FR 960 31.50

VIVITEUN

CRN - VIV - 89

MONTAGE DU GENERATEUR ETAT D'AVANCEMENT

SITUATION AU 26 SEPTEMBRE 1990

J. HEUGEL

SEPTEMBRE 1990

CENTRE DE RECHERCHES NUCLEAIRES STRASBOURG

IN2P3

UNIVERSITE

CNRS

LOUIS PASTEUR

Le présent rapport est un document de travail sur un thème qui a fait l'objet d'un exposé de J. HEUGEL à la réunion du Comité Technique VIV du 26 septembre 1990

VIVITRON

MONTAGE DU GENERATEUR

ETAT D'AVANCEMENT SITUATION AU 26 SEPTEMBRE 1990

SOMMAIRE

SITUATION PAR RAPPORT A LA CONSTRUCTION

TRAVAUX REALISES DEPUIS MAI 1990

RECHERCHE DES FUITES RESERVOIR

FINITION DU GENERATEUR

SITUATION PAR RAPPORT A LA CONSTRUCTION DU GENERATEUR

PLANNING DE CONSTRUCTION

voir annexe

PLANNING DE FINITION DU GENERATEUR

voir annexe

Travaux realises Depuis mai 1990

FINITION DU SYSTEME DE CHARGE

TRAVAUX *(cf. détails de J.M. Hellebaid)*

- suppression des branchements provisoires, interconnexions utilisant les passages de câbles sur les fonds de réservoir
- mises au point, règlages des systèmes d'entrainement, règlage de la courroie
- montage de barres de gradient sur les arceaux des sections mortes

TEMPS INVESTI

13 hommes-jours

MONTAGE DES ELECTRODES COLONNE (suite et fin)

TRAVAUX

- fermeture de la colonne accélératrice avec des électrodes colonne (EC):
 - * montage et ajustement par demi-coquilles appairées
 - * progression par section accélératrice, six électrodes colonne sont comprises entre deux sections mortes
- raccordement aux électrodes discrètes (ED):
 - une pièce de jonction relie chacune des sept extrémités du portique des ED en rapport, avec l'EC centrale
 - * les jonctions ont nécessité un ajustement par usinage des arceaux supports de l'EC centrale

TEMPS INVESTI

30 hommes-jours

INTERCONNEXIONS EXTERIEURES

(en colliaboration avec le "Contrôle et Commande)

TRAVAUX

- liaisons galvaniques entre les extrémités du réservoir et les armoires B.E. (Berthe) et H.E. (Hector)
- interconnexions des équipements du système de stabilisation, essais et mises au point
- liaisons optiques entre l'armoire Berthe et le pupitre de commande

TEMPS INVESTI

204 hommes-jours

DEMORTAGE DE LA PLATEFORME

TRAVAUX

Intervention en trois temps séparés par les mises en pression du réservoir:

- enlèvement des éléments constituant le plancher et les supports entre sections mortes, dégagement des tapis sur le fond du réservoir
- démontage des structures au niveau de l'ensemble des sections mortes
- démontage des appuis et points de fixation au niveau du réservoir

Chacune de ces opérations a été suivie par un nettoyage de la surface inférieure du réservoir.

TEMPS INVESTI

60 hommes-jours

FERMETURE DU RESERVOIR (sufto et 110)

TRAVAUX

- mise en place des équipements du système de stabilisation:
 - * 2 ensembles "corona"
 - * 3 containers pour source radioactive (avec branchement pneumatique des vérins de commande)
 - * 8 dispositifs de court circuit de la colonne
- montage de l'ensemble des brides sur les fonds de réservoir:
 - * hublots d'observation
 - * hublot d'alignement (contrôle de position des sections mortes)
 - * brides avec passages électriques
- suppression du sas d'entrée et débranchement de la climatisation
- fermeture des trous d'homme (latéraux, central inférieur et supérieur)

