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ABSTRACT. Three distinct types of high toroidal mode number instabilities 

are obtained from a comprehensive kinetic calculation, using as input transport 

code results from the analysis of a recent design for the Burning Plasma Experiment 

(BPX). These instabilities are: the collisionless trapped-electron ion-temperature-

gradient mode, the magnetohydrodynamic ballooning mode, and a high toroidal 

mode number version of the toroidicity-induced Alfven eigenmode or "gap" mode. 

The dependence of the instability linear eigenfrequencies on minor radius, beta, and 

<4 toroidal mode number are investigated, along with the effects of hot alpha particles. 

Relative quasilinear fluxes of particles and energy for each species are also obtained. 

In addition, the beta dependence of the magnetohydrodynamjc ballooning mode 

is investigated for a case using as input the results of a transport code calculation 

for the Tokamak Fusion Test Reactor (TFTR) in an extrapolation to a deuterium-

tritium mixture. The effects of alpha particles and the relative quasilinear fluxes 

are also investigated for this case. 
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1. INTRODUCTION 

A comprehensive toroidal kinetic analysis for higb-n {toroidal mode number) instabilities 

has been described in detail in Refs. [1] and [2], The associated computer code has been 

applied to the study of alpha-particle effects on the trapped-electron drift mode and the * 

magnetohydrodynamic (MHD) ballooning mode in Ref. [3] for cases corresponding to an 

earlier design of the Burning Plasma Experiment (BPX), then called the Compact Ignition 

Tokamak (CIT), and to the Tokamak Fusion Test Reactor (TFTR). In the present work, 

an additional instability is studied, namely the high-n version of the so-called "toroidicity-

induced Alfven eigenmode" (TAE) or "gap" mode, previously studied for low n in Ref. [4) 

and, in a less comprehensive calculation than the present one, for high n in Ref. [5J. Alpha 

particle effects on the low-n TAE mode have been investigated in Ref. [6]. The potential 

relevance of this type of instability has gained support from recent experimental results 

indicating their possible presence[7]. 

In discussing the properties of t in TAE mode, it is convenient to refer to it as the u;A 

root, because the real frequency wT is of the order of the Alfven frequency UJA = vA/qRv, * 

where vA =. 5 0 / (4n - n,mi) I / ' 2 is the Alfven velocity. Also, the MHD ballooning mode will 

be referred to as the w.p,- root, because, when kinetic effects are included, its real frequency 

u r is of the order of u ^ , the ion diai.iagnetic frequency determined by the ion pressure 

gradient. Toroidal electrostatic drift modes are destabilized by the combined effects of the 

unfavorable trapped-electron time-average magnetic drift (precession) frequency, responsible 

for driving the collisionless trapped-electron mode, and by the familiar ion temperature 

gradient [TJJ = (<£lnTj/<fr)/(<ilnn;/<fr)] mechanism, as pointed out in Ref. [8]. Accordingly, 

this type of instability is referred to as the trapped-electron-j/,- mode. 

The first of the specific cases investigated here employs the output from a run [9] of 

the BALDUR transport code[10] for a recent design of BPX with major radius RQ = 2.6 r 

m, magnetic field on axis Bo = 9.0 T, and plasma current / p = 15.8 MA. Results are 

also presented here for a case corresponding to an extrapolatior.[ll] for TFTR to an equal 
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mixture of deuterium and tritium, from a previous deuterium-only experimental discharge, 

with moderately optimistic assumptions yielding Q = fusion power / external heating power 

= 0.5. 

The linear and quasilineax calculation employed here can be either electrostatic or fully 

electromagnetic, and it includes all of the relevant kinetic effects for the magnetically trapped 

and untrapped particles of each species. These effects include bounce frequency resonances 

for trapped particles, transit frequency resonances for untrapped particles, and magnetic 

curvature and gradient drift frequency effects, without any ordering between these frequen­

cies and the mode frequency. Full finite Larmor radius effects are included. The analysis 

makes use of the so-called "ballooning formalism" at lowest order[12], which yields a radially 

local calculation for the ei gen frequency and eigenfunction. The so-called " l / n " correction 

term at higher order[12] can also be included. 

The input data, for the calculation can be obtained from running the BALDUR transport 

code or another transport code, or from experimental data. This information includes the 

safety factor q{r), the densities n.j(r), and the temperatures Tj(r), for j = e, i, a, where e 

refers to electrons, i refers to a single ionic species of mass 2.5 amu representing an equal 

mixture of deuterium and tritium, and a refers to the hot alpha particles. The equilibrium 

distribution functions for the electrons and ions, the background species, are taken to be 

