!(t2+uv:2cos [Am(t2-t4)]l<2

-16-

A detailed numerical study of eq.(3.11) shows that, due to the specific values of the

parameters y$ and Am, there is no possibility of choosing the four times appearing in it in

such a way that the inequality be violated* . One way of making plausible this fact, which

can be proved to hold completely in general, is the following. Let us choose values for the

four times appearing in eq.(3.H) such that, if the exponential factors appearing in it

would all be equal to 1 one would get the maximum possible violation of the inequality,

which, as well known, occurs when the left hand side takes the value 2V2. The

considered precise choice of the times makes then definite the values of the exponentials.

In such a case one gets for the left hand side a value which is much smaller than 2. The

same kind of considerations show that (3.11) could be violated if I Ami would be

appreciably larger than 75 + H- So, it is a fact about the specific properties of the K-

meson system that inequality (3.11) turns out not to be violated by any choice of the times

appearing in it The experimental exclusion of a local deterministic account of the process

under consideration cannot therefore be obtained.

4. OTHER SUGGESTIONS FOR TESTING QUANTUM MECHANICS

4.1. Possibility of Testing the Spontaneous Factorization Hypothesis

As we remarked in Section 1.7, the hypothesis that the state vector of a composite

system spontaneously factorizes can, in principle, be experimentally tested against

quantum predictions. However, some important remarks concerning such an assumption

are necessary.

* It is useful to remark that eq. (3.11) holds only under the specific assumption YLt̂  = 0. If one does not
take this into account one could be mislead by the fact that the left hand side of the above equation
vanishes for large times. This cannot be, since for such times PfN.t^N.tj) tends to 1 and, as a
consequence, the left hand side of (3.7) actually tends to 2. However, it is easy to see that such a limit is
reached from below. This could have been expected; the strangeness oscillations are the specific features of
the process which might lead (recall the analogy with the spin case) to a violation of Bell's inequality.
When they are drastically suppressed the inequality is satisfied.
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i)- As it has been shown long ago '•", such a hypothesis cannot be simply fitted within

the quantum formalism. In fact one can prove with great generality that such an

assumption entails that different (from the point of view of their composition in pure

subensembles) statistical ensembles which correspond to the same statisticaJ operator (and

as such are physically indistinguishable within the quantum formalism) would evolve, as

a consequence of the spontaneous factorization mechanism, into statistical ensembles

described by different statistical operators, and as such they would become physically

distinguishable. Thus, one cannot even describe the process in the statistical operator

formalism. This argument is, in our opinion, sufficient to make the assumption of

spontaneous factorization untenable.

ii)- Even if one disregards the above important remark, the simple assumption of

spontaneous factorization, if one does not make a specific choice for the factorization

mechanism, leads only to Bell's inequality, and therefore to test it against quantum

mechanics is equivalent to test the general requirement of locality we discussed in the

previous Section.

Obviously, the situation is radically different if one makes precise the factorization

mechanism. To understand this one can make reference to the spin singlet case repeatedly

considered above. If one assumes that such a state spontaneously factorizes e.g. to the

statistical mixture with equal weights of the factorized states Il+>l2->and ll->12+> then,

obviously, measuring the spin components of the two particles along the x-axis will give

in 50% of the cases the same result, an occurrence which is strictly forbidden by quantum

mechanics.

A particular mechanism of this type for the K°, K° entangled state (2.1) has been

discussed by Six 14\ He considers the assumption that the state (2.1) spontaneously

factorizes, in a very short time after the 3>-decay, to the equal weights mixture of the

states IKL>| IKs>r and IKs>i KL>r, In such a case it is easy to see that a measurement

of the type of those considered in the previous Section, aimed to detect K" -mesons at
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times t[ and tr _ allows one, in principle, to discriminate between quantum mechanics and

the dynamics leading to the spontaneous factorization.

To see this one has simply to follow the lines of Section 2.3. The quantum

mechanical probability P(Y,q;Y,tr), when the approximation of CP invariance is made,

turns out to be

P(Y.t,;Y,i,)4le-l [ A m ( t l . t r ) ] j
(4.1)

while the corresponding quantity using the above factorization hypothesis is

(4.2)

The two expressions differ by the interference term containing the damped oscillations.

As discussed in ref.(15), such a difference seems to be experimentally detectable provided

one has a machine with a luminosity of the order of 1 0 ^ cm"2 sec"1.