TEMPS INVESTI

72 hommes-jours

TEST DES FUITES RESERVOIR A LA PRESSION NOMINALE

PREPARATION)
TESTS) voir le chapitre consacré
TEMPS INVESTI 113 hommes-jours

TRAVAUX DIVERS

- Contrôle de position des sections mortes sous pression
- Mesure des forces dans les plots suspendus
- Mesure des transitoires (Mr. Friek)
 TEMPS INVESTI

5 hommes-jours

- Proporation d'un dispositif d'accès aux sections mortes objectif: disposer d'un échafaudage à montage rapide pour accèder de part et d'autre des sections mortes et du terminal TEMPS INVESTI 9 hommes-jours
- Dégagement de la salle de l'injecteur (suite)
 TEMPS INVESTI 26 hommes-jours

DILAN GLODAL POUR LA PERIODE CONSIDERES

DUREE PRISE EN COMPTE (28 MAI au 25 SEPT) 17,5 semaines

JOURS OUVRABLES DISPONIBLES 86 jours

TOTAL DES TRAVAUX COMPTABILISES 532 hommes-jours

(chantier Vivitron uniquement et hors entreprises extérieures)

recherche des fuites a la Pression sur le reservoir

PREPARATION D'UNE METHODOLOGIE DE DETECTION

DETECTION PAR RENIFLAGE D'UN GAZ TRACEUR

EQUIPEMENT DE DETECTION DISPONIBLE <u>Détecteur à halogène (Haloteck II et CPS L-780)</u>

- sensibilité maximum: 3 g/an de R12 (forane 12) soit 0,5 1/an
- fuite étalon de R11: correspondant à 2,42 l/an soit un équivalent de 0,8 x 10^{-4} mbar.1/s

Détecteur à hélium SPY 2000 VARIAN

- sensibilité maximale: 3.5×10^{-6} mbar.1/s (0.11 1/an)
- temps de réponse: 1 s
- renifleur sur flexible de 1,5 m
- calibrage de contrôle par rapport à l'hélium de l'air (5 PPM)
 Détecteur à hélium ALCATEL ASM4 avec QUICK-TEST LEYBOLD
 - débit de l'unité de reniflage: 10^{-3} mbar.1/s
 - rendement du renifleur: 1/10 à 1/100

1/1000 pour les cas très défavorables

- temps de réponse avec le flexible de 20 m: 5 s
- calibrage par rapport à l'hélium de l'air (5 x 10^{-6}) le détecteur voit alors: 5 x 10^{-9} mbar.l/s d'hélium

Conclusions dégagées par un test de préparation (recherche de fuites en utilisant une enceinte d'environ 50 l et différentes concentrations de traceur) POUR LA PRESSURISATION

- pressurisation du réservoir avec de l'air comprimé sec jusqu'à 8 bar abs (pression nominale)
- connexion permanente pour le transfert de l'hélium et du fréon
- nécessité de disposer de deux appareils de mesure de la pression réservoir
- la concentration des gaz traceurs (fréon 12 et hélium) peut être limitée à un minimum de 1 %

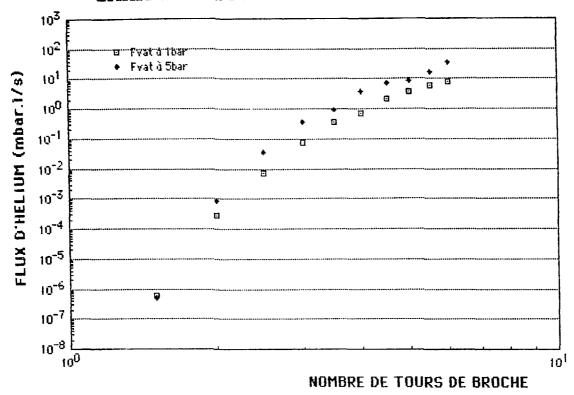
POUR LA DETECTION AUX HALOGENES

- le détecteur ne donne aucune indication quantitative
- seul un signal sonore renseigne sur la présence d'une fuite (l'intensité peut renseigner sur l'importance de la fuite)
- dans la pratique il est facile de localiser des fuites de l'ordre de 1 à 5 l/an d'halogène, ce qui correspond à