Maxwellian, which is a good approximation, and that for the alphas is taken to be a "slowing-

down" distribution, Fa = FSD « [v3 + v^)'1, where vc is the sc-called critical velocity. This 

should be an adequate approximation for the hot alphas, and the sensitivity to this choice is 

investigated in Ref. [3] where results with a slowing-down distribution and with a Maxwellian 

distribution for the alphas are compared. Using the safety factor and pressure profiles from 

the transport code calculation, the MHD equilibrium is obtained numerically. In this process, 

the density profiles n,(r) , and thus p(r) and /?(r), can be multiplied by a constant and the 

MHD equilibrium numerically recomputed. This allows artificial variation of 0 « ra, at fixed 

Tj and B0. Note that, with this prescription, the ALven velocity vA = 5 0 / (4^n ,mj) 1 ^ 2 and 
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the Alfven frequency U>A = v^/qBo both vary as / J - 1 ' 2 . In addition, kept oc n is varied to find 

the maximum of the linear growth rate 7, and r is varied to explore the radial dependence 

of the eigenfrequency, for each of the three types of instabilities considered. 

The effect of the hot alpha particles can be isolated by turning their number density frac­

tion, nafnc, on or off, at fixed ne(r). In order to preserve the condition of local equilibrium 

charge neutrality, £ \ rijej = 0, and its radial derivative, the ion number density fraction, 

n , /n c , and rni/r„e, where r n ; = — (<f lnr i j / r fr) - 1 , are adjusted to compensate for the absence 

of the alphas. Also, the nonadiabatic contributions of the trapped and untrapped alphas 

can be turned on and off separately, to assess their individual effects. 

The calculation also produces the quasilinear particle and energy fluxes for each species 

for each of the instabilities considered. The absolute levels are not directly obtained, because 

they involve the saturation level 4>o of the perturbed electrostatic potential, which is not 

determined in a purely linear and quasilinear calculation. However, the relative transport 

for the different species and for particles and energy can be determined for each of the 

instabilities studies here. 

Results are presented in Section 2 for the BPX case for the three types of instabilities, 

with the r variation considered in Section 2.1, the 0 oc n, variation and the hot alpha 

particle effects in Section 2.2, the fcgpt oc n variation in Section 2.3, the quasilinear transport 

in Section 2.4, and the 1/n correction in Section 2.5. The TFTR case is presented in Section 

3. Conclusions are given in Section 4. 

2. BPX CASE 

Results are presented in this section for the BPX case mentioned in Section 1. The 

equilibrium profiles for n>(r), Tj{r), and q(r) are taken from a BALDUR transport code 

run[9] for a recent design for BPX, at a time in the discharge near the beginning of the flattop 

period, between sawtooth crashes. The corresponding fixed-boundary MHD equilibrium is 

computed numerically. The parameters are: major radius RQ = 2.6 m, magnetic field on axis 
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So = 9.0 T, plasma current Ip = 11.8 MA, horizontal minor radius a = 0.8 m, elongation at 

boundary = 2.0, triangularity at boundary = +0.35, q(0) = 0.6745, q(a) = 3.309, r ,(0) = 

18.T6 keV, T;(0) = 17.63 keV, n e (0) = 5.238 X 1 0 " cm" 3 , £(0) = 9.48% without alpha 

particles, ,9(0) = 11.1% with alpha particles, and n a(0)/n<(0) = 0.006751. The electron 

density profile ne(r) is very flat in the interior, comparable to an H-mode discharge. The 

hot alpha particle density profile n a ( r ) is strongly localized about r = 0. The electron and 

ion temperature profiles are normally peaked. Also, aa is normal with a "slowing-down" 

distribution function, the radial profile of the effective temperature for the hot alphas is 

quite flat, and the hot alpha particle temperature gradient is neglected here. 

2.1. Radial dependence 

The radial dependence of the linear growth rates 7 for the three types of instabilities 

is displayed in Fig. 1, and the corresponding real frequencies wT are displayed in Fig. 2. In 

these two figures, the eigenfrequencies for the trapped-electron-??,- mode and the w. p, root 

are shown for the case with alpha particles replaced by background ions, because alphas 

are not necessary to cause instability for these two roots. However, for the uA root, the 

eigenfrequencies are shown including the hot alpha particles, because they are needed for 

instability for that root. The effects of alpha particles will be discussed in more detail in 

Section 2.2. Also, in Figs. 1 and 2, the values of 0{r) used for the trapped-electron-t?, mode 

are those calculated directly from the BALDUR values of rc,(r) and Tj(r), since this mode is 

unstable for these 0 values. However, for the u^ root and thew^ root, the values of 0(r) have 

been doubled by doubling rij(r) for all species, because the critical 0 values for instability 

for both of these roots are above the original BALDUR beta values. This 0 dependence 

is discussed further in Section 2.2. Collisions are omitted for all three of these roots, since 

they would have only a very small effect for the present parameters. For instance, even 

at r = 75 cm, where v'e = effective trapped-electron collision frequency / average trapped-

electron bounce frequency = 0.066, the eigenfrequency for the trapped-electron-17, mode is 
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u> = (-0.80 + 3.84J) x 10 s sec" 1 without collisions and w = (-0.95 + 3 57i) x 10 5 s e c - 1 with 

collisions, a difference of only 7% in the growth rates. For smaller r , the difference would 

would be even smaller because of the higher Tj. For the w. ?; root, the effect of collisions is 

even weaker, as is discussed in Ref. [2]. 