However, we want to stress that even though we have considered it appropriate to

discuss the above matter for completeness, in view of the remarks under i), we do not

believe it worthwhile to follow this line of thought. Before the spontaneous factorization

hypothesis could be taken so seriously that it could be thought worthwhile to subject it to

experimental tests, one should be able to give to it an acceptable formal and conceptual

status. An attempt in this direction can be found in ref.(16).

4.2. On an Alleged Possibility of Testing Local Theories.

It has been claimed ) that the requirements of local realism pius some essential

invariance conditions allow the derivation of an inequality for the probability of finding

two K° mesons in the two measurements at times t[ and tr which can be violated by

quantum mechanics. This claim has to be discussed since, if correct, it could allow a
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refutation of local theories by experimental tests which differ from those considered in

connection with Bell's inequality.

The argument of ref.(17) goes as follows. A general local realistic model is

considered, the only restrictions which are imposed on it being:

i)- That it reproduces the quantum correlations for the state that evolves from the state

(2.1) and, in particular, that it forbids two K° mesons from being found in simultaneous

measurements, i.e. at t] = tr.

ii)- That it satisfies CP-invariance, which in turn implies, due to the CPT theorem, T-

invariance.

From these assumptions the author derives the following inequality for the above-

mentioned probability:

,ti;Y,tr)£i-{
(4.3)

Such an inequality has to be confronted with the quantum expression (4.1) for the same

process; one sees that, for appropriate choices for the times t] and tr the probability (4.1)

turns out to be greater than the limit (4.3).

It is easy to prove that the above argument is not correct, due to an inappropriate

way of dealing with the requirement ii). We recall that in any realist model the mesons

must be assumed to possess at all times the objective property of having a definite

strangeness, i.e., of being either K° or K°. The author a!so assumes that the mesons

decays are stochastic processes which are independent of the strangeness oscillations and

remarks that the locality requirement, together with assumption i), imply that the

strangeness oscillations are governed by a deterministic mechanism. To discuss the

author's derivation of eq. (4.3) we make reference to the system of a single meson.

According to the previous analysis, there must then be a hidden variable X which

characterizes completely its strangeness oscillations.
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Within the quantum formalism the T-invariance requirement implies:

i =l<K°IU<t,O)IK°>r (4.4)

whose physical meaning is obvious: for a meson which is initially in the state IK°> the

probability that it is found in the state IK°> at time t must equal the probability that a

meson which initially is in the state IK°> be found in the state IK°> at the same time. We

note that eq.(4.4) refers to probabilities which can be experimentally tested.

We discuss now the local realistic model and we consider an ensemble of systems

corresponding to the quantum state IK°> at time t=0. At time t the ensemble will turn out

to be the union of two "hidden" subensembles E(K°,t) and E(K°,t) which contain only

K° and K° mesons, respectively. (We disregard the decays of the mesons since we have

assumed, with the author, that they are independent of the strangeness oscillations). Let us

denote by «<t) the weight associated to E(K°,t). The author of ref. (17) makes an

assumption which amounts to stating that co(t) evolves according to

dco(t)
dt

•=-7(0aXt)+5(t)[l-{o(t)]
(4.5)

and he claims that T-reversal invariance implies 7(t)=8(t). This claim derives from a too

restrictive way of satisfying the requirement (4.4); actually it amounts to requiring that the

fraction 7(t)dt of systems which, belonging to E(K°,t) jump to E(K°,t) in the time interval

dt equals the fraction 5(t)dt of systems which, belonging to E(K°,t), jump, in the same

time interval dt, to E(K°,t). However, y(t) and 5(0 are "hidden" rates, and as such they

are not testable. The more general way to satisfy the probability condition (4.4) is to

assume that the hidden variable probability densities associated to the initial states IK0 >

and fK°> be equal:
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(4.6)

[n a sense the author has transferred in a too straightforward way a requirement of the

quantum theory for probabilities to a corresponding requirement for the hidden variable

theory, in the same way in which von Neumann, in his proof of the impossibility of a

deterministic completion of quantum mechanics, had transferred the requirement about

mean values of sum of observables to the values determined by the assignment of the

hidden variables themselves. This is not logically necessary. As a consequence one

cannot legitimately use the argument of the author leading to the inequality (4.1).

5. COMMENTS AND CONCLUSIONS.

We have considered in this paper whether it is possible to perform experiments

which would allow a clear-cut refutation of any local realistic completion of the quantum

mechanical description of O-decay processes. Such a program would correspond to the

one which has been developed in connection with spin properties of the constituents of a

composite system in an entangled state and which has led to the conclusion that in such a

case such a completion is actually impossible.

