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1.0 THE CANDU PWR

The key elements and overall design of a very large fraction of most nuclear power plants are the
same. For example, they incorporate a Turbine Building with a turbine and generator,

maintenance facilities, administrative facilities, a pump house and a reactor containment

structure.

Both the heavy water and light water type of pressurized water reactors, generally referred to
respectively as CANDU and PWR, have many common features. Both, for example, use a form
of water as coolant and moderator and use the heat of fission from the reactor in “light--bulb”
steam generators to generate steam to drive the turbine—generator . There is ng essential
difference between heavy water and light water Pressurized Water Reactor power stations except
in the reactor core design and in some aspects related to the heat transport system. CANDU is
an advanced PWR with a proven performance record. CANDU is relatively simple, safe and

provides the flexibility to serve long term requirements.

Figure 1 compares the heat transport systems of CANDU and light water PWRs and Figure 2

compares the reactor structures.

The CANDU reactor uses a large number of fuel channels (from 200 to 600), arranged in a
square lattice within a horizontal cylindrical tank. This structure, called the calandria, is
maintained filled with heavy water (moderator) at low temperature (near 70°C) and near

atmospheric pressure. A typical CANDU reactor is shown in Figure 3; fuel channel detail is

presented in Figure 4.
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2.0

CANDU - THE SIMPLE PWR

CANDU simplifications (relative to light water PWRs) include:

Carbon steel reactor coolant system piping instead of stainless steel (more easily fabricated
and inspected; it is ductile and immune to stress corrosion cracking).

Pressure tubes instead of a massive, thick—walled, pressure vessel. Pressure tubes, the only
CANDU component subjected to a combination of high stress and high radiation are easily

replaced.
Simple fuel bundle design that is easily fabricated (Figure 5) — same bundle design used

throughout the core.

Natural uranium fuel - requires no enrichment or burnable poison. Low enriched fuel can

also be used.

Simple control devices located in the cool low pressure moderator — none in the high
pressure coolant.

The reactor coolant system is free of reactivity control chemicals.

Flexible storage arrangements for irradiated and new fuel (no concerns over criticality

regardless of storage configuration because of low reactivity of CANDU fuel).

Because CANDU is a simplified PWR, the technologies required to design, manufacture and

construct CANDU plants are less demanding than for other PWRs and, of course, any

organization fabricating light water PWR components is inherently capable of fabricating

CANDU components.

The unique CANDU heavy water technology is readily available and has been acquired and put

in place by developing, or partly industrialized, countries. (Canada, at the start of CANDU

development, India and Argentina, for example).
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FIGURE 5 CANDU FUEL BUNDLE



3.0 CANDU PERFORMANCE

CANDU power plants have accumulated an enviable record in all key areas, including safety,

capacity factor and radiation exposure to operating staff. No reactor type has equalled CANDU

in any of these areas.

Alihough constituting about 6% of the world’s reactors larger than 150 MW(e), CANDU plants
consistently dominate the performance charts (Figure 6). This can be largely attributed to the
performance of the components used. Although most are essentially the same as in light water

PWRs, they have performed better. For example:

Steam Generators: A tube defect rate of two orders of magnitude below the world light water

reactor average.
Reactor Coolant Pumps — There has never been a failure in a CANDU 6 plant of a pump

seal, motor or other component.
Valves: a world standard set by the bellows sealed and live loaded packing design developed

in Canada.

A comparison of man-rem exposure at CANDU and other reactor type plants given in Figure 7,

illustrates the excellent CANDU performance in this area.

45570
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The Top Ten

Lifetime World Power Reactor Performance to March 31, 1989*

from among 325 reactors over 150 MW

Country Ranking Unit Type Capacity
Factor %t

1.  Emsland PWR 94.4

2. Pickering 7 CANDU 91.8

I*l 3. PointLepreau CANDU 89.2

4. Paks 4 PWR 87.5

5. Philippsburg2 PWR 87.4

6. Paks 1 PWR 87.1

7. Grohnde A-1 PWR 86.7

8. Pickering 5 CANDU 86.5

9. Paks3 PWR 86.3

Bl 10 Bruces CANDU  86.1

*Source: Nuclear Engineering Imernational
actual electricity generation

tCapacity Factor =
perfect elactricity generation

890503

FIGURE 6 CANDU CAPACITY FACTOR
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4.0

CANDU - INHERENT SAFETY FEATURES

The CANDU PWR has several inherent safety features. These include:

Small excess reactivity in the reactor at all times during station life, because of on—power
refuelling.