The MHD equilibrium employed here contains finite-/? effects such as the Shafranov 

shift, with the consequent reduction in the amount of "bad" curvature. The calculations of 

the eigenfrequencies for the w.pl- root and the u^ root are fully electromagnetic, including $, 

Ay, and AL. However, the results shown in Figs. 1 and 2 for the trapped-electron-77, mode 

are obtained in the electrostatic limit, retaining only $ in the calculation. Again, this is 

done because electromagnetic effects are rather weak for this mode in this case; at r = 39 

cm without alpha particles, w = (—1.28 + 0.40i) x 105 s e c - 1 in the electrostatic limit, and 

w = (—1.22 + 0.51i) x 10 s s e c - 1 in the full electromagnetic calculation. For the present 

survey of the radial dependence of the eigenfrequency of the trapped-electron-ifc mode, the 

electrostatic approximation is sufficiently accurate and requires much less computer time. 

As can be seen in Fig. 1, the growth rates for the w.p,- root and the UA root peak radially 

near the center of the discharge, inside the q = 1 surface, where the pressure gradients 

are largest. Also, the u>A root is destabilized by the hot alpha particles and their density 

gradient is largest near the magnetic axis. The trapped-election-^ mode growth rate, on 

the other hand, increases rather strongly out to the plasma boundary at a = 80 cm in 

this case which has only a very small background density gradient in the interior. Since 

7?, = (dlnTi/d^/idljxm/dr) » 1 at all radii in this case, the characteristics of this root are 

those of the ion temperature gradient (ry,) mode. 

The associated real frequencies ur are shown in Fig. 2. They are all in the ion diamag-

netic direction; this is normally always the case for the wmpi root (the MHD ballooning mode) 

with the inclusion of diamagnetic or finite Larmor radius (FLR) effects, and is expected for 

the trapped-electron-;?, mode for the present large 7; values. The real frequency for the uA 

root is many times larger than that for the w^,; root, so they ave well separated. 
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FIG. 1. Radial dependence of the. linear growth rates for the BPX case for the wmpi root 

(the MED ballooning mode] with kspi ~ 0.12, theuA root (the TAE or "gap" 

mode) with kgpi ~ 0.086, and the trapped-electron-ty mode (the trapped electron 

drift mode) with k$pi as 0.34. The first two roots only have /? oc nj doubled from 

the BALDUR calculated values. The U>A root only includes hot alpha particles. 

The calculations for the first two roots are fully electromagnetic, while that for 

the trapped-etectron-rji mode is in the electrostatic limit. 

2.2. Beta dependence and alpha particle effects 

The dependence of the instability growth rates and real frequencies on (toroidal) beta is 

explored here by multiplying n^(r) by a single constant for all species j , at ftxed Tj(r] and £?0. 

This is an arbitrary choice, since 7}(r) or BQ could also be varied, but it has the advantage ol 
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FIG. 2. Real frequencies corresponding to Fig. 1. 

varying vA = Z?0/(4;rn1772,-)1''2 and UA = VA/qRo in a simple way, so that the dependences of 

u;, on LJA can be seen. For each new rtj(r), the MHD equilibrium is numerically recomputed, 

so that the changes in 0(r), with the corresponding changes in the Shafranov shift and the 

amount of "'bad" curvature, are included. 

Figure 3 shows the linear growth rate for the w.p, root (the MHD ballooning mode) as 

a function of the local toroidal 0 oc rr, with hot alpha particles and with the alpha particles 

replaced by background ions. Results are shown at r = 11 cm, where the growth rate has 

a maximum, for n 5: 12 or kepi ~ 0.12 or kepa ~ 0.56, which also maximizes the growth 

rate. Also shown for r~%ence in Fig. 3 are the results of the simplest ideal MHD ballooning 

mode equation, without alpha particles or diamagnetic or FLR effects, showing the usual 

first stability region for /? < ffe\ — J355 and the usual unstable region for /} > $cl. It is seen 
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F/G. 3. Growth rate for the u;»pj rooi as a function of local toroidal 0, with and without 

hot alpha particles for n - 12, kgpi ~ 0.12 k$pa ~ 0.56, and r = 11 cm. The 

results of solving the simplest ideal MHD ballooning mode equation, without 

diamagnetic or FLR effects and without alpha particles, is shuwn for reference. 

