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The « + T elastic scattering angular distributions at
Eu. = 120 MeV, 145 MeV and 172,5 MeV were phase-shift analized and
ar fnversion procedure for the determination of the optical
potential was applied. The potential and its associated
uncertainties, as a function of the radial distance, were found.
Cosparison is made with usual Vood-Saxon optical potential
analysis.

1. INTRODUCTION

The problem of determining the potential from the
S-matrix elesonts for fixed energy is extensively discussed in the

litcnture".

24 some approximate methods have been developed and
arpiied tc r g ear physics problems. For example, Lipperheid and
Fiedeldey' ° msed their method on the sssumption that if S, is a
sisple ral - ¥ ] function of ¢, a simple method can be applied for
the detersl -a.ion of V(r). Another approach is the semi-classical
extension - Kujwsklm to complex potentials. A further
differen: approach is proposed by Cooper, loannides and
wackinte 3 *'® pased on an iterative-pertubative procedure,

for the purpose of investigating the uncertainties in the
cp:ical ;:.tential resulting from the errors associated to the

experimen, -] measurements of elastic cross section we found the



method of reference (4) most convenient. Thus we adopt their
procedure and use the measurements of S. Viktor et al.'®: for the
« + % system at E,, = 120 HeV, 145 MeV and 172,5 Mev as our
input data. Our cholice of this set of data, apart froa its good
quality wvas based on the fact that at the energies measured we
expect the a'%c systea to be reasonably transparent to allow a
sufficiently precise deteraination of the optical potential. In
section 2 we descrite and illustrate the inversion procedure.
Section 3 contains a description of our amlysis and in section 4
we drav our major conclusions.

2. THE INVERSION PROCEDURE

Ve assume that the elastic scattering metrix S’ is
reproduced by the spherically sy-esrlc optical potentital V(r} for
two eoili(.ling spinless nuclei. If V(r) is an spproximation to
V(r) and S‘ its corresponding scattering matrix the following
relation is easily obtained:

[ J 1 [ ]
5, - 5= - Y- [ 5o m V(e)-vir) Jar (2.1)

wvhere u is the reduced mass cf the systes and k the wave number for
the elastic channel. 7,(r) and { (r) are the radial wave function
:.-putudes for the angular momentua hl corresponding to V(r) and
V(r) respectively. Ve have imposed the following normalization at
Infinity:

z,(r) -,", [c, - IF, - S, (G, ¢ u‘,)]

LK

and sisilarly for Q,m. r‘ and G‘ are the regular and irregular



Coulomb wave functions as defined by Abramowitz and Segun''’.

{2.1) is the starting point for the inversion procedure.

Eq.

We set
0
z'(r) -1, (r)

in Eq. (2.1) wvhich transforms it into a linear integra. equation
for the dimensionless function f(r):

[ ]
f(r) = [V(r) - \!(1').'/5o
-+
where Eo is the kinetic energy of the lons in the elastic channel.

We assume that the nuclear potential contributes to S,
only for £<t_.. Next we choose a basis of N linearly independent
functions yl(r) to represent fir) in the interval (O, r_.). For
T, " may take the classical closest approach radius for the ions
in the presence of the Coulomb field with angular -o-entql hl.“.
For y’(r) we used the linear splines as we found thisv most

convenient.

With these arrangments Eq. (2.1) transforms into a set of
algebraic linear equations.

(1) [ |
s, - 5,» 85, -lE B, 8, ostst (2.2)
| |
with f(r) =} 8 y,(r)
in}
[
[+] 2 -
and B, = -2ik I [1'(1') ] y,(r)dr (2.4)
0



The coefficients s ere deternined by taking N< [l__ + l]
and miniaizing the expression:

¢

2 1 ~

.
= l::Ti-_ll‘L 8, - LB, r"c (2.5

is}

vhere H‘ are weighting factors. Ue have taken
W o= (20+ 1)/(8 +1).
[ 4 |Ax

The procedure can now be summarized: (1) we choose 19
as a starting potential; (1i) we fix l_'. r .. % the linear
spline basis that cover the interval (0, t."); (111) we determine
a by requiring x' to be minimum: (iv) we find a new potential
e o Eo f(r) and (v) we repeat the above procedure starting with

the new potential until convergence is reached.

Figure 1 exib:s an example that 1illustrates the
precedure.  We took as target S’ those generated by the Wood-Saxon
optical potential of reference (6).

v W
¥(r) = 9 + 1 L —RT ¢ R=rpr [AV’ * A‘n]
1 + exp r;. 1 » exp L.... o r T
a Il

vhere the parameters are given in the second column of table I.

For the starting potential we also used a Wood-Saxon
shape for the real part with parsseters given in the third column
of table | with the imaginary part set to be zero. Ve chose ¢_' =
40 and Pox ™ 10fa and used a basis of 20 linear splines equally
spaced over the interval (0,10fm). The procedure converged after
seven iterations with final xz = 0,00096. After each iteration we
calculate the distance between the tarzet St and the calculated
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S, =atrices defined as follows:

L

IS' - S'l .

QME"

1
L -

Figure ] exhibits the calculated potentials for each iteration
and the respective values of zz and o. It is interesting to
stserve that though we started with a quite different potential
from that which originated the input S-matrix, after seven
interactions, the procedure returns back to the same original
potential. This suggests that the linearization of Eq. (2.1) does
not restrict in a substantial way the applications of the
procedure.