All reactivity regulation devices have a low worth, due to limited excess reactivity, hence,
the magnitude of a reactivity induced transient is limited.

All reactivity regulating devices, including shutdown systems have a constant reactivity
value over the life of the plant, because reactor reactivity is maintained constant.

Long neutron life slows the rate of potential reactivity excursions.

Immunity to many pestulated transients including 2 rapid cooldown of the heat transport
system.

The moderator system which can remove decay heat under such severe conditions as a loss
of coolant accident coincident with a failure of the emergency core cooling system.

All reactivity control devices are in the cool, low—pressure moderator. No rod ejection
concern.

Comprehensive neutronic data for reactor control, facilitated by simple low—cost detection
systems located in the cool, low—pressure moderator.

A fuel channel lattice which is optimised for maximum reactivity. Any event that relocaies
the fuel reduces reactivity. '

Low radiation fields in the reactor coolant, because of on-line failed fuel detection and
removal, and because of the absence of chemicals for reactivity control.

Ease of handling of new and irradiated fuel. No criticality concemn regardless of storage

configuration.



5.0 SEVERE ACCIDENT TOLERANCE

There are three categories of events that can lead to severe core damage: uncontroiled power
excursions, loss of heat removal capability and loss of coolant. CANDU reduces the probability

of severe core damage through a combination of inherent and engineered safety features.

CANDU dramatically reduces the probability of an uncontrolled power excursion through the
depth and redundancy of the reactor shutdown systems. In addition to the normal reactivity
control system, CANDU has two independent fast-acting shutdown systems, gach capable of
shutting down the reactor and maintaining it subcritical for all design basis events. Because of

this feature, failure to shut down is a small contributor to the overall core damage frequency.

For loss of heat sink events and loss of coolant accidents with coincident failure of emergency
core cooling, the cool, low pressure moderator system provides fuel cooling. In addition, the
light-water—filled shield tank, which envelops the calandria, provides an additional line of

defence, should the moderator system also fail (Figure 3).

The severe core damage frequency for currently operating CANDUs is estimated at 4 x
10~%reactor year. For future reactors, this frequency is reduced by at least one order of
magnitude. These values compare extremely well with the design target of 10~ established by

EPRI four the advanced PWR and BWR.



6.0 CANDU - ELEXIBILITY FOR THE FUTURE

The efficient utilization of the neutrons produced by fission in CANDU, unequalled by any
other reactor type, allows the fuel cycle flexibility necessary to serve long—~term energy

requirements without the need for fast breeder or other new and complex technologies.

CANDVU can, for example:

— Operate on a simple once—through natural uranium fuel cycle (Figure 8).

— Operate on a slightly enriched fuel cycle (in a range up to ~1.5% U235) with or without
reprocessing (Figure 8).

Use spent LWR fuel, with certain fission products removed (U236 has a very low cross
section in CANDU and need not be removed) (Figure 9).

— Use recovered uranium from LWR reprocessing (Figure 9).

~ Qperate as a breeder or near breeder on thorium based fuel cycles.

U90sass70
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7.0 CANDU - THE ADVANCED PWR

CANDU 3, the latest CANDU power plant design, compares very favourably with requirements
established by EPRI in the United States for advanced PWRs and BWRs. The following tables

compares key requirements.

Requirement Advanced PWR CANDU 3
Safety Targets
e core damage frequency <107 <10
¢ maximum dose for events > 10~ 25 Rem 25 Rem
Availability
e capacity factor 87% 94%
¢ refuelling interval 2 years 0
e maintenance outage interval 2 years 3 years
¢ inadvertent trips < l/year < l/year
Design Life 60 years 100 years
Construction Time 54 months 35 months

Rad waste volume <2500 fi3 < 1200 fi3




8.0 CANDU - AVAILABLE NOW

CANDU 3, the latest CANDU power plant design, has a net electrical output in the range of 450
MW. The CANDU 3, using only proven system components and concepts, makes many
significant advances. These include a 35 month construction schedule, ease of maintenance and
life extension, state—of-the—art control and man-machine interface systems, a lifetime capacity
factor target of 94% and enhanced plant safety.

CANDU 3 is an advanced PWR that meets the re’»vant EPRI requirements for the Advanced
PWR. Anditis available now.

U90585570
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