Here, 0 is varied by multiplying nj(r) by a constant, at fixed Tj(r) and BQ. 

that the addition of the kinetic effects for the ui.^ root without alphas has the effect of raising 

the growth rate slightly in the unstable region, and also of lowering the critical 0 below 0clf 

for this particular case and toroidal mode number. However, the addition of the hot alpha 

prxticles is stabilizing for this root, and moves the critical 0 back closer to 3C\. For this 

ijJ.vi root, the direct effect of the magnetically trapped alpha particles is slightly stabilizing, 

and that of the untrapped alphas is moderately destabilizing, but the main stabilizing effect 
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4- Real frequencies corresponding to Fig. 3. The real frequency for the simplest 

ideal MHD ballooning mode is just zero. 

comes from the flattening of the background ion density profile necessary to preserve the 

condition of the radial derivative of equilibrium charge neutrality, with the inclusion of the 

very steep density profile of the hot alpha particles. The BALDUR calculated 0 values either 

with or without alphas are seen to be below the critical /? values for this root. 

The corresponding real frequencies uiT for the ui^i root with and without alphas are 

shown in Fig. 4. (The real frequency for the simplest ideal MHD ballooning mode without 

diamagnetic or FLR effects is just zero.) It is seen that w r is of the order of uj,pi •< u^ both 

with and without alphas, hence the name for this root. 
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FIG. 5. Growth rate for the w^ root as a function of the local toroidal 0, as in Fig. 3, 

with hot alpha particles only, for n = 11, kgpi £i 0.086, and kepa 2* 0.41, at 

r = 15 cm. 

For the present case of interest, the growth rates for the uiA root (the TAE or "gap" 

mode) are shown in Fig. 5 versus the local toroidal /?, for r = 15 cm and n ~ 11 or 

kg pi ~ 0.086 or kgpa ~ 0.41, the values that maximize the growth rate for the mode. Again, 

the simplest ideal MHD ballooning mode result is shown for reference. Here, the growth rate 

is shown for the UIA root only with the hot alpha particles; without the alphas the mode is 

damped at all /? values in this case. The direct destabilization is strong for this root from 

both the trapped and untrapped alphas, with that from the untrapped alphas being slightly 

stronger. The critical j3 for this root is somewhat below the /9 c l value at this radius. Again, 
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the BALDUR calculated j3 values with or without alphas are below the critical 0 value for 

this root. 

The corresponding real frequency UJT for the uiA root is shown in F ;g. 6. Also shown 

for comparison is the curve for u>A = vA/qRa a n~ ex / ? - 1 ' 2 . It is seen that u>r for the uj 

root is of the order of u>A ;g> u^,,, and tracks roughly along with uiA except at the highest 

0 point, hence the name for t h r root. Also, w r for the wA root i* between wj 0 , the average 

trapped alpha bounce frequency, and w < Q , the average untrapped alpha transit frequency 

(u>tn ~ 30 x iO5 sec" 1 is slightly offscale on this figure). 
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FIG. 7. Growth tnte for the trapped-electron-^; mode as a function of the local toroidal 

/?, in a fully electromagnetic calculation, with and without hot alpha particles, 

as in Fig. 3, for n = 114, k»pi 2: 0.34, and h:^a 2i 2.0, at r = 39 cm. 

A point to note here is that uT for the u^ root is of order w^, not w^/2 = VA/2qRo 

as was found in the original analysis of TAE modes in Refs. [4] and [5] for circular-cross-

section cases, (i.e., with ellipticity = I o n every flux surface). The result that wP ~ w^ here 

appears to come from the larger ellipticity in the present case (=2.0 at the plasma boundary), 

which introduces substantial cos(20) components to the metric quantities describing the 

numerically calculated MHD equilibrium, and in particular to the quantity itj., the wave 

number magnitude perpendicular to the equilibrium magnetic field line. Here, 8 is the 

poloid?.! angle variable for the present MHD equilibrium. This effect is seen explicitly in 
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Ref. [13], which analyzes low-n "gap" nv Jes in the ideal MHD limit, for cases with small 

ellipticity and even smaller toroidicity. 1 le low-n "ellipticity induced Alfven eigenmodes" 

found in Ref. [13] also have uiT ~ wA, not UJ^/2 . 

The variation of the linear growth rate with 0 oc n ; for the trapped-electron-r/, mode 

(which is essentially the »?, or ion temperature gradient mode for the current value of r/, = .3.7 

without alphas) is shown in Fig. 7 for r = 39 cm and n ~ 114 or kepi — 0.34 or kspQ ~ 2.0. 

Now the calculation for this root also is fully electromagnetic. It is unstable at /3 = 0 and is 

gradually stabilized with increasing 0, with the consequent increase in the Shafranov shift 

and decrease in the amount of "bad" curvature. At this radius, the simplest ideal MHD 
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F/G. 5. Dependence of the growth rate and real frequency on n or kgpi for the wmpi root 

without hot alpha particles for r = 11 cm, with /3 twice the BALDUR value, 

local 0= 16.1%. 

ballooning mode is stable for all 0 values, but in cases where it is unstable, the trapped-

electron-7,- mode is normally unstable throughout the first stability region. The effect of 

hot alpha particles on this root is moderately stabilizing. It is unstable at the BALDUR 

calculated (3 values with or without alphas, unlike the w. p l or u>A roots. In fact, it if the only 

one of the three modes that is predicted to be unstable and contribute to the quasilinear 

transport for the BPX case predicted by the BALDUR calculation. 
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FIG. 10. Linear growth rate as a function of n or kgpi for the u>A root with hot alpha 

particles for r = 15 cm, with 0 twice the BALDUR value, local 0 = 15.1%. 