3. THE DATA ANALYSIS

As data we used the measurements of elastic scattering
C collision at E, = 120 MeV, 145
MeV and 172,5 MeV of S. Wiktor et al. in the angular interval from
‘:‘u = 8° to ec. = 90°, 70° and 60° respectively in investigating
the actual shapes and uncertainties in the optical potential

cross sections for the « +

deteraination from the experimental data. rigure ]I shows their
data as dots. The scolid curve is one of our optica potential
fits obtained by the inversion procedur'e previously described and
will be explain in detail later. The insert in thic figure is
the classical deflection function obtained from the phase-shifts of
the 145 MeV optical potential of reference (68). One should
notice that the experimental data cover five orders of
ragnitude in the cross section with errors around 5% and
extends beyond the classical rainbow angle (e = 50°).



As our task 1s to exhibit not only the zhare 2of the
potential but also its uncertainties as determined by the data. we
generated from the original data 15 pew angular distributions by
adding to them white noises with widths given by the experisental
errors. The totality of 45 angular distributions, 15 for each
energy value were the starting point of our analysis. As the
experimental angular distributions contains saround 40 to 50 points,
insufficient to make phase shifts analysis, we enlarged the initial
data set by including 50 new points for each angular distribution,
deterained from a cubic spline interpolation. These enlarged sets
were used to search for the phase-shifts that best fi: the data.
In the search, we varied only those S, for 0 s £ s 25. The other
S' values were taken from the optical potential of reference (6). -
Figure III summarizes the S, values found in our araiysis. The
vertical scale is lS'l and the horizontal scale the vaiue of L
The result is plotted as vertical bars centered on the mean value
of IS‘I and with widths equal to twice the RMS deviation from the
mean value. Ve observe that the uncertanty in IS‘I increases as
decreases reflecting the relatively low sensitivity of the cross
section to the low values of the angular mosentum.

To each one of the 45 sets of S-matrix we appllied the
inversion procedure described in the previous section, using lm
= 40, r = 10fs and a base of N = 20 linear splises. In all
cases (r) was taken as the W-S potential given :n the third
column of table |I. Figure 1V exhibits our results.
The 15 optical potentials found by the inversion procedure are
plotted as small dots. The open circles (connected by the dashed
line} correspond to the mean value of the potentials for each
radial distance. The solid curve represents the W-S5 optical
potential of reference (8). For each energy we observe that for r
z 3fm, the surface region, the uncertainties in the potential are
small and our results agree witn the optical potential af reference
(8) except for the 145 MeV case where the shape exhibits some



structure outside the uncertainty bars. In the inner region (r <
3fm) the potentials deviates subs:antially froa that of reference
{6). In particular, not only does the imaginary potential exhibit
very large negative values but also the real potential also becomes
repulsive the lower the entrance channel energy. Froa our point of
view, these effects in the inner region as a function of the energy
can be qualitatively understood as resulting froa the exclusion
principle that inhibits the existence of @ + 'C configuration in
the %0 system for lower values of the excitation emergy. e
should also point out the fact that the uncertainties in the
potential get larger as the &« ¢+ "C approach one another. This
basically reflects the uncertainties found in the determinmation of
the S-metrix due to the centrifugal barrier since S. is more
sensitive to the inner region for lower values of L

4. CONCLUSIONS

The application of the Iinversion proceduwe for the
determination of the optical potential from the elastic S-matrix
elements, first proposed by Mackintosh et al.‘"’ worked well for
the « + °C e¢lastic scattering data at E,, = 120 MeV, 145 MeV and
172,5 Mev'”. We found both the optical potentials for the
entrance channel energies measured and also their uncertainties
associated with the experimental errors. The uncertainties found
agree with the general bellief that the optical potential for ion
collisions is not well determined in the inner region. DPesides
these main results we also found that as the energy decreases the
imaginary part of the potential increases negatively and the real
part becomes repulsive suggesting the existence of a hard core in
the inner region for low entrance channel energies. Ve believe
that this behavior is of a general character, reflecting the
constraint imposed by the exclusion principle. If this is so, then
we may expect that this effect is stronger for heavier ion

collisions at the same entrance channel energy per nucleon.
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FIGURE CAPTIONS:

Figue 1.

Figure I1.

Figure III.

Figure IV.

TABLE CAPTION

Table 1.

Real and imaginary parts of the inversion potential
after each iteration (dashed line) and the target
potential of reference (§) (solild line).

Experimental elastic angular distributions of « +
C at E_ = 172.5 WeV, 145 MeV and 120 MeV. The
solid curve is ome of our optica! potential fits
obtained by the inversion procedure. The insert is
the classical deflection function obtained from the
145 MeV optical petaatial of reference (6).

The solid bars represent the RMS deviation of lS‘|
obtained from the phase-shift analyses centered in
the mean valve |5 |.

Optical potentials obizined by Iinversion (small
dots). The open circles connected by the
dashed-1ine correspond to the mean value of the
potentials. The s0lid curves are the W-S optical
potentials of reference (8) for each energy.

The first coluamn gives the parameters, the second
column their values as used in refereaice (5) for E.
s 172.5MeV and the third column the values of the
paraneters for the Initial potential in the
iterative procedure.
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