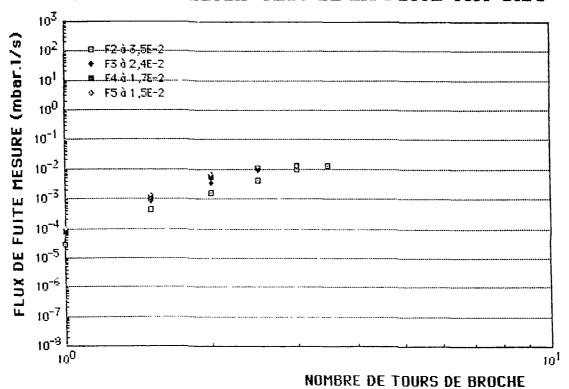
environ 100 à 500 l/an à la concentration de 1 %

---> localisation des "grosses fuites"

POUR LA DETECTION A L'HELIUM


- détection quantitative dans son principe
- difficulté de mise en oeuvre:
 - * temps de réponse
 - * efficacité du renifleur
 - * concentration limitée d'hélium
 - * calibrage
 - ---> la grandeur de la fuite n'est connue qu'à un facteur de 10 ou 100 près (au mieux)
- dans la pratique la détection est assez fine:
 - * le détecteur Spy 2000 est fiable et possède une remise à zéro automatique (permet de s'affranchir de l'hélium dans l'environnement) mais son indication quantitative n'est pas continue (indication par niveaux)
 - * l'ensemble ASM4 associé au Quick-Test permet de trouver avec 1% d'He4, des fuites de 5×10^{-5} à 5×10^{-4} mbar.l/s correspondant à 1,6 à 15,7 l/an
- ---> cet appareil (encombrant) peut servir de référence CONTROLE DES DETECTEURS
 - contrôle fréquent du calibrage indispensable pour une indication quantitative fiable
 - utilisation d'une référence de fuite calibrée
 - ---> vanne de fuite règlable VAT S.59 (débit règlable de 10^{-8} à 60 mbar.1/s pour $\Delta P = 1$ bar)
 - * montée sur le fond du réservoir côté BE
 - * courbe de réponse tracée avec le détecteur Quick-Test-ASM4

TEST DES FUITES


PRESSURISATION D'ESSAI (limitée à 6 bar abs)

- vérification du fonctionnement et mise au point des équipements
 - * pour le transfert de l'hélium et du fréon
 - * pour la mise en pression d'air (sècheur, compresseur, appareils de contrôle)
 - * pour la détection à l'hélium et le calibrage
 - * pour vider le réservoir
- mesure de l'humidité résultante dans le réservoir
- suppression d'éventuelles grosses fuites
- vérification de la structure portant après la première déformation du réservoir

CARACTERISTIQUE DE LA FUITE VAT 8.59

TEST ASM4/QUICK-TEST DE LA FUITE VAT 8.59

Résultats

- incident sur le compresseur n° 1 après quelques heures de fonctionnement (1,8 bar)
- point de rosée du gaz dans le réservoir:
 - 32° C en début de pressurisation
 - 40° en fin de pressurisation
- pas de fuite évidente, quelques fuites localisées avec les détecteurs
- mise au point du calibrage SPY 2000 et ASM4/Quick test grâce à la vanne de fuite VAT
- Jégonflage trop lent
- pas d'anomalie dans la structure portante

PREMIER TEST A PRESSION NOMINALE Opérations:

- mise sous vide du réservoir avant pressurisation
 - ---> reserrage de toutes les vis de brides
- admission d'air jusqu'à la pression atmosphérique
- transfert frésn 12 et bélium
- pressurisation avec le compresseur
- recherche des fuites importantes avec les détecteurs à halogène
- recherche avec les détecteurs à hélium SPY 2000

Résultats:

- point de rosée du mélange dans le réservoir: 38° C
- fuite globale au début du test qu m³/jour
- fuite globale à la rin du test inférieure à 1 m³/jour
- fuites inventoriées non réparables sous pression:

•	
* piquage mano Vigil	10 à 100 1/an
* caisson source radioactive HE	1à10 m ³ /an
* passage de câble 30-3	10 à 100 m ³ /an
* passage de câble 30-6	10 à 100 m ³ /an
* bride 100 (sur le fond BE)	10 à 100 1/an
* vanne d'entrée He4 sur bride 62 HE	10 à 100 1/an
* vanne de vidange sur bride 00-07	10 à 100 l/an
* vanne à boisseau vers aspi, compres.	1 à 10 m ³ /an

--> les tests à venir après réparation à la pression atmosphérique seront uniquement faits en utilisant l'hélium

DEUXIEME TEST A BASSE PRESSION (APRES REPARATION)

- la bride 100 (sur le fond BE) présente encore une fuite

TROISIEME TEST A BASSE PRESSION

- fuite sur le passage de câble 30-8
- point de rosée du gaz dans le réservoir: 68° C

QUATRIEME TEST A PRESSION NOMINALE

- plus de fuite détectable
- point de rosée du gaz dans le réservoir: 47° C
- mesure des forces dans les plots isolants à la dépressurisation (G. Gaudiot)

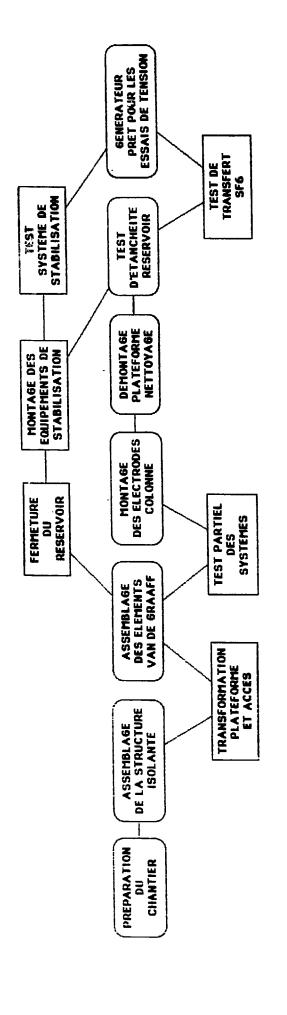
Travaux en cours Ou Finition du generateur

FINITION DES INTERCONNEXIONS

(en collaboration avec le "Contrôle et Commande")

- branchement galvaniques des peignes et alimentation du système de charge
- installation et branchement au terminal, des capteurs de mesure de courant du système de charge

» EXTERIEURES


- mise au point des interconnexions entre les extrémités du réservoir et les armoires Berthe et Hector
- mise au point des interconnexions avec le pupitre

NETTOYAGE INTERIEUR

- dégagement des protections de plots isolants
- dépoussiérage des électrodes

ESSAIS DES SYSTEMES

- système de charge
- système de stabilisation
- contrôle et commande
- premier transfert de SF6

J. Heugel 890516

DE TENSIC TEST TRANSFERT TEST DE SF6 SYSTEMES 15/10**L** 8 TEST COMPRESSEUR 9/10 /10 10 REMISE EN ETAT INTERCONNEXIONS PU SYSTEME DE FINITION DES INTERIEURES 1 NETTOY AGE 0 INTERIEUR FINITIONS FIMITION CHARGE 25/9 6/61 INTERCONNEXIONS FIMITION DES EXTERIEURES 0 DEMONT AGE DES D'ET ANCHEITE DU RESERVOIR DU PLANCHER SUPPORTS **0** TEST 20/8 24/7 ... D FEPI-IETUPE RESERVOIR CLRIATISATION ECLAIPAGE ET ET METTOY AGE DU PLANCHER DEMONT AGE DEFIDMT AGE 9/61 9/61 DES ELECTRODES PHONTAGE COLOMNE INTERCOMMENDING FINITION DES MITERIEURES CAPTEURS OF COURANT SM FINITION DES (A)

VIVITROM : Mafthoa da géaératear

Imprimé au Centre de Recherches Nucléaires Strasbourg 1990