The corresponding real frequencies for the trapped-electron-^, mode versus 0 oc n, are 

shown in Fig. 8. They are relatively insensitive to variation in 0. The effect of alpha particles 

on UJT is quite small for this root. 

2.3. Toroidal mode number dependence 

The dependence of the growth rate and real frequency on n or kgpi for the tj^,, root 

without alpha particles is shown in Fig. 9. Here, 0{r) has been doubled from the BALDUR 

values to make the mode unstable, and r = 11 cm has been chosen to maximize the growth 

rate. The growth rate curve is fairly broad around the maximum at n = 12 or kgpi = 0.12. 
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The corresponding dependences for the growth rate and real frequency of the us A root with 

'alpha particles are shown in Figs. 10 and 11, respectively. For the same reasons, j3(r) has 

been doubled from the BALDUR values and r = 15 cm has been chosen. In Fig. 10, 7 is 

seen to have a somewhat narrow maximum at n = 11 or kgpi = 0.086. 

The trapped-electronvfi mode has no maximum in r for the growth rate. At the original 

BALDUR /3(r) values without alpha particles, 7 peaks for n = 120 or kepi = 0.34 at r = 41 

cm in the collisionless, electrostatic Jjmit, and at n = 375 or kgpi = 0.48 at r = 15 cm in a 

fully electromagnetic but collisionless calculation. 
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2.4. Quasi l inear t r a n s p o r t 

The linear eigenfrequency-eigenfunction calculation employed here also produces the 

quasilinear particle flux Tj and the total heat flux (including any convective portion) Qj 

for each species j (= e,i, a). These fluxes are proportional to the square of the saturation 

level <t>a for the perturbed electrostatic potential for the mode. This saturation level is not 

determined by the present linear and quasilinear calculation, but must be determined by-

some additional criterion. In the present work, the so-ca'Jed "mixing length" saturation 

level is assumed, where lel^/T^ = C/(k±)rp, where C is a dimensionless constant of order 

unity, (fcj.) is the average over the absolute squared eigenfunction of fcj. = (fc| + fc2)1''2, and 

r p = — (d\np/dr)~} is the total pressure gradient scale length. Also, Df = — Tj/(dnj/dr) is 

the effective particle diffusion coefficient and xf* ^ — Qsl\^j{dTjldr)\ is the effective energy 

diffusion coefficient (thermal conductivity) for species j . In the prestnt results, C is chosen 

such that Xm*x = J * l 0 * C I I j 2 s e < r " ' w h e r e Xmu 1 S t h e maximum of \xf\, \xf\, and \\f\, 

so that the total thermal transport will be in a typical experimental range for present day 

tokamak experiments. 

TABLE I. QUASILINEAR TRANSPORT FOR THE TRAPPED-ELECTRON-*?,- MODE 
FOR THE BPX CASE 

J Df (cm2 sec"1) rj(cm~2 sec - 1) xf(cm2 sec"') ^(keVcm-^sec- 1 ) 

e -1.8 x 103 -5.0 x 10 l s -8.1 x 101 -7.8 x 10 I S 

i -1.8 x 103 -5.0 x 10 l s +1.0 x 104 +9.4 x 101 7 

a +6.9 x 102 +2.3 x 1013 +1.1 x 102 +2.9 x 10 u 

Results are shown in Table I for the trapped-electron-*;,- mode at r = 39 cm for n = i 14 

or k$pi = 0.34 at the BALDUR calculated 0 value (local 0 = 3.93%), with ??, = 3.77 and 

ipe = 3.83. The normalization just described requires in this case that \e\<j>o/Te = 0.18/{Aj.)r7,. 

Among the D'g's and the x ^ ' s , the dominant transport coefficient is x f , as is typical for the 

rjj mode. The background electron and ion density profiles are very flat, so a slight inward 

particle flux occurs for them, driven by their normal temperature gradients. However, the 
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hot alpha particles, which have a very steep normal density profile, have an outward particle 

flux. In this case, D^jxf1 — 007, whereas in the previous cases in Ref. [3] for this mode, 

this ratio was several orders of magnitude smaller. Thus, in the present case, the trapped-

electron-7; mode can cause nonnegligible transport of the hot alpha particles, whereas in the 

previous cases in Ref. [3] this transport was insignificant. This sort of ratio is then highly 

case-dependent. 