In the case under consideration we have seen that, due to the differences with the

spin case, in particular due to the fact that we cannot devise apparatuses which would

correspond to measurements of all observables in the K", K° space, to the fact that

mesons undergo decay processes in very short times and finally, to the specific physical

properties of the considered systems, i.e. their mass differences and their lifetimes, it

turns out to be impossible to perform experimenta crucis which would set up the

question. One could then be tempted to consider this fact as indicating that, when

fundamental properties of physical systems, such as their being panicles of a definite
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type, are involved, one is allowed to mantain that such properties are indeed possessed by

the systems, independently of any "act of measurement" aimed to detect them.

We consider it appropriate to state clearly that this is not our position. In fact we

want to stress that the case of <D-decays is only one, among the innumerable ones

occurring in nature in which superpositions of states occur for which the various terms of

the linear combination refer to particles of different types. This is obvious if one takes into

account that almost all particles are unstable and that quantum mechanics describes the

dynamics of such systems in terms of the linear superposition of the unstable state and its

decay products. The above conclusion would be legitimate only if one could prove that in

all processes involving unstable particles a local completion of quantum mechanics could

be found.

We can briefly summarize our point of view as follows. As we have seen, in the

case under consideration there is no direct way to discriminate between quantum

mechanics and local realistic models. But we keep the conviction that, as it has been

proved for other variables like the spin ones, the quantum assumption that the wave

function gives a complete description of physical processes is still the appropriate one for

such microscopic systems. This amounts to say that we accept that the constituents of

state (2.1) cannot be considered as having definite EPR's referring to them being K® or

K° mesons up to the moment in which a "measurement like procedure" takes place. Our

position corresponds exactly to the one taken by J. Bell l s) ; "a fundamental physical

theory would allow electrons to enjoy the cloudiness of waves, while allowing tables and

chairs, and ourselves, and black marks on photographs, to be rather definitely in one

place rather than another, and to be described in "classical terms". We stress that the

expression "the cloudiness of waves" involves not being in a definite position, not having

a definite spin component and then also (in our opinion) not being a K° or a K° .

To make even more clear what is our point of view we consider it appropriate to

make reference to the clear attitude taken by D. Mermin19) and to stress what we share of



it and what we think should be modified. In presenting his beautiful and elegant

derivation of Bell's inequality, Mermin starts by giving two quotations:

We often discussed his notions on objective reality. 1 recall that during one walk

Einstein suddenly stopped, turned to me and asked whether I really believed that the

moon exists only when I look at it. A. Pais '.

....one should no more rack one's brain about the problem of whether something

one cannot know anything about exists all the same, than about the ancient question of

how many angels are able to sit on the point of a needle. But it seems to me that Einstein's

questions are ultimately always of this kind.W. Pauli21).

Mermin then adds his comments about the above statements: Pauli and Einstein

were both wrong. The questions with which Einstein attacked the quantum theory do

have answers; but they are not the answers Einstein expected them to have. We now

know that the moon is demonstrably not there when nobody looks. Mermin was

obviously making reference to the conceptual analysis of an EPR-Bohm situation with the

singlet state. His sentence should then read: We now know that in an entangled state of

two electrons the individual electrons do not have any definite spin property when nobody

(directly or indirectly) looks at them. We share this point of view and we would add that,

in spite of the fact that, as discussed in this paper, one cannot have in the case of the K-

mesons such a conclusive experimental proof as the one we have for spin variables, the

mesons in the entangled state do not have the property of being K° or K° when nobody

looks.

However, we do not share Mermin's position when one passes from the

microscopic domain to the macroscopic one, in particular when microscopic processes

trigger macroscopic changes (this is what we meant above by the expression

"measurement like processes"). In particular we still consider unacceptable, with Einstein

and Bell, that the moon is not there when nobody looks. This problem, i.e. the one of the
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possibie occurrence of linear superpositions of macroscopically distinguishable states is,

in our as well as in many others opinion, the real crucial point of quantum mechanics.

We conclude by mentioning that in recent times, through the consideration of

specific phenomenological models22), it has been proved that one can devise theories

which, even though allowing all peculiar, unreasonable and fuzzy behaviours and modes

of being for microscopic systems that quantum mechanics has compelled us to accept,

nevertheless/orW the moon to be not there when nobody looks.
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