TABLE II. QUASILINEAR TRANSPORT FOR THE w ^ ROOT (THE MHD BALLOON­
ING MODE) FOR THE BPX CASE 

3 flf(cm2 sec" 1) r j (cm" 2 sec" - 1 ) x f^cm 2 s ec - 1 ) ^ ( k e V c m - 1 sec" 1) 

e - 1 . 5 x W4 -1 .4 x 10 1 6 +6.2 x 1<)3 + 1.9 x 10' 8 

i -2 .4 x lO4 -1 .6 x 10 1 6 +1.0 x 104 +2.7 x 10 1 8 

a +3.3 x 103 +5.5 x 10 M +2.5 x 103 +3.8 x 10 l T 

For this case, the results for the w^i root (the MHD ballooning mode) at twice the 

BALDUR /? value (local /? = 16.1%), for r = 11 cm and n = 12, with *?, = 26.8 and 

7}e = 13.5, are given in Table il. For this root, the normalization discussed previously requires 

that |e|0o/T e = 0.l9/(kx)rp. Note that, for this root, x1a and xlS a r e roughly comparable, 

while \^ i s several times smaller. A similar situation obtains for the Df*'s, except that the 

background electron and ion fluxes are inward, due to their nearly flat density profile, while 

that of the alphas is outward, due to their steep density profile. 

TABLE III. QUASILINEAR TRANSPORT FOR THE u>A ROOT (THE TAE OR "GAP 
MODE) FOR THE BPX CASE 

j Df (cm 3 sec" - 1) Tj(cm~i sec" 
• ' ) 

^ f ( e m 2 s e c - 1 ) Q>(keVcm- 2 sec" 1) 

e 
i 
a 

-7 .5 x 10 3 

-1 .1 x 10 4 

+4.0 x 10 3 

-1 .0 x 10* 
-1 .2 x 10' 6 

+6.3 x 10" 

-2 .4 x 102 

- 6 . 8 x 10 2 

+1.0 x 104 

-6 .0 x 1 0 l e 

- 1 . 6 x 10 l T 

+ 1.4 x 10 1 8 

The results for the uA root (the TAE or "gap" n,:>de) at twice the BALDUR /? value 

(local 0 — 15.1%), for r = 15 cm and n = 11, with % = 14.6 and j / e = 12.0, are given in 
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Table III. For the ui\ root, \'a ' s largest and gives outward energy transport, while \'R and 

X'f are many times smaller, giving slight inward transport. Also, D^, D'a, and D'f are ail 

comparable in magnitude. Note though that the alpha particle transport is outward while 

the background electron and ion particle transport is inward, again due to the very steep 

alpha density profile and the very flat electron and ion density profiles. 

2.5. Higher-order radial corrections 

The preceding results have all been obtained at lowest order in the so-called "ballooning 

hierarchy", where the calculations are radially local to any chosen magnetic surface, yielding 

a lowest order eiger.frequency w'°'(r). At higher order in this hierarchy[12], in cases where 

the growth rate has a local maximum at some magnetic surface with r = r 0 , it is possible 

to obtain a global eigenfrequency consisting of u»'°'(ro) plus the so-called "1/n" correction 

<5w, where <5w = [2n(dp/dr)]-1[(d7u>^/dr7){diiJm/d9^)]1'2. Here, all of the derivatives are 

to be evaluated at r = r0 and 80 = 0, where $o is the so-called "ballooning parameter", 

which is defined in Refs. [1], [2], and [12]. The value 90 = 0 usually maximizes the lowest 

order growth rate in the case of an up-down symmetric MHD equilibrium, such as the one 

employed in the present BPX case. 

For the u;^, root considered in Section 2.1 with n = 12 for 0 double the BALDUR 

value. r 0 = II cm and u>(0)(r0) = (-2.166 + 0.735«) x 10 s s e c - 1 . Evaluating the necessary 

derivatives numerically, it is found that fa = (0.309 — 0.335i) X ltr5 s e c - 1 . Thus, the effect 

of including this " l / n " correction term is roughly to cut the linear growth rate at r = r0 in 

half. The ui^, root is, however, still unstable in this situation. 

The same procedure has been carried out for t.ie w^ root with n = 11 for 0 double the 

BALDUR value, where r a = 1 r. cm andw ( 0 >(r 0 ) = (-19.15+ 1.24t')x 10 s sec~'. For this root, 

evaluating the derivatives numerically yields 8w = (3.79-4.68i)x 105 s e c - 1 , so that this root 

would actually become damped at this order. However, Su is sufficiently large compared to y 

that the underlying expansion in powers of n - 1 / 2 is not properly convergent. In fact, a more 
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general formulation, which has not been derived for the fully kinetic case[12], appears to be 

needed here. In any event, the implication is that this instability will be severely weakened 

by higher order effects that have not been included in the results presented in the preceding 

sections Never the less, it seems worthwhile to present the results here for the UA root on 

the same basis as those for the w. P, root and the trapped-electron-*/,- mode. 

The trapped-electron-Jj, mode presents a related problem. As seen in Section 2.1, there 

is no radial local maximum for the growth rate for ihis root. So again, the formulation for 

Su given previously does not apply. However, the value of n involved with this root, n = 114 

instead of 11 or 12, suggests that Sui should be considerably smaller for the trapped-electron-

rj, mode than for the w^, root or the u^ root. 

3. TFTR nASE 

Results are presented in this section for the w.pj root (the MHD ballooning mode) only 

for the TFTR case mentioned in Section 1. The equilibrium profiles for nj(r), T}[r), and 

q{r) a.e taken firm a TRANSP transport code run[ll] for an extrapolation of a particular 

TFTR deuterium supershot to an equal deuterium-'ritium mixture, giving Q 2i 0.5. The 

corresponding fixed-boundary MHD equilibrium is computed numerically. The parameters 

are: HQ = 2.5 m, B0 = 5,2 T, Ip = 2.1 MA, a = 0.85 m, elongation at boundary = 

1.0, triangularity at boundary = 0, q(0) = 0.92, q{a) = 3.58, T e(0) = 9.73 keV, 7-(0) = 

28.92 keV, n e (0) = 1.092 x 10 H cm" 3 , 0(0) = 7.29% without hot alpha particles, and 

n o (0 ) /n c (0 ) = 0.0056. For this case, the electron density profile and the ion and electron 

temperature profiles are all comparably localized, while the hot alpha particle density profile 

is substantially more localized. Results will be presented only for a single magnetic surface 

at r = 14.9 cm, which is the magnetic surface where the growth rate from the simplest ideal 

MHD ballooning mode equation is a maximum. Here, the local parameters are: Tc = 8,99 

keV, Ti = 24.80 keV, n, = 9.17 x 10 1 3 c m - 3 , q = 0.966, /? = 4.62% without alpha particles, 

0 = 5.11% with alpha particles, na/nc = 0.0048, rna/rne = 0.498, )?« - 0.455, and r?, = 1.09 
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without alpha particles. Again, the hot alpha particie equilibrium distribution function is 

taken to be a "slowing down" distribution. 

As in the BPX case, 0 will be varied artificially for the TFTR case by multiplying all 

the rtj(r) by a constant at fixed Tj(r) and B0, and then recomputing the MHD equilibrium 

numerically. Also, the hot alpha particle contribution will be turned off for comparison by 

replacing the alphas by background ions, at fixed n e ( r ) , with n, and r „ , / r n , being adjusted 

to preserve the conditions of equilibrium charge neutrality and its radial derivative on the 

chosen magnetic surface. 

Results for the linear growth rate versus 0 for the ui.p, root or MHD ballooning mode are 

shown in Fig. 12 for this TFTR case. Here, n — 10 or kgpt = 0.34 or kspa = 1.2, the values 

which maximize the linear growth rate on this magnetic surface al the TRANSP calculated 

0 value. Also, the growth rate from the simplest ideal MHD ballooning mode equation, 

without diamagnetic or FLR effects and without alpha particles, is shown for reference. The 

addition of all of the kinetic effects other than the hot alpha particles to the simplest ideal 

MHD ballooning mode is generally to reduce the growth rate in the unstable region, but 

also to lower the Ifinetic critical 0, 0^n ~ 2.15%, to be well below the ideal MHD critical 

0, 0^HD ~ 3.5%. For 0 ;> 5%, the usual nonresonant interchange instability mechanism 

accounts for the growth rate, but for 0 < 5%, the kinetic dissipation from mode-particle 

resonances can dominate the growth rate. This is the same mechanuim that destabilizes 

the resistive MHD ballooning mode, adding a "tail" to the ideal MHD growth rate curve 

for 0 < 0%>HD. However, in this case, the resonant dissipation rather than the collisional 

resistive dissipation is the primary source of the instability. Then, with the addition of 

the hot alpha particles, the critical 0 value is further reduced, to /9f ~ 0.6%. There is a 

"crossover" 0 value ~ 5.3%, above which the effect of the hot alphas is stabilizing, apparently 

because their presence interferes with the nonresonant interchange mechanism. However, 
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F/G. i2. Dependence of lb? linear growth rate on fi on n,- for the u,^ root in ine TFTR 

Q — 0.5 case, as in Fig. 3, with and without hot alpha particles. Here, r = 14.9 

cm, n — 10, kspi — 0.34, and kepa = 1.2. 

for 0 < 5.3%, the alphas are destabilizing because their mode-particle resonances provide 

substantial additional dissipation to reinforce that from the background species. 

The corresponding real frequencies are shown in Fig. 23, with and without the hot 

alpha particles. (The real frequency for the simplest ideal MHD ballooning mode is just 

zero.) The kinetic real frequencies are of the same order as w.p, and Qja, the average hot 

alpha magnetic drift frequency, and are between Wj,0, the average trapped alpha bounce 

frequency, and Qta ~ 24 x 105 s e c - 1 , the average untrapped alpha transit frequency. They 

are substantially below UA — 30 x 105 s e c - 1 . 
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FIG. 13. Real frequencies corresponding to Fig. 12. 

The quasilinear transport results for this w.p; root at 0 = 4.62% with n = 10 ire 

given in Table IV. For this case, all of the particle and energy fluxes are outward, with 

Df > Df ~ Df and X f £ xf }> xf-

TABLE IV. QUASILINEAR TRANSPORT FOR THE u^ ROOT (THE MHD BALLOON­
ING MODE) FOR THE TFTR CASE 

Df{cm2 sec"1) r^cm" ) ^ ( c m 2 sec - 1) £j(keV c m - 2 sec"1) 

e 
i 
a 

+2.1 x 103 

+2.1 x 103 

+3.3 x 103 

+3.7 x 10 , s 

+3.6 x 101S 

+5.7 x 1013 

+1.0 x 104 

+7.1 x 103 

+3.4 x 103 

+7.1 x 101 6 

+3.3 x 101 7 

+4.5 x 101 6 

24 



4. CONCLUSIONS 

One of the major points of the present study is to compare the properties of three 

separate types of high-ra instabilities for the same BPX case from the same comprehensive 

kinetic calculation. These are the MHD ballooning mode, also called the u/.^ root, the 

toroidicity-induced Alfven eigenmode or "gap" mode, also called the U>A root, and the toroidal 

drift mode, also called the tr«ipped-electron-rf; mode. Radially, the linear growth rate curves 

for both the w. p, root and the u/x root have maxima inside the q = 1 surface, where \dp/dr\ 

is the largest. The growth rate curve for the trapped-electron-r/; mode, on the other hand, 

rises strongly out to the plasma boundary, with no local maximum, for this case with a 

very flat background density profile. The 0 dependence of the three types of growth rates is 

investigated by scaling all of the density profiles rij(r) at fixed T}(r) and B0. Varying 0 this 

way, the w. p; root and the UA. root are unstable only above a critical 0 value which is slightly 

below the simplest ideal MHD critical j3, while the trapped-electron-^ mode is unstable even 

ac 0 = 0, and has a growth rate that decreases gradually with increasing 0. The effect of 

adding hot al^ha particles, by replacing background ion: at fixed ne(r), is to decrease the 

growth rate for the w<pl- root and the trapped-etectron-7; mode, whereas the alpha particles 

increase the growth rate for the w^ root, and in fact are necessary for it to be unstable at 

all, for this case. At the BALDUR calculated 0 values, only the trapped-electron-ij, mode is 

unstable, since the critical 0 values for the uj^,i root and the w^ root, including the effects 

of hot alpha particles, are above these predicted values. Varying the toroidal mode number 

R, or equivalently kgp^ oc n, it is found that the growth rates are maximized for n ~ 11-12 

or kept — 0.1 for the u^i root and the u>* root, while that for the trapped-eJectron-i^ mode 

peaks at kgpi d 0.3-0.5, with an n value that depends on radius. 

The quasilinear particle and energy fluxes and effective transport coefficients for each 

species have also been calculated for each of the three roots in situations where they are 

unstable. Though there are different results for the three types of instabilities that have 

been described in Section 2.4, they can all lead to anomalous particle transport for the hot 
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alphas that is roughly of the same order as that of the background species. For the trapped-

electron-^i mode, this case is different from those previously described in Ref. [3], where the 

i hot alpha particle transport from this mode was several orders of magnitude smaller than 

that for the background species. 

The preceding results have all been calculated at lowest order in the so-called "ballooning 

hierarchy", where the eigenfrequency calculation is local to each chosen flux surface. At 

higher order in this hierarchy, the so-called "1/n" correction term has been calculated for 

the w.p, root and the wA root at the surfaces where their linear growth rates have their 

respective "adial maxima. The results indicate that the growth rate for the w.p, root is 

reduced by about a factor of two, while the w^ root is likely to be completely stabilized. 

Another case has been considered here which models TFTR in a deuterium-tritium 

mode of operation with Q ~ 0.5. For the w«p,- root in this TFTR case, unlike the BPX case, 

the overall result of the kinetic effects omitted from the usual simplest ideal MHD ballooning 

mode analysis, and of the hot alpha particles, is to drastically .' -iwer the critical /? value for 

instability, from a local 0 ~ 3.5% down to local 0 ~ 0.6%. This same trend was seen in one 

of the cases considered in Ref. [3], but not in the other, and not in the BPX case considered 

here. This sort of drastic lowering of the critical /J for the MHD ballooning mode, then, 

seems to be very case-dependent. Again for this TFTR case, the quasilinear trar>-port has 

been calculated for the w»pi root, and it is scsn that the particle transport for the hoi, alphas 

is roughly of the same order as that for the background particles. 
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